【精品】高考数学一轮复习通用版第六节 直线、平面平行与垂直的综合问题

合集下载

高中数学专题复习直线与平面的垂直和平行知识点例题精讲

高中数学专题复习直线与平面的垂直和平行知识点例题精讲

直线与平面的垂直和平行[高考能力要求]高考立体试题一般都是综合直线和平面,以及简单几何体的内容为一体,经常是以简单几何体为载体,考查直线和平面的位置关系,其中又以线线平行、线面平行和垂直、面面平行与垂直、三垂线定理为主要内容。

高考试题将这些内容组合在一起,并设计成开放性试题趋势比较明显,在复习中应当引起高度重视。

从方法层面,直线和平面的位置关系,应当正确理解概念和定理的内涵,灵活进行相互间转化。

例如,“线线垂直⇒线面垂直”“面面垂直⇒线面垂直”等。

从题型层面,一般可归结到以下六个问题:(1)与异面直线相关的问题;(2)共点三射线问题;(3)二面角内夹一线段问题;(4)二面角内含点的问题;(5)共点与不共点三线段互相垂直的问题;(6)正四面体问题。

摸清规律,认知结论,把比较复杂的题目作分解处化这些基本问题,这样就可以快捷地找到解题途径。

平行、垂直的位置关系可通过有关定理性质实现相互转化,具体如下:[例题精讲]【例1】.(2004年湖南)如图,在底面是菱形的四棱锥P—ABCD中,060∠ABC,=2,点E是PD的中点。

证明 PA⊥平面ABCD;PB∥平面EAC。

PA=AC=a,PB=PD=a分析:要证一条直线与平面垂直,需要证明直线与平面内的两条相交直线垂直,要证一条直线和一个平面平行,只需证明此直线平行于平面内的一条直线即可。

证明1:因为底面ABCD 是菱形,060=∠ABC ,所以AB=AD=AC=a ,在PAB ∆中,由22222PB a AB PA -=+知AB PA ⊥。

同理AD PA ⊥,所以PA ⊥平面ABCD 。

因为→→→→→→→→→→→→→+=+++=++=++=EC EA DC ED DA ED DA DC ED CB DC PD PB )()(2,所以→→→EC EA PB ,,共面。

又⊄PB 平面EAC ,所以PB//平面EAC 。

证明2:同证明1得PA ⊥平面ABCD 。

高考数学一轮复习专题训练—直线、平面垂直的判定与性质

高考数学一轮复习专题训练—直线、平面垂直的判定与性质

直线、平面垂直的判定与性质考纲要求1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.知识梳理1.直线与平面垂直 (1)直线和平面垂直的定义如果一条直线l 与平面α内的任意直线都垂直,就说直线l 与平面α互相垂直. (2)判定定理与性质定理文字语言图形表示符号表示判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫l ⊥al ⊥b a ∩b =O a ⊂αb ⊂α⇒l ⊥α 性质定理两直线垂直于同一个平面,那么这两条直线平行⎭⎬⎫a ⊥αb ⊥α⇒a ∥b(1)定义:一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角,一条直线垂直于平面,则它们所成的角是直角;一条直线和平面平行或在平面内,则它们所成的角是0°的角. (2)范围:⎣⎡⎦⎤0,π2. 3.二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角;(2)二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角.(3)二面角的范围:[0,π]. 4.平面与平面垂直 (1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理与性质定理文字语言图形表示符号表示判定定理一个平面经过另一个平面的一条垂线,则这两个平面互相垂直⎭⎬⎫l ⊥αl ⊂β⇒α⊥β 性质定理如果两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面⎭⎪⎬⎪⎫α⊥βα∩β=al ⊥a l ⊂β⇒l ⊥α1.三个重要结论(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).(3)垂直于同一条直线的两个平面平行.2.使用线面垂直的定义和线面垂直的判定定理,不要误解为“如果一条直线垂直于平面内的无数条直线,就垂直于这个平面”. 3.三种垂直关系的转化线线垂直判定定理性质线面垂直判定定理性质定理面面垂直诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)直线l 与平面α内的无数条直线都垂直,则l ⊥α.( )(2)垂直于同一个平面的两平面平行.()(3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.()(4)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.()答案(1)×(2)×(3)×(4)×解析(1)直线l与平面α内的无数条直线都垂直,则有l⊥α或l与α斜交或l⊂α或l∥α,故(1)错误.(2)垂直于同一个平面的两个平面平行或相交,故(2)错误.(3)若两个平面垂直,则其中一个平面内的直线可能垂直于另一平面,也可能与另一平面平行,也可能与另一平面相交,也可能在另一平面内,故(3)错误.(4)若平面α内的一条直线垂直于平面β内的所有直线,则α⊥β,故(4)错误.2.已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n答案 C解析由题意知,α∩β=l,所以l⊂β,因为n⊥β,所以n⊥l.3.在三棱锥P-ABC中,点P在平面ABC中的射影为点O.(1)若P A=PB=PC,则点O是△ABC的________心.(2)若P A⊥PB,PB⊥PC,PC⊥P A,则点O是△ABC的________心.答案(1)外(2)垂解析(1)如图1,连接OA,OB,OC,OP,在Rt△POA,Rt△POB和Rt△POC中,P A=PB=PC,所以OA=OB=OC,即O为△ABC的外心.图1(2)如图2,延长AO,BO,CO分别交BC,AC,AB于H,D,G.因为PC⊥P A,PB⊥PC,P A∩PB=P,所以PC⊥平面P AB,又AB⊂平面P AB,所以PC⊥AB,因为PO⊥AB,PO∩PC =P,所以AB⊥平面PGC,又CG⊂平面PGC,所以AB⊥CG,即CG为△ABC边AB上的高.同理可证BD,AH分别为△ABC边AC,BC上的高,即O为△ABC的垂心.图24.(2021·日照检测)已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析m⊂α,m⊥β⇒α⊥β,反过来,若m⊂α,α⊥βD m⊥β(m∥β或m与β斜交),所以“α⊥β”是“m⊥β”的必要不充分条件.5.(2021·西安联考)已知AB是圆柱上底面的一条直径,C是上底面圆周上异于A,B的一点,D为下底面圆周上一点,且AD⊥圆柱的底面,则必有()A.平面ABC⊥平面BCD B.平面BCD⊥平面ACDC.平面ABD⊥平面ACD D.平面BCD⊥平面ABD答案 B解析因为AB是圆柱上底面的一条直径,所以AC⊥BC,又AD垂直于圆柱的底面,所以AD⊥BC,因为AC∩AD=A,所以BC⊥平面ACD.由于BC⊂平面BCD.所以平面BCD⊥平面ACD.6.(2018·全国Ⅰ卷)在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8 B.6 2 C.8 2 D.8 3答案 C解析连接BC1,因为AB⊥平面BB1C1C,所以∠AC1B=30°,AB⊥BC1,所以△ABC1为直角三角形.又AB=2,所以BC1=2 3.又B1C1=2,所以BB1=232-22=22,故该长方体的体积V=2×2×22=8 2.考点一线面垂直的判定与性质【例1】(2019·全国Ⅱ卷)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥E -BB 1C 1C 的体积.(1)证明 由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1,故B 1C 1⊥BE .又BE ⊥EC 1,B 1C 1∩EC 1=C 1,B 1C 1,EC 1⊂平面EB 1C 1,所以BE ⊥平面EB 1C 1. (2)解 由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E , 所以∠AEB =∠A 1EB 1=45°, 故AE =AB =3,AA 1=2AE =6.如图,作EF ⊥BB 1,垂足为F ,则EF ⊥平面BB 1C 1C ,且EF =AB =3. 所以四棱锥E -BB 1C 1C 的体积V =13×3×6×3=18.感悟升华 1.证明直线和平面垂直的常用方法有:(1)判定定理;(2)垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);(3)面面平行的性质(a ⊥α,α∥β⇒a ⊥β);(4)面面垂直的性质(α⊥β,α∩β=a ,l ⊥a ,l ⊂β⇒l ⊥α).2.证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思路.【训练1】 如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.证明(1)在四棱锥P-ABCD中,∵P A⊥底面ABCD,CD⊂平面ABCD,∴P A⊥CD,又∵AC⊥CD,且P A∩AC=A,∴CD⊥平面P AC.又AE⊂平面P AC,∴CD⊥AE.(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.又PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,AB⊂平面ABCD,∴P A⊥AB.又∵AB⊥AD,且P A∩AD=A,∴AB⊥平面P AD,又PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.考点二面面垂直的判定与性质【例2】(2020·全国Ⅰ卷)如图,D为圆锥的顶点,O是圆锥底面的圆心,△ABC是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面P AB⊥平面P AC;(2)设DO =2,圆锥的侧面积为3π,求三棱锥P -ABC 的体积. (1)证明 由题设可知,P A =PB =PC . 由△ABC 是正三角形,可得△P AC ≌△P AB ,△P AC ≌△PBC . 又∠APC =90°,故∠APB =90°,∠BPC =90°.从而PB ⊥P A ,PB ⊥PC ,又P A ,PC ⊂平面P AC ,P A ∩PC =P , 故PB ⊥平面P AC ,又PB ⊂平面P AB , 所以平面P AB ⊥平面P AC .(2)解 设圆锥的底面半径为r ,母线长为l , 由题设可得rl =3,l 2-r 2=2,解得r =1,l = 3. 从而AB = 3.由(1)可得P A 2+PB 2=AB 2,故P A =PB =PC =62. 所以三棱锥P -ABC 的体积为 13·12·P A ·PB ·PC =13×12×⎝⎛⎭⎫623=68. 感悟升华 1.判定面面垂直的方法主要是:(1)面面垂直的定义;(2)面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β).2.已知平面垂直时,解题一般要用性质定理进行转化.在一个平面内作交线的垂线,将问题转化为线面垂直,然后进一步转化为线线垂直.【训练2】 (2021·安徽A10联盟检测)如图,在四棱锥A -BCDE 中,△ADE 是边长为2的等边三角形,平面ADE ⊥平面BCDE ,底面BCDE 是等腰梯形,DE ∥BC ,DE =12BC ,BE=DC =2,BD =23,点M 是DE 边的中点,点N 在BC 上,且BN =3.(1)证明:BD ⊥平面AMN ;(2)设BD ∩MN =G ,求三棱锥A -BGN 的体积. (1)证明 ∵△ADE 是等边三角形,M 是DE 的中点, ∴AM ⊥DE .又平面ADE ⊥平面BCDE ,平面ADE ∩平面BCDE =DE , ∴AM ⊥平面BCDE ,∵BD ⊂平面BCDE ,∴AM ⊥BD ,∵MD =ME =1,BN =3,DE ∥BC ,DE =12BC ,∴MD 綉CN ,∴四边形MNCD 是平行四边形, ∴MN ∥CD .又BD =23,BC =4,CD =2,∴BD 2+CD 2=BC 2, ∴BD ⊥CD ,∴BD ⊥MN .又AM ∩MN =M ,∴BD ⊥平面AMN . (2)解 由(1)知AM ⊥平面BCDE , ∴AM 为三棱锥A -BGN 的高. ∵△ADE 是边长为2的等边三角形, ∴AM = 3.易知GN =34CD =32,又由(1)知BD ⊥MN ,∴BG =BN 2-NG 2=332.∴S △BGN =12BG ·NG =12×332×32=938.∴V A -BGN =13S △BGN ·AM =13×938×3=98.考点三 平行与垂直的综合问题角度1 平行与垂直关系的证明【例3】 如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,E ,F 分别为AD ,PB 的中点.求证:(1)PE ⊥BC ;(2)平面P AB ⊥平面PCD ; (3)EF ∥平面PCD .证明 (1)因为P A =PD ,E 为AD 的中点, 所以PE ⊥AD .因为底面ABCD 为矩形,所以BC ∥AD . 所以PE ⊥BC .(2)因为底面ABCD 为矩形,所以AB ⊥AD .又因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,AB ⊂平面ABCD , 所以AB ⊥平面P AD .又PD ⊂平面P AD ,所以AB ⊥PD . 又因为P A ⊥PD ,且P A ∩AB =A , 所以PD ⊥平面P AB .又PD ⊂平面PCD , 所以平面P AB ⊥平面PCD .(3)如图,取PC 中点G ,连接FG ,DG . 因为F ,G 分别为PB ,PC 的中点, 所以FG ∥BC ,FG =12BC .因为ABCD 为矩形,且E 为AD 的中点, 所以DE ∥BC ,DE =12BC .所以DE ∥FG ,DE =FG .所以四边形DEFG 为平行四边形. 所以EF ∥DG .又因为EF ⊄平面PCD ,DG ⊂平面PCD , 所以EF ∥平面PCD .感悟升华 1.三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化. 2.垂直与平行的结合问题,求解时应注意平行、垂直的性质及判定的综合应用.如果有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.角度2 平行垂直关系与几何体的度量【例4】 (2019·天津卷)如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,△PCD 为等边三角形,平面P AC ⊥平面PCD ,P A ⊥CD ,CD =2,AD =3.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面P AD ; (2)求证:P A ⊥平面PCD ;(3)求直线AD 与平面P AC 所成角的正弦值. (1)证明 连接BD ,易知AC ∩BD =H ,BH =DH .又由BG =PG ,故GH 为△PBD 的中位线,所以GH ∥PD . 又因为GH ⊄平面P AD ,PD ⊂平面P AD ,所以GH ∥平面P AD . (2)证明 取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC .又因为平面P AC ⊥平面PCD ,平面P AC ∩平面PCD =PC ,DN ⊂平面PCD ,所以DN ⊥平面P AC .又P A ⊂平面P AC ,所以DN ⊥P A . 又已知P A ⊥CD ,CD ∩DN =D , 所以P A ⊥平面PCD .(3)解 连接AN ,由(2)中DN ⊥平面P AC ,可知∠DAN 为直线AD 与平面P AC 所成的角. 因为△PCD 为等边三角形,CD =2且N 为PC 的中点, 所以DN = 3.又DN ⊥AN ,在Rt △AND 中,sin ∠DAN =DN AD =33.所以直线AD 与平面P AC 所成角的正弦值为33. 感悟升华 1.平行垂直关系应用广泛,不仅可以证明判断空间线面、面面位置关系,而且常用以求空间角和空间距离、体积.2.综合法求直线与平面所成的角,主要是找出斜线在平面内的射影,其关键是作垂线,找垂足,把线面角转化到一个三角形中求解.【训练3】 如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在的平面,C 是圆周上不同于A ,B 的一动点.(1)证明:△PBC是直角三角形;(2)若P A=AB=2,且当直线PC与平面ABC所成角的正切值为2时,求直线AB与平面PBC 所成角的正弦值.(1)证明∵AB是⊙O的直径,C是圆周上不同于A,B的一动点.∴BC⊥AC,∵P A⊥平面ABC,∴P A⊥BC,又P A∩AC=A,P A,AC⊂平面P AC,∴BC⊥平面P AC,∴BC⊥PC,∴△BPC是直角三角形.(2)解如图,过A作AH⊥PC于H,∵BC⊥平面P AC,∴BC⊥AH,又PC∩BC=C,PC,BC⊂平面PBC,∴AH⊥平面PBC,∴∠ABH是直线AB与平面PBC所成的角,∵P A⊥平面ABC,∴∠PCA是直线PC与平面ABC所成的角,∵tan∠PCA=P AAC=2,又P A=2,∴AC=2,∴在Rt △P AC 中,AH =P A ·AC P A 2+AC 2=233,∴在Rt △ABH 中,sin ∠ABH =AH AB =2332=33,故直线AB 与平面PBC 所成角的正弦值为33.与垂直平行相关的探索性问题立体几何中的探索性问题是近年高考的热点,题目主要涉及线面平行、垂直位置关系的探究,条件或结论不完备的开放性问题的探究,重点考查逻辑推理,直观想象与数学运算核心素养. 【典例】 如图所示,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,△PDC 和△BDC 均为等边三角形,且平面PDC ⊥平面BDC .(1)在棱PB 上是否存在点E ,使得AE ∥平面PDC ?若存在,试确定点E 的位置;若不存在,试说明理由. (2)若△PBC 的面积为152,求四棱锥P -ABCD 的体积. 解 (1)存在点E ,当点E 为棱PB 的中点时,使得AE ∥面PDC ,理由如下:如图所示,取PB 的中点E ,连接AE ,取PC 的中点F ,连接EF ,DF ,取BC 的中点G ,连接DG .因为△BCD 是等边三角形,所以∠DGB =90°. 因为∠ABC =∠BAD =90°,所以四边形ABGD 为矩形,所以AD =BG =12BC ,AD ∥BC .因为EF 为△BCP 的中位线,所以EF =12BC ,且EF ∥BC ,故AD =EF ,且AD ∥EF ,所以四边形ADFE 是平行四边形,从而AE ∥DF , 又AE ⊄平面PDC ,DF ⊂平面PDC , 所以AE ∥平面PDC .(2)取CD 的中点M ,连接PM ,过点P 作PN ⊥BC 交BC 于点N ,连接MN ,如图所示. 因为△PDC 为等边三角形,所以PM ⊥DC .因为PM ⊥DC ,平面PDC ⊥平面BDC ,平面PDC ∩平面BDC =DC . 所以PM ⊥平面BCD ,故PM 为四棱锥P -ABCD 的高. 又BC ⊂平面BCD ,所以PM ⊥BC .因为PN ⊥BC ,PN ∩PM =P ,PN ⊂平面PMN ,PM ⊂平面PMN ,所以BC ⊥平面PMN . 因为MN ⊂平面PMN ,所以BC ⊥MN . 由M 为DC 的中点,易知NC =14BC .设BC =x ,则△PBC 的面积为x 2·x 2-⎝⎛⎭⎫x 42=152,解得x =2,即BC =2, 所以AD =1,AB =DG =PM = 3.故四棱锥P -ABCD 的体积为V =13×S 梯形ABCD ×PM =13×1+2×32×3=32.素养升华 1.求条件探索性问题的主要途径:(1)先猜后证,即先观察与尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.2.涉及点的位置探索性问题一般是先根据条件猜测点的位置再给出证明,探索点的存在问题,点多为中点或三等分点中某一个,也可以根据相似知识建点.平行或垂直关系入手,把所探究的结论转化为平面图形中线线关系,从而确定探究的结果. 【训练】 如图,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥P -ABC 的体积;(2)在线段PC 上是否存在点M ,使得AC ⊥BM ,若存在点M ,求出PMMC 的值;若不存在,请说明理由.解 (1)由题知AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=32,由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高. 又P A =1,所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =36.(2)在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM .由P A ⊥平面ABC 知P A ⊥AC ,所以MN ⊥AC . 由于BN ∩MN =N ,故AC ⊥平面MBN . 又BM ⊂平面MBN ,所以AC ⊥BM .在Rt △BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32.由MN ∥P A ,得PM MC =AN NC =13.A 级 基础巩固一、选择题1.(2021·淮北质检)已知平面α,直线m ,n ,若n ⊂α,则“m ⊥n ”是“m ⊥α”的( )A .充分不必要条件B .充分必要条件C .必要不充分条件D .既不充分也不必要条件答案 C解析 由n ⊂α,m ⊥n ,不一定得到m ⊥α;反之,由n ⊂α,m ⊥α,可得m ⊥n . ∴若n ⊂α,则“m ⊥n ”是“m ⊥α”的必要不充分条件.2.在正方体ABCD -A 1B 1C 1D 1中,E 为棱CD 的中点,则( ) A .A 1E ⊥DC 1 B .A 1E ⊥BD C .A 1E ⊥BC 1 D .A 1E ⊥AC 答案 C解析 如图,由题设知,A 1B 1⊥平面BCC 1B 1,且BC 1⊂平面BCC 1B 1,从而A 1B 1⊥BC 1. 又B 1C ⊥BC 1,且A 1B 1∩B 1C =B 1,所以BC 1⊥平面A 1B 1CD ,又A 1E ⊂平面A 1B 1CD ,所以A 1E ⊥BC 1.3.(2021·郑州调研)已知m ,l 是两条不同的直线,α,β是两个不同的平面,则下列可以推出α⊥β的是( ) A .m ⊥l ,m ⊂β,l ⊥α B .m ⊥l ,α∩β=l ,m ⊂α C .m ∥l ,m ⊥α,l ⊥β D .l ⊥α,m ∥l ,m ∥β答案 D解析 在A 中,m ⊥l ,m ⊂β,l ⊥α,则α与β相交或平行,故A 错误; 在B 中,m ⊥l ,α∩β=l ,m ⊂α,则α与β有可能相交但不垂直,故B 错误; 在C 中,m ∥l ,m ⊥α,l ⊥β,则α∥β,故C 错误;在D 中,l ⊥α,m ∥l ,则m ⊥α,又m ∥β,则α⊥β,故D 正确.4.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形,若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( ) A.5π12 B .π3C.π4 D .π6答案 B解析 如图,取正三角形ABC 的中心为O ,连接OP ,则∠P AO 是P A 与平面ABC 所成的角.因为底面边长为3, 所以AD =3×32=32,AO =23AD =23×32=1.三棱柱的体积为34×(3)2AA 1=94, 解得AA 1=3,即OP =AA 1=3, 所以tan ∠P AO =OPOA=3,因为直线与平面所成角的范围是⎣⎡⎦⎤0,π2, 所以∠P AO =π3.5. (2020·昆明诊断)如图,AC =2R 为圆O 的直径,∠PCA =45°,P A 垂直于圆O 所在的平面,B 为圆周上不与点A 、C 重合的点,AS ⊥PC 于S ,AN ⊥PB 于N ,则下列不正确的是( )A.平面ANS⊥平面PBCB.平面ANS⊥平面P ABC.平面P AB⊥平面PBCD.平面ABC⊥平面P AC答案 B解析∵P A⊥平面ABC,BC⊂平面ABC,∴P A⊥BC,又AC为圆O直径,所以AB⊥BC,又P A∩AB=A,∴BC⊥平面P AB,又AN⊂平面ABP,∴BC⊥AN,又AN⊥PB,BC∩PB=B,∴AN⊥平面PBC,又AN⊂平面ANS,∴平面ANS⊥平面PBC,∴A正确,C,D显然正确.6.(2020·衡水调研)如图,点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个结论:①三棱锥A-D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确的结论的个数是()A.1个B.2个C.3个D.4个答案 C解析对于①,由题意知AD1∥BC1,从而BC1∥平面AD1C,故BC1上任意一点到平面AD1C 的距离均相等,所以以P为顶点,平面AD1C为底面,则三棱锥A-D1PC的体积不变,故①正确;对于②,连接A1B,A1C1,A1C1綉AC,由于①知:AD1∥BC1,所以面BA1C1∥面ACD1,从而由线面平行的定义可得,故②正确;对于③,由于DC⊥平面BCC1B1,所以DC⊥BC1,若DP⊥BC1,则BC1⊥平面DCP,所以BC1⊥PC,则P为中点,与P为动点矛盾,故③错误;对于④,连接DB1,由DB1⊥AC且DB1⊥AD1,可得DB1⊥面ACD1,从而由面面垂直的判定知,故④正确.二、填空题7.(2019·北京卷)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:________. 答案若m∥α,l⊥α,则l⊥m(或若l⊥m,l⊥α,则m∥α,答案不唯一)解析已知l,m是平面α外的两条不同直线,由①l⊥m与②m∥α,不能推出③l⊥α,因为l可以与α平行,也可以相交不垂直;由①l⊥m与③l⊥α能推出②m∥α;由②m∥α与③l⊥α可以推出①l⊥m.故正确的命题是②③⇒①或①③⇒②.8.如图,在直三棱柱ABC -A 1B 1C 1中,侧棱长为2,AC =BC =1,∠ACB =90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E ,要使AB 1⊥平面C 1DF ,则线段B 1F 的长为________.答案 12解析 设B 1F =x ,因为AB 1⊥平面C 1DF ,DF ⊂平面C 1DF , 所以AB 1⊥DF , 由已知可得A 1B 1=2,设Rt △AA 1B 1斜边AB 1上的高为h ,则DE =12h .又12×2×2=12×h 22+22,所以h =233,DE =33.在Rt △DB 1E 中,B 1E =⎝⎛⎭⎫222-⎝⎛⎭⎫332=66. 由面积相等得12×66×x 2+⎝⎛⎭⎫222=12×22x , 得x =12.9.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD (只要填写一个你认为是正确的条件即可).答案 DM ⊥PC (或BM ⊥PC ) 解析 连接AC ,BD ,则AC ⊥BD ,因为P A ⊥底面ABCD ,BD ⊂平面ABCD ,所以P A ⊥BD .又P A ∩AC =A ,所以BD ⊥平面P AC ,PC ⊂平面P AC ,所以BD ⊥PC . 所以当DM ⊥PC (或BM ⊥PC )时, 有PC ⊥平面MBD .PC ⊂平面PCD ,所以平面MBD ⊥平面PCD . 三、解答题10.如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离. (1)证明 因为AP =CP =AC =4,O 为AC 的中点, 所以OP ⊥AC ,且OP =2 3.连接OB ,因为AB =BC ,AB 2+BC 2=AC 2,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知,OP ⊥OB .由OP ⊥OB ,OP ⊥AC 且OB ∩AC =O ,知PO ⊥平面ABC . (2)解 作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM . 故CH 的长为点C 到平面POM 的距离. 由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°.所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.11. (2021·昆明诊断)如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,∠BAD =60°,△P AD 是正三角形,E 为线段AD 的中点.(1)求证:平面PBC ⊥平面PBE ;(2)是否存在满足PF →=λFC →(λ>0)的点F ,使得V B -P AE =34V D -PFB ?若存在,求出λ的值;若不存在,请说明理由.(1)证明 因为△P AD 是正三角形,E 为线段AD 的中点, 所以PE ⊥AD .因为底面ABCD 是菱形,所以AD =AB ,又∠BAD =60°, 所以△ABD 是正三角形, 所以BE ⊥AD . 又BE ∩PE =E , 所以AD ⊥平面PBE . 又AD ∥BC , 所以BC ⊥平面PBE . 又BC ⊂平面PBC , 所以平面PBC ⊥平面PBE .(2)解 由PF →=λFC →,知(λ+1)FC =PC , 所以V B -P AE =12V P -ADB =12V P -BCD =λ+12V F -BCD ,V D -PFB =V P -BDC -V F -BDC =λV F -BCD . 因此,λ+12=3λ4,得λ=2.故存在满足PF →=λFC →(λ>0)的点F , 使得V B -P AE =34V D -PFB ,此时λ=2.B 级 能力提升12.如图,正三角形ABC 的中线AF 与中位线DE 相交于点G ,已知△A ′DE 是△ADE 绕直线DE 翻折过程中的一个图形,现给出下列命题: ①恒有直线BC ∥平面A ′DE ; ②恒有直线DE ⊥平面A ′FG ;③恒有平面A ′FG ⊥平面A ′DE ,其中正确命题的个数为( )A.0 B.1 C.2 D.3答案 D解析对于①,∵DE为△ABC的中位线,∴DE∥BC,又知DE⊂平面A′DE,BC⊄平面A′DE,∴BC∥平面A′DE,故①正确;对于②,∵△ABC为等边三角形,AF为BC边上的中线,∴BC⊥AF,又知DE∥BC,∴DE⊥AF,∴DE⊥FG,根据翻折的性质可知,DE⊥A′G,又A′G∩FG=G,∴DE⊥平面A′FG,故②正确;对于③,由②知DE⊥平面A′FG,又知DE⊂平面A′DE,∴平面A′FG⊥平面A′DE,故③正确.综上,正确的命题为①②③. 13.(2019·全国Ⅰ卷)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为3,那么P到平面ABC的距离为________.答案 2解析如图,过点P作PO⊥平面ABC于O,则PO为P到平面ABC的距离.再过O作OE⊥AC于E,OF⊥BC于F,连接PC,PE,PF,则PE⊥AC,PF⊥BC.所以PE=PF=3,所以OE=OF,所以CO为∠ACB的平分线,即∠ACO=45°.在Rt△PEC中,PC=2,PE=3,所以CE=1,所以OE=1,所以PO=PE2-OE2=32-12= 2.14.如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°.以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.(1)证明 由已知可得,∠BAC =90°,即BA ⊥AC .又BA ⊥AD ,AC ∩AD =A ,AC ,AD ⊂平面ACD ,所以AB ⊥平面ACD . 又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)解 由已知可得, DC =CM =AB =3, DA =AM =3 2. 又BP =DQ =23DA ,所以BP =2 2.作QE ⊥AC ,垂足为E ,则QE 綉13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q -ABP 的体积为V Q -ABP =13×QE ×S △ABP =13×1×12×3×22sin 45°=1.。

2023版高考数学一轮总复习:直线平面垂直的判定及性质课件理

2023版高考数学一轮总复习:直线平面垂直的判定及性质课件理
3
考向1
线面垂直的判定与性质
方法技巧 1.证明线面垂直的常用方法
(1)利用线面垂直的判定定理(a⊥b,a⊥c,b∩c=M,b⊂α,c⊂α⇒a⊥α);
(2)利用面面垂直的性质定理(α⊥β,α∩β=l,a⊥l,a⊂β⇒a⊥α);
(3)利用面面平行的性质(a⊥α,α∥β⇒a⊥β);
(4)a∥b,a⊥α⇒b⊥α.
(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.
考向1
解析
线面垂直的判定与性质
(1)由已知得B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,
故B1C1⊥BE.(线面垂直的性质的应用)
又BE⊥EC1,B1C1∩EC1=C1,B1C1⊂平面EB1C1,EC1⊂平面EB1C1,所以BE⊥平面
2
,平面B1DC分三棱柱
2
考向1
线面垂直的判定与性质
解析 (1)∵三棱柱ABC-A1B1C1为直三棱柱,∴BB1⊥平面ABC,
又BC⊂平面ABC,∴BB1⊥BC.(利用线面垂直的性质证明线线垂直)
∵平面BCC1B1⊥平面A1ABB1,平面BCC1B1∩平面A1ABB1=BB1,BC⊂平面BCC1B1,
图形语言
符号语言
l⊥α
直,则该直线与此平面
垂直.
性质定理
同一个
垂直于________平面的
两条直线平行.
a∥b
考点1
直线与平面平行的判定与性质
规律总结
垂直关系中常用的6个结论
(1)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂
直的一个重要方法).
(2)若两条平行线中的一条直线垂直于一个平面,则另一条直线也垂直于这个平面.

高考数学一轮复习 直线、平面平行的性质定理课件

高考数学一轮复习 直线、平面平行的性质定理课件
两个平面平行.
若平面 内有无数条直线与 平行,则 与 可能相交,不一定平行,所以由不能推
出.故选A.
2.如图,在三棱锥S − ABC中,E,F分别是SB,SC上的点,且EF//平面ABC,
则( B )
A.EF与BC相交
B.EF//BC
C.EF与BC异面
D.以上均有可能
[解析] 因为平面 ∩ 平面 = ,//平面,所以//.
AF = 5,则EG
20
=___.
9
[解析] 因为// , ∩ 平面 = , ⊂ 平面,所以//,

即//,所以

=


=

,则
+
=
×
+
=
×
+
=

.

规律方法
在应用线面平行的性质定理进行平行转化时,常常将线面平行转化为该线与过该线的
的中点,在线段B1 C1 上是否存在点F,使得平面A1 AF//平面ECC1 ?若存
在,请加以证明;若不存在,请说明理由.
解 存在,当F为线段B1 C1 的中点时,平面A1 AF//平面ECC1 .
理由如下:如图,连接A1 F,AF,
在长方体ABCD − A1 B1 C1 D1 中,AA1 //CC1 ,AD//B1 C1 .

证明 ∵ G为BC的中点,E为PC的中点,∴ GE//BP.
∵ GE ⊄ 平面PAB,BP ⊂ 平面PAB,
∴ GE//平面PAB.
由F为PD的中点,得EF//DC.
∵ AB//DC,∴ EF//AB.
∵ EF ⊄ 平面PAB,AB ⊂ 平面PAB,
∴ EF//平面PAB. ∵ EF ∩ GE = E,

高三数学一轮总结复习目录

高三数学一轮总结复习目录

高三数学一轮总结复习目录理科数学 -模拟试题分类目录1第一章会合与常用逻辑用语1.1 会合的观点与运算专题 1 会合的含义与表示、会合间的基本关系专题 2 会合的基本运算专题 3 与会合有关的新观点问题1.2 命题及其关系、充要条件专题 1 四种命题及其关系、命题真假的判断专题 2 充足条件和必需条件专题 3 充足、必需条件的应用与研究(利用关系或条件求解参数范围问题)1.3 简单的逻辑联络词、全称量词与存在量词专题 1 含有简单逻辑联络词的命题的真假专题 2 全称命题、特称命题的真假判断专题 3 含有一个量词的命题的否认专题 4 利用逻辑联络词求参数范围第二章函数2.1 函数及其表示专题 1 函数的定义域专题 2 函数的值域专题 3 函数的分析式专题 4 分段函数2.2 函数的单一性与最值专题 1 确立函数的单一性(或单一区间)专题 2 函数的最值专题 3 单一性的应用2.3 函数的奇偶性与周期性专题 1 奇偶性的判断专题 2 奇偶性的应用专题 3 周期性及其应用2.4 指数与指数函数专题 1 指数幂的运算专题 2 指数函数的图象及应用专题 3 指数函数的性质及应用2.5 对数与对数函数专题 1 对数的运算专题 2 对数函数的图象及应用专题 3 对数函数的性质及应用2.6 幂函数与二次函数专题 1 幂函数的图象与性质专题 2 二次函数的图象与性质2.7 函数的图像专题 1 函数图象的辨别专题 2 函数图象的变换专题 3 函数图象的应用2.8 函数与方程专题 1 函数零点所在区间的判断专题 2 函数零点、方程根的个数专题 3 函数零点的综合应用2.9 函数的应用专题 1 一次函数与二次函数模型专题 2 分段函数模型2专题 3 指数型、对数型函数模型第三章导数及其应用3.1 导数的观点及运算专题 1 导数的观点与几何意义专题 2 导数的运算3.2 导数与函数的单一性、极值、最值专题 1 导数与函数的单一性专题 2 导数与函数的极值专题 3 导数与函数的最值3.3 导数的综合应用专题 1 利用导数解决生活中的优化问题专题 2 利用导数研究函数的零点或方程的根专题 3 利用导数解决不等式的有关问题3.4 定积分与微积分基本定理专题 1 定积分的计算专题 2 利用定积分求平面图形的面积专题 4 定积分在物理中的应用第四章三角函数、解三角形4.1 三角函数的观点、同角三角函数的基本关系及引诱公式专题 1 三角函数的观点专题 2 同角三角函数的基本关系专题 3 引诱公式4.2 三角函数的图像与性质专题 1 三角函数的定义域、值域、最值专题 2 三角函数的单一性专题 3 三角函数的奇偶性、周期性和对称性4.3 函数 y = A sin(wx +j ) 的图像及应用专题 1 三角函数的图象与变换专题 2 函数 y=Asin( ωx+φ ) 图象及性质的应用4.4 两角和与差的正弦、余弦与正切公式专题 1 非特别角的三角函数式的化简、求值专题 2 含条件的求值、求角问题专题 3 两角和与差公式的应用4.5 三角恒等变换专题 1 三角函数式的化简、求值专题 2 给角求值与给值求角专题 3 三角变换的综合问题4.6 解三角形专题 1 利用正弦定理、余弦定理解三角形专题 2 判断三角形的形状专题 3 丈量距离、高度及角度问题专题 4 与平面向量、不等式等综合的三角形问题第五章平面向量5.1 平面向量的观点及线性运算专题 1 平面向量的线性运算及几何意义专题 2 向量共线定理及应用专题 3 平面向量基本定理的应用5.2 平面向量基本定理及向量的坐标表示专题 1 平面向量基本定理的应用3专题 2 平面向量的坐标运算专题 3 平面向量共线的坐标表示5.3 平面向量的数目积专题 1 平面向量数目积的运算专题 2 平面向量数目积的性质专题 3 平面向量数目积的应用5.4 平面向量的应用专题 1 平面向量在几何中的应用专题 2 平面向量在物理中的应用专题 3 平面向量在三角函数中的应用专题 4 平面向量在分析几何中的应用第六章数列6.1 数列的观点与表示专题 1 数列的观点专题 2 数列的通项公式6.2 等差数列及其前 n 项和专题 1 等差数列的观点与运算专题 2 等差数列的性质专题 3 等差数列前 n 项和公式与最值6.3 等比数列及其前 n 项和专题 1 等比数列的观点与运算专题 2 等比数列的性质专题 3 等比数列前 n 项和公式6.4 数列乞降专题 1 分组乞降与并项乞降专题 2 错位相减乞降专题 3 裂项相消乞降6.5 数列的综合应用专题 1 数列与不等式相联合问题专题 2 数列与函数相联合问题专题 3 数列中的研究性问题第七章不等式推理与证明7.1 不等关系与一元二次不等式专题 1 不等式的性质及应用专题 2 一元二次不等式的解法专题 3 一元二次不等式恒建立问题7.2 二元一次不等式(组)与简单的线性规划问题专题 1 二元一次不等式(组)表示的平面地区问题专题 2 与目标函数有关的最值问题专题 3 线性规划的实质应用7.3 基本不等式及其应用专题 1 利用基本不等式求最值专题 2 利用基本不等式证明不等式专题 3 基本不等式的实质应用7.4 合情推理与演绎推理专题 1 概括推理专题 2 类比推理专题 3 演绎推理7.5 直接证明与间接证明专题 1 综合法4专题 2 剖析法专题 3 反证法7.6 数学概括法专题 1 用数学概括法证明等式专题 2 用数学概括法证明不等式专题 3 概括-猜想-证明第八章立体几何8.1 空间几何体的构造及其三视图和直观图专题 1 空间几何体的构造专题 2 三视图与直观图8.2 空间几何体的表面积与体积专题 1 空间几何体的表面积专题 2 空间几何体的体积专题 3 组合体的“接”“切”综合问题8.3 空间点、直线、平面之间的地点关系专题 1 平面的基天性质及应用专题 2 空间两条直线的地点关系专题 3 异面直线所成的角8.4 直线、平面平行的判断与性质专题 1 线面平行、面面平行基本问题专题 2 直线与平面平行的判断与性质专题 3 平面与平面平行的判断与性质8.5 直线、平面垂直的判断与性质专题 1 垂直关系的基本问题专题 2 直线与平面垂直的判断与性质专题 3 平面与平面垂直的判断与性质专题 4 空间中的距离问题专题 5 平行与垂直的综合问题(折叠、研究类)8.6 空间向量及其运算专题 1 空间向量的线性运算专题 2 共线定理、共面定理的应用专题 3 空间向量的数目积及其应用8.7 空间几何中的向量方法专题 1 利用空间向量证明平行、垂直专题 2 利用空间向量解决研究性问题专题 3 利用空间向量求空间角第九章分析几何9.1 直线的倾斜角、斜率与直线的方程专题 1 直线的倾斜角与斜率专题 2 直线的方程9.2 点与直线、两条直线的地点关系专题 1 两条直线的平行与垂直专题 2 直线的交点问题专题 3 距离公式专题 4 对称问题9.3 圆的方程专题 1 求圆的方程专题 2 与圆有关的轨迹问题专题 3 与圆有关的最值问题59.4 直线与圆、圆与圆的地点关系专题 1 直线与圆的地点关系专题 2 圆与圆的地点关系专题 3 圆的切线与弦长问题专题 4 空间直角坐标系9.5 椭圆专题 1 椭圆的定义及标准方程专题 2 椭圆的几何性质专题 3 直线与椭圆的地点关系9.6 双曲线专题 1 双曲线的定义与标准方程专题 2 双曲线的几何性质9.7 抛物线专题 1 抛物线的定义与标准方程专题 2 抛物线的几何性质专题 3 直线与抛物线的地点关系9.8 直线与圆锥曲线专题 1 轨迹与轨迹方程专题 2 圆锥曲线中的范围、最值问题专题 3 圆锥曲线中的定值、定点问题专题 4 圆锥曲线中的存在、研究性问题第十章统计与统计事例10.1 随机抽样专题 1 简单随机抽样专题 2 系统抽样专题 3 分层抽样10.2 用样本预计整体专题 1 频次散布直方图专题 2 茎叶图专题 3 样本的数字特点专题 4 用样本预计整体10.3 变量间的有关关系、统计事例专题 1 有关关系的判断专题 2 回归方程的求法及回归剖析专题 3 独立性查验第十一章计数原理11.1 分类加法计数原理与分步乘法计数原理专题 1 分类加法计数原理专题 2 分步乘法计数原理专题 3 两个计数原理的综合应用11.2 摆列与组合专题 1 摆列问题专题 2 组合问题专题 3 摆列、组合的综合应用11.3 二项式定理专题 1 通项及其应用专题 2 二项式系数的性质与各项系数和专题 3 二项式定理的应用第十二章概率与统计612.1 随机事件的概率专题 1 事件的关系专题 2 随机事件的频次与概率专题 3 互斥事件、对峙事件12.2 古典概型与几何概型专题 1 古典概型的概率专题 2 古典概型与其余知识的交汇(平面向量、直线、圆、函数等)专题 3 几何概型在不一样测度中的概率专题 4 生活中的几何概型问题12.3 失散型随机变量及其散布列专题 1 失散型随机变量的散布列的性质专题 2 求失散型随机变量的散布列专题 3 超几何散布12.4 失散型随机变量的均值与方差专题 1 简单的均值、方差问题专题 2 失散型随机变量的均值与方差专题 3 均值与方差在决议中的应用12.5 二项散布与正态散布专题 1 条件概率专题 2 互相独立事件同时发生的概率专题 3 独立重复试验与二项散布专题 4 正态散布下的概率第十三章算法初步、复数13.1 算法与程序框图专题 1 次序构造专题 2 条件构造专题 3 循环构造13.2 基本算法语句专题 1 输入、输出和赋值语句专题 2 条件语句专题 3 循环语句13.3 复数专题 1 复数的有关观点专题 2 复数的几何意义专题 3 复数的代数运算第十四章选修模块14.1 几何证明选讲专题 1 平行线分线段成比率定理专题 2 相像三角形的判断与性质专题 3 直角三角形的射影定理专题 4 圆周角、弦切角及圆的切线专题 5 圆内接四边形的判断及性质专题 6 圆的切线的性质与判断专题 7 与圆有关的比率线段14.2 坐标系与参数方程专题 1 极坐标与直角坐标的互化专题 2 直角坐标方程与极坐标方程的互化专题 3 曲线的极坐标方程的求解专题 4 曲线的参数方程的求解专题 5 参数方程与一般方程的互化7专题 6 极坐标方程与参数方程的应用14.3 不等式选讲专题 1 含绝对值不等式的解法专题 2 绝对值三角不等式的应用专题 3 含绝对值不等式的问题专题 4 不等式的证明8。

2018年高考数学直线和平面垂直一轮复习

2018年高考数学直线和平面垂直一轮复习

直线、平面垂直的判定与性质[知识能否忆起]一、直线与平面垂直1.直线和平面垂直的定义直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直.2.直线与平面垂直的判定定理及推论3.直线与平面垂直的性质定理二、平面与平面垂直1.平面与平面垂直的判定定理2.平面与平面垂直的性质定理[小题能否全取]1.(教材习题改编)已知平面α,β,直线l ,若α⊥β,α∩β=l ,则( ) A .垂直于平面β的平面一定平行于平面α B .垂直于直线l 的直线一定垂直于平面α C .垂直于平面β的平面一定平行于直线l D .垂直于直线l 的平面一定与平面α、β都垂直 解析:选D A 中平面可与α平行或相交,不正确. B 中直线可与α垂直或斜交,不正确. C 中平面可与直线l 平行或相交,不正确.2.(2012·厦门模拟)如图,O 为正方体ABCD -A 1B 1C 1D 1的底面ABCD 的中心,则下列直线中与B 1O 垂直的是( )A .A 1DB .AA 1C .A 1D 1D .A 1C 1解析:选D 易知A 1C 1⊥平面BB 1D 1D . 又B 1O ⊂平面BB 1D 1D ,∴A 1C 1⊥B 1O .3.已知α,β是两个不同的平面,m ,n 是两条不重合的直线,则下列命题中正确的是( ) A .若m ∥α,α∩β=n ,则m ∥n B .若m ⊥α,m ⊥n ,则n ∥α C .若m ⊥α,n ⊥β,α⊥β,则m ⊥n D .若α⊥β,α∩β=n ,m ⊥n ,则m ⊥β解析:选C 对于选项A ,若m ∥α,α∩β=n ,则m ∥n ,或m ,n 是异面直线,所以A 错误;对于选项B ,n 可能在平面α内,所以B 错误;对于选项D ,m 与β的位置关系还可以是m ⊂β,m ∥β,或m 与β斜交,所以D 错误;由面面垂直的性质可知C 正确.4.如图,已知P A ⊥平面ABC ,BC ⊥AC ,则图中直角三角形的个数为________.解析:由线面垂直知,图中直角三角形为4个. 答案:45.(教材习题改编)如图,已知六棱锥P-ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB.则下列命题正确的有________.①P A⊥AD;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④直线PD与平面ABC所成角为30°.解析:由P A⊥平面ABC,∴P A⊥AD,故①正确;②中两平面不垂直,③中AD与平面P AE相交,BC∥AD,故不正确;④中PD与平面ABC所成角为45°.答案:①1.在证明线面垂直、面面垂直时,一定要注意判定定理成立的条件.同时抓住线线、线面、面面垂直的转化关系,即:2.在证明两平面垂直时,一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决,如有平面垂直时,一般要用性质定理.3.几个常用的结论:(1)过空间任一点有且只有一条直线与已知平面垂直.(2)过空间任一点有且只有一个平面与已知直线垂直.典题导入[例1](2012·襄州模拟)若m,n为两条不重合的直线,α,β为两个不重合的平面,给出下列命题:①若m,n都平行于平面α,则m,n一定不是相交直线;②若m、n都垂直于平面α,则m,n一定是平行直线;③已知α,β互相垂直,m,n互相垂直,若m⊥α,则n ⊥β;④m,n在平面α内的射影互相垂直,则m,n互相垂直.其中的假命题的序号是________.[自主解答]①显然错误,因为平面α∥平面β,平面α内的所有直线都平行β,所以β内的两条相交直线可同时平行于α;②正确;如图1所示,若α∩β=l,且n∥l,当m⊥α时,m⊥n,但n∥β,所以③错误;如图2显然当m′⊥n′时,m不垂直于n,所以④错误.[答案] ①③④由题悟法解决此类问题常用的方法有:①依据定理条件才能得出结论的,可结合符合题意的图形作出判断;②否定命题时只需举一个反例.③寻找恰当的特殊模型(如构造长方体)进行筛选.以题试法1.(2012·长春模拟)设a ,b 是两条不同的直线,α,β是两个不同的平面,则下列四个命题:①若a ⊥b ,a ⊥α,b ⊄α,则b ∥α;②若a ∥α,a ⊥β,则α⊥β;③若a ⊥β,α⊥β,则a ∥α或a ⊂α;④若a ⊥b ,a ⊥α,b ⊥β,则α⊥β.其中正确命题的个数为( ) A .1 B .2 C .3D .4解析:选D 对于①,由b 不在平面α内知,直线b 或者平行于平面α,或者与平面α相交,若直线b 与平面α相交,则直线b 与直线a 不可能垂直,这与已知“a ⊥b ”相矛盾,因此①正确.对于②,由a ∥α知,在平面α内必存在直线a 1∥a ,又a ⊥β,所以有a 1⊥β,所以α⊥β,②正确.对于③,若直线a 与平面α相交于点A ,过点A 作平面α、β的交线的垂线m ,则m ⊥β,又α⊥β,则有a ∥m ,这与“直线a 、m 有公共点A ”相矛盾,因此③正确.对于④,过空间一点O 分别向平面α、β引垂线a 1、b 1,则有a ∥a 1,b ∥b 1,又a ⊥b ,所以a 1⊥b 1,所以α⊥β,因此④正确.综上所述,其中正确命题的个数为4.典题导入[例2] (2012·广东高考)如图所示,在四棱锥P -ABCD 中,AB ⊥平面P AD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点且DF =12AB ,PH 为△P AD 中AD 边上的高.(1)证明:PH ⊥平面ABCD ;(2)若PH =1,AD =2,FC =1,求三棱锥E -BCF 的体积; (3)证明:EF ⊥平面P AB .[自主解答] (1)证明:因为AB ⊥平面P AD ,PH ⊂平面P AD ,所以PH ⊥AB .因为PH 为△P AD 中AD 边上的高,所以PH ⊥AD .因为PH ⊄平面ABCD ,AB ∩AD =A ,AB ,AD ⊂平面ABCD , 所以PH ⊥平面ABCD .(2)如图,连接BH ,取BH 的中点G ,连接EG . 因为E 是PB 的中点,所以EG ∥PH , 且EG =12PH =12.因为PH ⊥平面ABCD , 所以EG ⊥平面ABCD .因为AB ⊥平面P AD ,AD ⊂平面P AD , 所以AB ⊥AD .所以底面ABCD 为直角梯形.所以V E -BCF =13S △BCF ·EG =13·12·FC ·AD ·EG =212.(3)证明:取P A 中点M ,连接MD ,ME . 因为E 是PB 的中点,所以ME 綊12AB .又因为DF 綊12AB ,所以ME 綊DF ,所以四边形MEFD 是平行四边形,所以EF ∥MD .因为PD =AD ,所以MD ⊥P A . 因为AB ⊥平面P AD ,所以MD ⊥AB .因为P A ∩AB =A ,所以MD ⊥平面P AB ,所以EF ⊥平面P AB .由题悟法证明直线和平面垂直的常用方法有: (1)利用判定定理.(2)利用判定定理的推论(a ∥b ,a ⊥α⇒b ⊥α). (3)利用面面平行的性质(a ⊥α,α∥β⇒a ⊥β). (4)利用面面垂直的性质.当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.以题试法2.(2012·启东模拟)如图所示,已知P A ⊥矩形ABCD 所在平面,M ,N 分别是AB ,PC 的中点.(1)求证:MN ⊥CD ;(2)若∠PDA =45°,求证:MN ⊥平面PCD . 证明:(1)连接AC ,AN ,BN , ∵P A ⊥平面ABCD ,∴P A ⊥AC ,在Rt △P AC 中,N 为PC 中点,∴AN =12PC .∵P A ⊥平面ABCD ,∴P A ⊥BC ,又BC ⊥AB , P A ∩AB =A ,∴BC ⊥平面P AB .∴BC ⊥PB .从而在Rt △PBC 中,BN 为斜边PC 上的中线, ∴BN =12PC .∴AN =BN .∴△ABN 为等腰三角形,又M 为AB 的中点,∴MN ⊥AB , 又∵AB ∥CD ,∴MN ⊥CD .(2)连接PM ,MC ,∵∠PDA =45°,P A ⊥AD ,∴AP =AD .∵四边形ABCD 为矩形,∴AD =BC ,∴AP =BC . 又∵M 为AB 的中点,∴AM =BM . 而∠P AM =∠CBM =90°, ∴△P AM ≌△CBM . ∴PM =CM .又N 为PC 的中点,∴MN ⊥PC .由(1)知,MN ⊥CD ,PC ∩CD =C ,∴MN ⊥平面PCD .[例3](2012·江苏高考)如图,在直三棱柱ABC-AB1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.[自主解答](1)因为ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC,又AD⊂平面ABC,所以CC1⊥AD.又因为AD⊥DE,CC1,DE⊂平面BCC1B1,CC1∩DE=E,所以AD⊥平面BCC1B1.又AD⊂平面ADE,所以平面ADE⊥平面BCC1B1.(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1.因为CC1⊥平面A1B1C1,且A1F⊂平面A1B1C1,所以CC1⊥A1F.又因为CC1,B1C1⊂平面BCC1B1,CC1∩B1C1=C1,所以A1F⊥平面BCC1B1.由(1)知AD⊥平面BCC1B1,所以A1F∥AD.又AD⊂平面ADE,A1F⊄平面ADE,所以A1F∥平面ADE.由题悟法1.判定面面垂直的方法:(1)面面垂直的定义.(2)面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).2.在已知平面垂直时,一般要用性质定理进行转化,转化为线面垂直或线线垂直.转化方法:在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.3.(2012·泸州一模)如图,在四棱锥P -ABCD 中,底面ABCD 为菱形,∠BAD =60°,Q 为AD 的中点.(1)若P A =PD ,求证:平面PQB ⊥平面P AD ;(2)若点M 在线段PC 上,且PM =tPC (t >0),试确定实数t 的值,使得P A ∥平面MQB .解:(1)因为P A =PD ,Q 为AD 的中点,所以PQ ⊥AD .连接BD ,因为四边形ABCD 为菱形,∠BAD =60°, 所以AB =BD . 所以BQ ⊥AD .因为BQ ⊂平面PQB ,PQ ⊂平面PQB , BQ ∩PQ =Q , 所以AD ⊥平面PQB .因为AD ⊂平面P AD ,所以平面PQB ⊥平面P AD . (2)当t =13时,P A ∥平面MQB .证明如下:连接AC ,设AC ∩BQ =O ,连接OM .在△AOQ 与△COB 中, 因为AD ∥BC ,所以∠OQA =∠OBC ,∠OAQ =∠OCB . 所以△AOQ ∽△COB .所以AO OC =AQ CB =12.所以AO AC =13,即OC AC =23. 由PM =13PC ,知CM CP =23,所以CM CP =OCAC ,所以AP ∥OM .因为OM ⊂平面MQB ,P A ⊄平面MQB ,所以P A ∥平面MQB .1.(2012·杭州模拟)设a ,b ,c 是三条不同的直线,α,β是两个不同的平面,则a ⊥b 的一个充分条件是( )A .a ⊥c ,b ⊥cB .α⊥β,a ⊂α,b ⊂βC.a⊥α,b∥αD.a⊥α,b⊥α解析:选C对于选项C,在平面α内存在c∥b,因为a⊥α,所以a⊥c,故a⊥b;A,B选项中,直线a,b可能是平行直线,相交直线,也可能是异面直线;D选项中一定有a ∥b.2.设α,β,γ是三个不重合的平面,l是直线,给出下列命题①若α⊥β,β⊥γ,则α⊥γ;②若l上两点到α的距离相等,则l∥α;③若l⊥α,l∥β,则α⊥β;④若α∥β,l⊄β,且l∥α,则l∥β.其中正确的命题是()A.①②B.②③C.②④D.③④解析:选D对于①:若α⊥β,β⊥γ,则α⊥γ,前者不是后者的充分条件,比如当α∥γ时,也有α⊥β,β⊥γ.对于②:显然错误,当l⊥α,l∩α=A时,l上到A距离相等的两点到α的距离相等.③④显然正确.3.给出命题:(1)在空间里,垂直于同一平面的两个平面平行;(2)设l,m是不同的直线,α是一个平面,若l⊥α,l∥m,则m⊥α;(3)已知α,β表示两个不同平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的充要条件;(4)a,b是两条异面直线,P为空间一点,过P总可以作一个平面与a,b之一垂直,与另一个平行.其中正确命题个数是()A.0 B.1C.2 D.3解析:选B(1)错,也可能相交;(2)正确;(3)“α⊥β”是“m⊥β”的必要条件,命题错误;(4)当异面直线a,b垂直时才可以作出满足要求的平面,命题错误.B1C1中,∠BAC=4.(2013·济南模拟)如图,在斜三棱柱ABC-A90°,BC1⊥AC,则C1在底面ABC上的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:选A由AC⊥AB,AC⊥BC1,∴AC⊥平面ABC1.又∵AC⊂面ABC,∴平面ABC1⊥平面ABC.∴C1在面ABC上的射影H必在两平面交线AB上.5.(2012·曲阜师大附中质检)如图所示,直线P A垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面P AC的距离等于线段BC的长.其中正确的是()A.①②B.①②③C.①D.②③解析:选B对于①,∵P A⊥平面ABC,∴P A⊥BC.∵AB为⊙O的直径,∴BC⊥AC.∴BC⊥平面P AC.又PC⊂平面P AC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM ∥P A.∵P A⊂平面P AC,∴OM∥平面P AC;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离,故①②③都正确.6.(2012·济南名校模拟)如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下面命题正确的是()A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC解析:选D在平面图形中CD⊥BD,折起后仍有CD⊥BD,由于平面ABD⊥平面BCD,故CD⊥平面ABD,CD⊥AB,又AB⊥AD,故AB⊥平面ADC,所以平面ABC⊥平面ADC.7.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)解析:由定理可知,BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC⊂平面PCD,∴平面MBD⊥平面PCD.答案:DM⊥PC(或BM⊥PC等)8.(2012·忻州一中月考)正四棱锥S-ABCD的底面边长为2,高为2,E是BC的中点,动点P在四棱锥的表面上运动,并且总保持PE⊥AC,则动点P的轨迹的长为________.解析:如图,设AC∩BD=O,连接SO,取CD的中点F,SC的中点G,连接EF,EG,FG,设EF交AC于点H,连接GH,易知AC⊥EF,GH∥SO,∴GH⊥平面ABCD,∴AC⊥GH,∴AC⊥平面EFG,故动点P的轨迹是△EFG,由已知易得EF=2,GE=GF=62,∴△EFG的周长为2+6,故动点P的轨迹长为2+ 6.答案:2+ 69.(2013·蚌埠模拟)点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,给出下列四个命题:①三棱锥A-D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确的命题序号是________.解析:连接BD交AC于O,连接DC1交D1C于O1,连接OO1,则OO1∥BC1.∴BC1∥平面AD1C,动点P到平面AD1C的距离不变,∴三棱锥P-AD1C的体积不变.又VP-AD1C=VA-D1PC,∴①正确.∵平面A1C1B∥平面AD1C,A1P⊂平面A1C1B,∴A1P∥平面ACD1,②正确.由于DB不垂直于BC1显然③不正确;由于DB1⊥D1C,DB1⊥AD1,D1C∩AD1=D1,∴DB1⊥平面AD1C.DB1⊂平面PDB1,∴平面PDB1⊥平面ACD1,④正确.答案:①②④10. 如图所示,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC.证明:(1)由已知,得MD是△ABP的中位线,所以MD∥AP.又MD⊄平面APC,AP⊂平面APC,故MD∥平面APC.(2)因为△PMB为正三角形,D为PB的中点,所以MD⊥PB.所以AP⊥PB.又AP⊥PC,PB∩PC=P,所以AP⊥平面PBC.因为BC⊂平面PBC,所以AP⊥BC.又BC⊥AC,AC∩AP=A,所以BC⊥平面APC.因为BC⊂平面ABC,所以平面ABC⊥平面APC.11.(2012·北京海淀二模)如图所示,P A⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,P A=AB=2,点E为线段PB的中点,点M在AB 上,且OM∥AC.(1)求证:平面MOE∥平面P AC;(2)求证:平面P AC⊥平面PCB.证明:(1)因为点E为线段PB的中点,点O为线段AB的中点,所以OE∥P A.因为P A⊂平面P AC,OE⊄平面P AC,所以OE∥平面P AC.因为OM∥AC,且AC⊂平面P AC,OM⊄平面P AC,所以OM∥平面P AC.因为OE⊂平面MOE,OM⊂平面MOE,OE∩OM=O,所以平面MOE∥平面P AC.(2)因为点C在以AB为直径的⊙O上,所以∠ACB=90°,即BC⊥AC.因为P A⊥平面ABC,BC⊂平面ABC,所以P A⊥BC.因为AC⊂平面P AC,P A⊂平面P AC,P A∩AC=A,所以BC ⊥平面P AC .因为BC ⊂平面PCB ,所以平面P AC ⊥平面PCB .12.(2012·珠海摸底)如图,在多面体ABCDEF 中,四边形ABCD是梯形,AB ∥CD ,四边形ACFE 是矩形,平面ACFE ⊥平面ABCD ,AD =DC =CB =AE =a ,∠ACB =π2. (1)求证:BC ⊥平面ACFE ;(2)若M 是棱EF 上一点,AM ∥平面BDF ,求EM 的长.解:(1)证明:因为∠ACB =π2,所以BC ⊥AC .又因为BC ⊂平面ABCD ,平面ACFE ∩平面ABCD =AC ,平面ACFE ⊥平面ABCD ,所以BC ⊥平面ACFE .(2)记AC ∩BD =O ,在梯形ABCD 中,因为AD =DC =CB =a ,AB ∥CD ,所以∠ACD =∠CAB =∠DAC .所以π=∠ABC +∠BCD =∠DAB +∠ACD +∠ACB =3∠DAC +π2,所以∠DAC =π6,即∠CBO =π6. 又因为∠ACB =π2,CB =a ,所以CO =33a .连接FO ,由AM ∥平面BDF 得AM ∥FO ,因为四边形ACFE 是矩形,所以EM =CO =33a .1.如图,在三棱锥D -ABC 中,若AB =CB ,AD =CD ,E 是AC 的中点,则下列正确的是( )A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BDCC .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE解析:选C 要判断两个平面的垂直关系,就需固定其中一个平面,找另一个平面内的一条直线与第一个平面垂直.因为AB =CB ,且E 是AC 的中点,所以BE ⊥AC ,同理有DE ⊥AC ,于是AC ⊥平面BDE .因为AC 在平面ABC 内,所以平面ABC ⊥平面BDE .又由于AC⊂平面ACD,所以平面ACD⊥平面BDE.2.如图所示,b,c在平面α内,a∩c=B,b∩c=A,且a⊥b,a⊥c,b⊥c,若C∈a,D∈b,则△ACD是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:选B∵a⊥b,b⊥c,a∩c=B,∴b⊥面ABC,∴AD⊥AC,故△ACD为直角三角形.3.(2012·莆田模拟)如图,在三棱锥P-ABC中,△P AC,△ABC分别是以A,B为直角顶点的等腰直角三角形,AB=1.(1)现给出三个条件:①PB=3;②PB⊥BC;③平面P AB⊥平面ABC.试从中任意选取一个作为已知条件,并证明:P A⊥平面ABC;(2)在(1)的条件下,求三棱锥P-ABC的体积.解:法一:(1)选取条件①在等腰直角三角形ABC中,∵AB=1,∴BC=1,AC= 2.又∵P A=AC,∴P A= 2.∴在△P AB中,AB=1,P A= 2.又∵PB=3,∴AB2+P A2=PB2.∴∠P AB=90°,即P A⊥AB.又∵P A⊥AC,AB∩AC=A,∴P A⊥平面ABC.(2)依题意得,由(1)可知P A⊥平面ABC,V三棱锥P-ABC=13P A·S△ABC=13×2×12×12=26.法二:(1)选取条件②∵PB⊥BC,又AB⊥BC,且PB∩AB=B,∴BC⊥平面P AB.∵P A⊂平面P AB,∴BC⊥P A.又∵P A⊥AC,且BC∩AC=C,∴P A⊥平面ABC.(2)依题意得,由(1)可知P A⊥平面ABC. ∵AB=BC=1,AB⊥BC,∴AC=2,∴P A=2,∴V三棱锥P-ABC=13P A·S△ABC=13×12AB·BC·P A=13×12×1×1×2=26.法三:(1)选取条件③若平面P AB⊥平面ABC,∵平面P AB∩平面ABC=AB,BC⊂平面ABC,BC⊥AB,∴BC⊥平面P AB.∵P A⊂平面P AB,∴BC⊥P A.∵P A⊥AC,且BC∩AC=C,∴P A⊥平面ABC.(2)同法二.1.(2012·福建高考)如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点.(1)求三棱锥A-MCC1的体积;(2)当A 1M +MC 取得最小值时,求证:B 1M ⊥平面MAC .解:(1)由长方体ABCD -A 1B 1C 1D 1知,AD ⊥平面CDD 1C 1,∴点A 到平面CDD 1C 1的距离等于AD =1.又S △MCC 1=12CC 1×CD =12×2×1=1, ∴VA -MCC 1=13AD ·S △MCC 1=13. (2)证明:将侧面CDD1C 1绕DD 1逆时针转90°展开,与侧面ADD 1A 1共面(如图),当A 1,M ,C ′共线时,A 1M +MC 取得最小值.由AD =CD =1,AA 1=2,得M 为DD 1中点.连接A 1M ,B 1M ,在△C 1MC 中,MC 1=2,MC =2,CC 1=2,∴CC 21=MC 21+MC 2,得∠CMC 1=90°,即CM ⊥MC 1. 又由长方体ABCD -A 1B 1C 1D 1知,B 1C 1⊥平面CDD 1C 1,∴B 1C 1⊥CM .又B 1C 1∩C 1M =C 1,∴CM ⊥平面B 1C 1M ,得CM ⊥B 1M .同理可证,B 1M ⊥AM .又AM ∩MC =M ,∴B 1M ⊥平面MAC .2.(2012·江西模拟)如图,已知E ,F 分别是正方形ABCD 边BC ,CD 的中点,EF 与AC 交于点O ,P A ,NC 都垂直于平面ABCD ,且P A =AB =4,NC =2,M 是线段P A 上的一动点.(1)求证:平面P AC ⊥平面NEF ;(2)若PC ∥平面MEF ,试求PM ∶MA 的值.解:(1)证明:连接BD ,∵P A ⊥平面ABCD ,BD ⊂平面ABCD ,∴P A ⊥BD .又∵BD ⊥AC ,AC ∩P A =A ,∴BD ⊥平面P AC .又∵E ,F 分别是BC ,CD 的中点,∴EF ∥BD .∴EF ⊥平面P AC ,又EF ⊂平面NEF ,∴平面P AC ⊥平面NEF .(2)连接OM ,∵PC ∥平面MEF ,平面P AC ∩平面MEF =OM ,∴PC ∥OM ,∴PM P A =OC AC =14, 故PM ∶MA =1∶3.3.(2012·陕西高考)(1)如图,证明命题“a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥b ,则a ⊥c ”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).解:(1)证明:法一:如图1,过直线b 上任一点作平面π的垂线n ,设直线a ,b ,c ,n 的方向向量分别是a ,b ,c ,n ,则b ,c ,n 共面.根据平面向量基本定理,存在实数λ,μ使得c =λ b +μ n ,则a·c =a·(λ b +μ n )=λ(a·b )+μ(a·n ).因为a ⊥b ,所以a·b =0.又因为a ⊂π,n ⊥π,所以a·n =0,故a·c =0,从而a ⊥c .法二:如图2,记c ∩b =A ,P 为直线b 上异于点A 的任意一点,过P作PO⊥π,垂足为O,则O∈c.∵PO⊥π,a⊂π,∴直线PO⊥a.又a⊥b,b⊂平面P AO,PO∩b=P,∴a⊥平面P AO.又c⊂平面P AO,∴a⊥c.(2)逆命题为:a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥c,则a⊥b.逆命题为真命题.。

高考数学一轮总复习第6章立体几何第6节立体几何中的向量方法__证明平行与垂直教师用书

第六节 立体几何中的向量方法——证明平行与垂直考试要求:1.理解直线的方向向量及平面的法向量,能用向量语言表述线线、线面、面面的平行和垂直关系.2.能用向量方法证明立体几何中有关直线、平面位置关系的判定定理.一、教材概念·结论·性质重现1.直线的方向向量与平面的法向量直线的方向向量直线的方向向量是指和这条直线平行( 或重合) 的非零向量,一条直线的方向向量有无数个平面的法向量直线l⊥平面α,取直线l的方向向量a ,我们称向量a为平面α的法向量.显然一个平面的法向量有无数个,它们是共线向量方向向量和法向量均不为零向量且不唯一.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔m·n=0 l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,m α∥ βn∥m⇔n=λm α⊥βn⊥m⇔n·m=0二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)直线的方向向量是唯一确定的.( × )(2)平面的单位法向量是唯一确定的.( × )(3)若两平面的法向量平行,则两平面平行.( √ )(4)若两直线的方向向量不平行,则两直线不平行.( √ )(5)若a∥b,则a所在直线与b所在直线平行.( × )(6)若空间向量a平行于平面α,则a所在直线与平面α平行.( × ) 2.若直线l的方向向量a=(1,-3,5),平面α的法向量n=(-1,3,-5),则有( )A.l∥α B.l⊥αC.l与α斜交 D.l⊂α或l∥αB 解析:由a=-n知,n∥a,则有l⊥α.故选B.3.已知平面α,β的法向量分别为n1=(2,3,5),n2=(-3,1,-4),则( )A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对C 解析:因为n1≠λn2,且n1·n2=2×(-3)+3×1+5×(-4)=-23≠0,所以α,β既不平行,也不垂直.4.如图,在正方体ABCD A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D 的中点,N是A1B1的中点,则直线ON,AM的位置关系是________.垂直 解析:以A为原点,分别以AB,AD,AA1所在的直线为x轴、y轴、z轴建立空间直角坐标系(图略).设正方体的棱长为1,则A(0,0,0),M,O,N,AM·ON=·=0,所以ON与AM垂直.5.在空间直角坐标系中,已知A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB与CD的位置关系是________.平行 解析:由题意得,AB=(-3,-3,3),CD=(1,1,-1),所以AB=-3CD,所以AB与CD共线.又AB与CD没有公共点,所以AB∥CD.考点1 利用空间向量证明平行问题——基础性如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.求证:PB∥平面EFG.证明:因为平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD,所以AB,AP,AD两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0),则EF=(0,1,0),EG=(1,2,-1).设平面EFG的法向量为n=(x,y,z),则即令z=1,则n=(1,0,1)为平面EFG的一个法向量.因为PB=(2,0,-2),所以PB·n=0,所以n⊥PB.因为PB⊄平面EFG,所以PB∥平面EFG.本例中条件不变,证明:平面EFG∥平面PBC.证明:因为EF=(0,1,0),BC=(0,2,0),所以BC=2EF,所以BC∥EF.又因为EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,同理可证GF∥PC,从而得出GF∥平面PBC.又EF∩GF=F,EF⊂平面EFG,GF⊂平面EFG,所以平面EFG∥平面PBC.利用空间向量证明平行的方法线线平行证明两直线的方向向量共线线面平行(1)证明该直线的方向向量与平面的某一法向量垂直.(2)证明直线的方向向量与平面内某直线的方向向量平行面面平行(1)证明两平面的法向量为共线向量.(2)转化为线面平行、线线平行问题如图,在四棱锥P ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角.求证:CM∥平面PAD.证明:由题意知,CB,CD,CP两两垂直,以C为坐标原点,CB所在直线为x轴,CD所在直线为y轴,CP所在直线为z轴建立如图所示的空间直角坐标系Cxyz.因为PC⊥平面ABCD,所以∠PBC为PB与平面ABCD所成的角,所以∠PBC=30°.因为PC=2,所以BC=2,PB=4,所以D(0,1,0),B(2,0,0),A(2,4,0),P(0,0,2),M,所以DP=(0,-1,2),DA=(2,3,0),CM=.设n=(x,y,z)为平面PAD的一个法向量,由得取y=2,得x=-,z=1,所以n=(-,2,1)是平面PAD的一个法向量.因为n·CM=-×+2×0+1×=0,所以n⊥CM.又CM⊄平面PAD,所以CM∥平面PAD.考点2 利用空间向量证明垂直问题——应用性如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE =2AB.求证:平面BCE⊥平面CDE.证明:设AD=DE=2AB=2a,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),C(2a,0,0),B(0,0,a),D(a,a,0),E(a,a,2a),所以BE=(a,a,a),BC=(2a,0,-a),CD=(-a,a,0),ED=(0,0,-2a).设平面BCE的法向量为n1=(x1,y1,z1),由n1·BE=0,n1·BC=0可得即令z1=2,可得n1=(1,-,2).设平面CDE的法向量为n2=(x2,y2,z2),由n2·CD=0,n2·ED=0可得即令y2=1,可得n2=(,1,0).因为n1·n2=1×+1×(-)=0,所以n1⊥n2,所以平面BCE⊥平面CDE.若本例中条件不变,点F是CE的中点,证明:DF⊥平面BCE.证明:由例2知C(2a,0,0),E(a,a,2a),平面BCE的法向量n1=(1,-,2).因为点F是CE的中点,所以f,所以DF=,所以DF=n1,所以DF∥n1,故DF⊥平面BCE.1.利用空间向量证明垂直的方法线线垂直证明两直线所在的方向向量互相垂直,即证它们的数量积为零线面垂直证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示面面垂直证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示2.向量法证明空间垂直、平行关系时,是以计算为手段,寻求直线上的线段对应的向量和平面的基向量、法向量的关系,关键是建立空间直角坐标系(或找空间一组基底)及平面的法向量.如图,在四棱锥P ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)AE⊥CD;(2)PD⊥平面ABE.证明:以A为原点,AB,AD,AP所在直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系Axyz.设PA=AB=BC=1,则P(0,0,1).(1)因为∠ABC=60°,所以△ABC为正三角形,所以C,E.设D(0,y,0),由AC⊥CD,得AC·CD=0,即y=,则D,所以CD=.又AE=,所以AE·CD=-×+×=0,所以AE⊥CD,即AE⊥CD.(2)(方法一)由(1)知,D,P(0,0,1),所以PD=.又AE·PD=×+×(-1)=0,所以PD⊥AE,即PD⊥AE.因为AB=(1,0,0),所以PD·AB=0,所以PD⊥AB.又AB∩AE=A,AB,AE⊂平面AEB,所以PD⊥平面AEB.(方法二)由(1)知,AB=(1,0,0),AE=.设平面ABE的法向量为n=(x,y,z),则令y=2,则z=-,所以n=(0,2,-)为平面ABE的一个法向量.因为PD=,显然PD=n.因为PD∥n,所以PD⊥平面ABE,即PD⊥平面ABE.考点3 利用空间向量解决探索性问题——应用性如图,在正方体ABCD A1B1C1D1中,E是棱DD1的中点.在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.解:在棱C1D1上存在一点F(C1D1的中点),使B1F∥平面A1BE.证明如下:依题意,建立如图所示的空间直角坐标系,设正方体ABCDA1B1C1D1的棱长为1,则A1(0,0,1),B(1,0,0),B1(1,0,1),E,所以BA1=(-1,0,1),BE=.设n=(x,y,z)是平面A1BE的一个法向量,则由得所以x=z,y=z.取z=2,得n=(2,1,2).设棱C1D1上存在点F(t,1,1)(0≤t≤1)满足条件,又因为B1(1,0,1),所以B1F=(t-1,1,0).而B1F⊄平面A1BE,于是B1F∥平面A1BE⇔B1F·n=0⇔(t-1,1,0)·(2,1,2)=0⇔2(t-1)+1=0⇔t=⇔F为C1D1的中点.即说明在棱C1D1上存在点F(C1D1的中点),使B1F∥平面A1BE.向量法解决与垂直、平行有关的探索性问题的思路在四棱锥PABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.(1)求证:EF⊥CD;(2)在平面PAD内是否存在一点G,使GF⊥平面PCB?若存在,求出点G坐标;若不存在,试说明理由.(1)证明:由题意知,DA,DC,DP两两垂直.如图所示,以DA,DC,DP所在直线分别为x轴、y轴、z轴建立空间直角坐标系.设AD=a,则D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),E,P(0,0,a),F,所以EF=,DC=(0,a,0).因为EF·DC=0,所以EF⊥DC,从而得EF⊥CD.(2)解:假设存在满足条件的点G,设G(x,0,z),则FG=.若使GF⊥平面PCB,则由FG·CB=·(a,0,0)=a=0,得x=.由FG·CP=·(0,-a,a)=+a=0,得z=0,所以点G坐标为,故存在满足条件的点G,且点G为AD的中点.。

高三数学第一轮复习立体几何的综合问题知识精讲

高三数学第一轮复习:立体几何的综合问题【本讲主要内容】立体几何的综合问题立体几何知识的综合应用及立体几何与其它知识点的综合问题【知识掌握】【知识点精析】1. 立体几何的综合问题融直线和平面的位置关系于平面与几何体中,有计算也有论证。

解决这类问题需要系统地掌握线线、线面、面面的位置关系,特别是平行与垂直的判定与性质.深刻理解异面直线所成的角、斜线与平面所成的角、二面角的平面角的概念,理解点到面的距离、异面直线的距离的概念.2. 立体几何横向可与向量、代数、三角、解析几何等综合.3. 应用性问题、探索性问题需综合运用所学知识去分析解决.【解题方法指导】例1. 如图所示,在正方体ABCD—A1B1C1D1的侧面AB1内有一动点P到直线A1B1与直线BC的距离相等,则动点P所在曲线的形状为()解析:P到直线BC的距离等于P到B的距离,动点P的轨迹满足抛物线定义.故选C.例2. 如图,四棱锥P-ABCD的底面是边长为a的正方形,PB⊥平面ABCD,(Ⅰ)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;(Ⅱ)证明不论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°.(Ⅰ)解:∵PB⊥面ABCD,∴BA是PA在面ABCD上的射影,又DA⊥AB ∴PA⊥DA∴∠PAB是面PAD与面ABCD所成的二面角的平面角∴∠PAB=60°,PB=AB·tan60°=3a ,∴ V 锥=3233·3·31a a a =(Ⅱ)证明:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为等腰三角形,作AE ⊥PD ,垂足为E ,连结CE ,则△ADE ≌△CDE ,因为AE =CE ,∠CED =90o,故∠CEA 是面PAD 与面PCD 所成的二面角的平面角. 设AC 与BD 交于点O ,连结EO ,则EO ⊥AC ,所以a AD AE OA a =<<=22,22a AE <, 在△AEC 中,02222cos 222222222<-=-=∙-+=∠AE a AE AE a AE EC AE AC EC AE CEA 所以面PAD 与面PCD 所成的二面角恒大于90o。

27 直线、平面平行及垂直的判定与性质(原卷版)-2022年新高考数学一轮复习知识方法清单与跟踪训练

清单27 直线、平面平行及垂直的判定与性质一、知识与方法清单1.空间中直线与平面之间的位置关系(1)直线在平面内,则它们有无数个公共点.(2)直线与平面相交,则它们有1个公共点.(3)直线与平面平行,则它们没有公共点.直线与平面相交或平行的情况统称为直线在平面外.【对点训练1】给出以下命题(其中a,b表示不同的直线,α表示平面):①若a∥α,b∥α,则a∥b ;②若a∥b,b∥α,则a∥α;③若a∥α,b⊂α,则a∥b ;④若α的同侧有两点A,B到平面α的距离相等,则AB∥α.其中正确命题的个数是()A.0B.1C.2D.32.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⊂线面平行”)l∥α,a⊂β,α∩β=b⊂l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⊂线线平行”)l∥α,l⊂β,α∩β=b⊂l∥b【对点训练2】如图,在四棱锥P-ABCD中,AD∥BC,AB=BC=12AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.(1)求证:AP∥平面BEF;(2)求证:GH∥平面P AD.3.平面与平面之间的位置关系(1)两个平面平行,则它们没有公共点.(2)两个平面相交,则它们有一条公共直线,两个平面垂直是相交的一种特殊情况.【对点训练3】如图,L,M,N分别为正方体对应棱的中点,则平面LMN与平面PQR的位置关系是()A .垂直B .相交不垂直C .平行D .重合4.平面与平面平行的判定和性质文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)a ⊂β,b ⊂β,a ∩b =P ,a ∥α,b ∥α⇒β∥⇒α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b【对点训练4】如图所示的四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥面MNP 的图形的序号是____________.(写出所有符合要求的图形序号)① ②③④5.证明平行时常用的其他性质(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b .(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【对点训练5】已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题中错误的是()A.若m⊥α,m⊥β,则α∥βB.若α∥γ,β∥γ,则α∥βC.若m⊂α,n⊂β,m∥n,则α∥βD.若m,n是异面直线,m⊂α,m∥β,n⊂β,n∥α,则α∥β6.判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a⊂/α,b⊂α,a∥b⊂a∥α).(3)利用面面平行的性质(α∥β,a⊂α⊂a∥β).(4)利用面面平行的性质(α∥β,a⊂/α,a⊂/β,a∥α⊂a∥β).【对点训练6】在如图所示的空间几何体中,AC⊥BC,四边形DCBE为矩形,点F,M分别为AB,CD的中点.求证:(1)FM∥平面ADE;(2)平面ACD⊥平面ADE.7.证明面面平行的方法(1)面面平行的定义.(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用垂直于同一条直线的两个平面平行.(4)两个平面同时平行于第三个平面,那么这两个平面平行.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.【对点训练7】已知四棱锥S­ABCD的各条棱长都相等,且点E、F分别是SB、SD的中点.(1)求证:AC⊥SB;(2)在SC上是否存在点M,使平面MBD∥平面AEF?若存在,求出SMMC的值;若不存在,说明理由.8.证明线面或面面平行时要转化为证明线性平行,在几何体中证明线性平行常要用到平面几何知识,如三角形的中位线与第3边平行,若四边形的一组对边平行且相等,则另一组对边平行等。

高考数学理一轮复习 9-2直线和平面平行、平面和 平面平行 精品课件

(2)两个平面平行,其中一个平面内的直线必平行于另一 个平面; (3)一条直线垂直于两个平面平行中的一个平面,必垂直 于另一个平面; (4)夹在两个平行平面间的平行线段相等; (5)两平行平面之间的距离处处相等. 4.无论是解题还是证明,一定要注意对文字语言、图形
语言和符号语言进行相互转化和相互翻译,使三者之间相辅相
1.直线与平面的三种位置关系
位置关系 直线a在 平面α内 有无数个公共 点 a⊂α 直线a在平面α外
直线a与平面α 直线a与平面α 相交 平行
有且只有一个 公共点 a∩α=A 没有公共点 a∥α
公共点
符号表示
图形表示
2.直线与平面平行的判定与性质. (1)判定方法
①用定义
3.平面与平面的两种位置关系
2.在解决线面、面面平行的判定时,一般遵循从“低
维”到“高维”的转化,即从“线线平行”到“线面平行”, 再到“面面平行”;而在应用性质定理时,其顺序恰好相反, 但也要注意,转化的方向总是受题目的具体条件而定,决不 可过于“模式”化.
3.解决有关平行问题时,也可以注意使用以下结论;
(1)经过平面外一点有且只有一个平面和已知平面平行;
同理在平面α内存在直线c使m∥c,∴c∥b.
又c⊄β,∴c∥β.又c⊂α,α∩β=l, ∴c∥l.因此m∥l. 证法二:如图(2),取基向量a、b、c作为基底,在直线 m上取向量m≠0,
由m∥α知m=xb+yc,由m∥β知m=λa+μ c.
由空间向量基本定理知λ=0,x=0,μ=y. ∴m=μ c,即m∥c.因此m∥l.
证 明 : 证 法 一 : ∵ 截 面 EFGH 为 平 行 四 边 形 , ∴EH∥FG.
根据直线与平面平行的判定定理知:EH∥平面BCD.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六节直线、平面平行与垂直的综合问题考点一立体几何中的探索性问题[典例](2018·全国卷Ⅲ)如图,矩形ABCD所在平面与半圆弧»CD所在平面垂直,M是»CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC.(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.[解](1)证明:由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,所以BC⊥DM.因为M为»CD上异于C,D的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,所以DM⊥平面BMC.因为DM⊂平面AMD,所以平面AMD⊥平面BMC.(2)当P为AM的中点时,MC∥平面PBD.证明如下:连接AC交BD于O.因为四边形ABCD为矩形,所以O为AC的中点.连接OP,因为P为AM的中点,所以MC∥OP.又MC⊄平面PBD,OP⊂平面PBD,所以MC∥平面PBD.[解题技法] 探索性问题的一般解题方法先假设其存在,然后把这个假设作为已知条件,和题目的其他已知条件一起进行推理论证和计算.在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在;如果得到了一个不合理的结论,则说明不存在.[题组训练]1.如图,三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P-ABC的体积;(2)在线段PC 上是否存在点M ,使得AC ⊥BM ,若存在,请说明理由,并求PMMC 的值.解:(1)由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=32.由PA ⊥平面ABC ,可知PA 是三棱锥P -ABC 的高, 又PA =1,所以三棱锥P -ABC 的体积V =13·S △ABC ·PA =36.(2)在线段PC 上存在点M ,使得AC ⊥BM ,证明如下:如图,在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面PAC 内,过点N 作MN ∥PA 交PC 于点M ,连接BM .由PA ⊥平面ABC ,知PA ⊥AC , 所以MN ⊥AC .因为BN ∩MN =N ,所以AC ⊥平面MBN , 又BM ⊂平面MBN , 所以AC ⊥BM .在Rt △BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32,由MN ∥PA ,得PM MC =AN NC =13.2.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC =PD =2,E 为PC 的中点,CB =3CG .(1)求证:PC ⊥BC ;(2)AD 边上是否存在一点M ,使得PA ∥平面MEG ?若存在,求出AM 的长;若不存在,请说明理由.解:(1)证明:因为PD ⊥平面ABCD ,BC ⊂平面ABCD , 所以PD ⊥BC .因为四边形ABCD 是正方形,所以BC ⊥CD . 又PD ∩CD =D ,PD ⊂平面PCD ,CD ⊂平面PCD , 所以BC ⊥平面PCD .因为PC ⊂平面PCD ,所以PC ⊥BC .(2)连接AC ,BD 交于点O ,连接EO ,GO ,延长GO 交AD 于点M ,连接EM ,则PA ∥平面MEG . 证明如下:因为E 为PC 的中点,O 是AC 的中点, 所以EO ∥PA .因为EO ⊂平面MEG ,PA ⊄平面MEG ,所以PA ∥平面MEG . 因为△OCG ≌△OAM ,所以AM =CG =23,所以AM 的长为23.考点二 平面图形的翻折问题[典例] (2018·全国卷Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =D Q =23DA ,求三棱锥Q -ABP 的体积.解:(1)证明:由已知可得,∠BAC =90°,即BA ⊥AC . 又因为BA ⊥AD ,AC ∩AD =A , 所以AB ⊥平面ACD . 因为AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =3 2. 又BP =D Q =23DA ,所以BP =2 2.如图,过点Q 作Q E ⊥AC ,垂足为E ,则Q E 綊13DC .由已知及(1)可得,DC⊥平面ABC,所以Q E⊥平面ABC,Q E=1.因此,三棱锥Q-ABP的体积为V Q-ABP=13×S△ABP×Q E=13×12×3×22sin 45°×1=1.[解题技法]平面图形翻折为空间图形问题的解题关键是看翻折前后线面位置关系的变化,根据翻折的过程找到翻折前后线线位置关系中没有变化的量和发生变化的量,这些不变的和变化的量反映了翻折后的空间图形的结构特征.解决此类问题的步骤为:[题组训练]1.(2019·湖北五校联考)如图1所示,在直角梯形ABCD中,∠ADC=90°,AB∥CD,AD=CD=12AB=2,E为AC的中点,将△ACD沿AC折起,使折起后的平面ACD与平面ABC垂直,得到如图2所示的几何体D-ABC.(1)求证:BC⊥平面ACD;(2)点F在棱CD上,且满足AD∥平面BEF,求几何体F-BCE的体积.解:(1)证明:∵AC=AD2+CD2=22,∠BAC=∠ACD=45°,AB=4,∴在△ABC中,BC2=AC2+AB2-2AC×AB×cos 45°=8,∴AB2=AC2+BC2=16,∴AC⊥BC.∵平面ACD⊥平面ABC,平面ACD∩平面ABC=AC,∴BC⊥平面ACD.(2)∵AD∥平面BEF,AD⊂平面ACD,平面ACD∩平面BEF=EF,∴AD∥EF,∵E 为AC 的中点,∴EF 为△ACD 的中位线,由(1)知,几何体F -BCE 的体积V F -BCE =V B -CEF =13×S △CEF ×BC , S △CEF =14S △ACD =14×12×2×2=12,∴V F -BCE =13×12×22=23. 2.(2018·合肥二检)如图1,在平面五边形ABCDE 中,AB ∥CE ,且AE =2,∠AEC =60°,CD =ED =7,cos ∠EDC =57.将△CDE 沿CE 折起,使点D 到P 的位置,且AP =3,得到如图2所示的四棱锥P -ABCE .(1)求证:AP ⊥平面ABCE ;(2)记平面PAB 与平面PCE 相交于直线l ,求证:AB ∥l . 证明:(1)在△CDE 中,∵CD =ED =7,cos ∠EDC =57,由余弦定理得CE = (7)2+(7)2-2×7×7×57=2.连接AC ,∵AE =2,∠AEC =60°, ∴AC =2. 又AP =3,∴在△PAE 中,AP 2+AE 2=PE 2, 即AP ⊥AE . 同理,AP ⊥AC .∵AC ∩AE =A ,AC ⊂平面ABCE ,AE ⊂平面ABCE , ∴AP ⊥平面ABCE .(2)∵AB ∥CE ,且CE ⊂平面PCE ,AB ⊄平面PCE , ∴AB ∥平面PCE .又平面PAB ∩平面PCE =l ,∴AB ∥l .[课时跟踪检测]1.如图,四棱锥P -ABCD 的底面ABCD 是圆内接四边形(记此圆为W ),且PA ⊥平面ABCD .(1)当BD 是圆W 的直径时,PA =BD =2,AD =CD =3,求四棱锥P -ABCD 的体积.(2)在(1)的条件下,判断在棱PA 上是否存在一点Q ,使得B Q ∥平面PCD ?若存在,求出A Q 的长;若不存在,请说明理由.解:(1)因为BD 是圆W 的直径,所以BA ⊥AD , 因为BD =2,AD =3,所以AB =1. 同理BC =1,所以S 四边形ABCD =AB ·AD = 3. 因为PA ⊥平面ABCD ,PA =2,所以四棱锥P -ABCD 的体积V =13S 四边形ABCD ·PA =233.(2)存在,A Q =23.理由如下.延长AB ,DC 交于点E ,连接PE ,则平面PAB 与平面PCD 的交线是PE . 假设在棱PA 上存在一点Q ,使得B Q ∥平面PCD , 则B Q ∥PE ,所以A Q PA =ABAE .经计算可得BE =2,所以AE =AB +BE =3,所以A Q =23.故存在这样的点Q ,使B Q ∥平面PCD ,且A Q =23.2.如图,侧棱与底面垂直的四棱柱ABCD -A 1B 1C 1D 1的底面是梯形,AB ∥CD ,AB ⊥AD ,AA 1=4,DC =2AB ,AB =AD =3,点M 在棱A 1B 1上,且A 1M =13A 1B 1.已知点E 是直线CD 上的一点,AM ∥平面BC 1E .(1)试确定点E 的位置,并说明理由; (2)求三棱锥M -BC 1E 的体积.解:(1)点E 在线段CD 上且EC =1,理由如下:在棱C 1D 1上取点N ,使得D 1N =A 1M =1,连接MN ,DN , 因为D 1N ∥A 1M ,所以四边形D 1NMA 1为平行四边形, 所以MN 綊A 1D 1綊AD .所以四边形AMND 为平行四边形,所以AM ∥DN . 因为CE =1,所以易知DN ∥EC 1,所以AM ∥EC 1, 又AM ⊄平面BC 1E ,EC 1⊂平面BC 1E , 所以AM ∥平面BC 1E .故点E 在线段CD 上且EC =1. (2)由(1)知,AM ∥平面BC 1E ,所以V M -BC 1E =V A -BC 1E =V C 1-ABE=13×⎝⎛⎭⎫12×3×3×4=6. 3.(2019·湖北武汉部分学校调研)如图1,在矩形ABCD 中,AB =4,AD =2,E 是CD 的中点,将△ADE 沿AE 折起,得到如图2所示的四棱锥D 1-ABCE ,其中平面D 1AE ⊥平面ABCE .(1)证明:BE ⊥平面D 1AE ;(2)设F 为CD 1的中点,在线段AB 上是否存在一点M ,使得MF ∥平面D 1AE ,若存在,求出AMAB的值;若不存在,请说明理由.解:(1)证明:∵四边形ABCD 为矩形且AD =DE =EC =BC =2, ∴∠AEB =90°,即BE ⊥AE ,又平面D 1AE ⊥平面ABCE ,平面D 1AE ∩平面ABCE =AE , ∴BE ⊥平面D 1AE .(2)当AM AB =14时,MF ∥平面D 1AE ,理由如下:取D 1E 的中点L ,连接FL ,AL , ∴FL ∥EC ,又EC ∥AB , ∴FL ∥AB ,且FL =14AB ,∴M ,F ,L ,A 四点共面, 又MF ∥平面AD 1E ,∴MF ∥AL . ∴四边形AMFL 为平行四边形, ∴AM =FL =14AB ,AM AB =14.4.如图1所示,在Rt △ABC 中,∠ABC =90°,D 为AC 的中点,AE ⊥BD 于点E (不同于点D ),延长AE 交BC 于点F ,将△ABD 沿BD 折起,得到三棱锥A 1-BCD ,如图2所示.(1)若M是FC的中点,求证:直线DM∥平面A1EF.(2)求证:BD⊥A1F.(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?请说明理由.解:(1)证明:∵D,M分别为AC,FC的中点,∴DM∥EF,又∵EF⊂平面A1EF,DM⊄平面A1EF,∴DM∥平面A1EF.(2)证明:∵EF⊥BD,A1E⊥BD,A1E∩EF=E,A1E⊂平面A1EF,EF⊂平面A1EF,∴BD⊥平面A1EF,又A1F⊂平面A1EF,∴BD⊥A1F.(3)直线A1B与直线CD不能垂直.理由如下:∵平面BCD⊥平面A1BD,平面BCD∩平面A1BD=BD,EF⊥BD,EF⊂平面BCD,∴EF⊥平面A1BD,又∵A1B⊂平面A1BD,∴A1B⊥EF,又∵DM∥EF,∴A1B⊥DM.假设A1B⊥CD,∵DM∩CD=D,∴A1B⊥平面BCD,∴A1B⊥BD,与∠A1BD为锐角矛盾,∴直线A1B与直线CD不能垂直.5.(2019·河南名校联考)如图,在多面体ABCDEF中,四边形ABCD是梯形,AB∥CD,AD=DC=CB=a,∠ABC=60°,四边形ACFE是矩形,且平面ACFE⊥平面ABCD,点M在线段EF上.(1)求证:BC⊥平面ACFE;(2)当EM为何值时,AM∥平面BDF?证明你的结论.解:(1)证明:在梯形ABCD中,因为AB∥CD,AD=DC=CB=a,∠ABC=60°,所以四边形ABCD是等腰梯形,且∠DCA=∠DAC=30°,∠DCB=120°,所以∠ACB=∠DCB-∠DCA=90°,所以AC⊥BC.又平面ACFE⊥平面ABCD,平面ACFE∩平面ABCD=AC,BC⊂平面ABCD,所以BC⊥平面ACFE.(2)当EM=33a时,AM∥平面BDF,理由如下:如图,在梯形ABCD中,设AC∩BD=N,连接FN.由(1)知四边形ABCD为等腰梯形,且∠ABC=60°,所以AB=2DC,则CN ∶NA =1∶2.易知EF =AC =3a ,所以AN =233a .因为EM =33a , 所以MF =23EF =233a ,所以MF 綊AN ,所以四边形ANFM 是平行四边形,所以AM ∥NF ,又NF ⊂平面BDF ,AM ⊄平面BDF , 所以AM ∥平面BDF .6.如图所示的五面体ABEDFC 中,四边形ACFD 是等腰梯形,AD ∥FC ,∠DAC =60°,BC ⊥平面ACFD ,CA =CB =CF =1,AD =2CF ,点G 为AC 的中点.(1)在AD 上是否存在一点H ,使GH ∥平面BCD ?若存在,指出点H 的位置并给出证明;若不存在,说明理由;(2)求三棱锥G -ECD 的体积.解:(1)存在点H 使GH ∥平面BCD ,此时H 为AD 的中点.证明如下. 取点H 为AD 的中点,连接GH , 因为点G 为AC 的中点,所以在△ACD 中,由三角形中位线定理可知GH ∥CD , 又GH ⊄平面BCD ,CD ⊂平面BCD , 所以GH ∥平面BCD .(2)因为AD ∥CF ,AD ⊂平面ADEB ,CF ⊄平面ADEB , 所以CF ∥平面ADEB ,因为CF ⊂平面CFEB ,平面CFEB ∩平面ADEB =BE , 所以CF ∥BE ,又CF ⊂平面ACFD ,BE ⊄平面ACFD , 所以BE ∥平面ACFD , 所以V G -ECD =V E -GCD =V B -GCD .因为四边形ACFD 是等腰梯形,∠DAC =60°,AD =2CF =2AC ,所以∠ACD =90°, 又CA =CB =CF =1,所以CD =3,CG =12,又BC⊥平面ACFD,所以V B-GCD=13×12CG×CD×BC=13×12×12×3×1=312.所以三棱锥G-ECD的体积为3 12.。

相关文档
最新文档