材料力学3-扭转详解

合集下载

材料力学第3章 扭转

材料力学第3章 扭转
m n m
求图示轴n-n截面内力
解: 截面法
1、截开 取左段杆 2、代替 3、平衡
x
n
m
x
0 Mx T 0 Mx m
m
Mx
扭矩
同样取右段杆,可得: M x m
m
Mx x
左段与右段求出的扭矩等值、共线,但反向。
符合作用力与反作用力定律.
扭矩正负号的规定:
按右手螺旋法则,视Mx为矢量,若矢量的方向与横截面外法线 方向一致, Mx为正,反之为负.
材料力学
第3章 扭转
第三章 扭转
材料力学
第3章 扭转
• • • • •
本章主要内容 扭矩及扭矩图 等值圆杆扭转时横截面上的应力 等值圆杆扭转时的变形 矩形截面杆的扭转
材料力学
第3章 扭转
§3-1 概述 一、工程实际中的受扭杆 等值杆承受作用在垂直于杆轴线的平面内力偶时,杆件将发生 扭转变形,以扭转为主要变形的杆件称为轴。 (a)机械中传动轴; (b)石油钻机、灌注桩等钻杆; (c)水能发电机的主轴; (d)桥梁、厂房空间结构中的某些结构
IP
D4
(1- 4 )
3、薄壁圆环截面
δ
R
0
R0≥10
2 2 3 I P 2 dA R0 dA=R0 d A =2 R 0 A A A
3 I P 2 R0 2 WP 2 R0 R0 R0
Mx 2 2 R0
较小,可认为切应力沿厚度方向均布.
D
解: (a)实心截面
WP1
d1
d3
16

1003
16
1.96 105 mm3
d
D

材料力学 第三章 扭转

材料力学 第三章 扭转

d T dx GI p
d t r Gr dx
Tr tr Ip
Tr tr Ip
上式为等直圆杆在扭转时横截面上任一点处切 应力的计算公式。
Tr tr Ip
2
b z
t'
dx

c c'
3.4 圆轴扭转时的应力 3.4.1 横截面上的应力 1) 变形几何关系 在小变形条件下, 等直圆杆在扭转时横截面上也 只有切应力。为求得此应力, 需从几何关系、物 理关系和静力关系三个方面着手。 为研究横截面上任一点处切应变随点的位臵而 变化的规律, 先观察一个实验。
3.4 圆轴扭转时的应力 实验:预先在等截面圆杆的表面画上任意两个相 邻的圆周线和纵向线。在杆的两端施加外 力偶矩Me。
3.3 薄壁圆筒的扭转
薄壁圆筒扭转时, 横截面上 任一点处的切应力t都是相 等的, 而其方向与圆周相切。 横截面上的内力与应力间 的静力关系为:
n
r0 x
t dA
Me
n
t dA r
A
0
t r0 dA t r0 2 r d T
A
对于薄壁圆筒, r可由平均半径r0代替。
M x 0, T M e 0
T Me
取右侧为研究对象其扭矩与取左侧为研究对象 数值相同但转向相反。
3.2.2 扭矩及扭矩图 扭矩的符号规定如下: 采用右手螺旋法则, 如果 以右手四指表示扭矩的转向, 则姆指的指向离 开截面时的扭矩为正。
反之, 姆指指向截面时则扭矩为负。
3.2.2 扭矩及扭矩图
M2
M3
M1 n
A
M4
B
C
D
M2
M3
M1

材料力学-3-扭转(包含连接件)

材料力学-3-扭转(包含连接件)

3.5 圆轴扭转时的强度条件
3.5 圆轴扭转时的强度条件
为了让杆件正常工作,要对杆中的最大切应力加以限制
强度条件:
max
M x max [ ] ([ ]——许用切应力) Wp
危险截面在哪儿?
危险点在哪儿?
三类强度计算问题 强度校核 截面尺寸设计 确定许可荷载
M x max max [ ] Wp M x max Wp [ ] M x max Wp [ ]
D 2 d 2

32 D 4 (1 4 ) 32
(D4 d 4 )
(
d ) D
3.4 圆轴扭转时横截面上的切应力
(4)应力分布
M x IP
(实心截面)
(空心截面)
工程上采用空心截面构件:提高强度,节约材料,重 量轻,结构轻便,应用广泛。
3.4 圆轴扭转时横截面上的切应力
(3)尽管由实心圆截面杆推出,但同样适用于空心圆截面杆, 只是Ip值不同。 对于实心圆截面:
I p A 2 dA 2 2 d
D 2 0
D 4
32
3.4 圆轴扭转时横截面上的切应力
对于空心圆截面:
I p A 2 dA 2 2 d
3.5 圆轴扭转时的强度条件
例题3

解:
圆轴受扭时,里、外层之间无相对滑动,这表明二者 形成一个整体,同时产生扭转变形。因此,在里、外层交 界处二者具有相同的切应变。 剪切弹性模量(G1=2G2)
G
3.5 圆轴扭转时的强度条件
例题4
3
如图所示的传动机构中,功率从轮B输入,通过锥形齿轮将一 半传递给铅垂C轴,另一半传递给水平H轴。已知输入功率P1= 14kW, 水平轴(E和H)转速n1= n2= 120 r/min;锥齿轮A和D的齿数 分别为z1=36, z3=12;各轴的直径分别为d1=70mm, d 2 =50mm, d3=35mm。 求:各轴横截面上的最大切应力。

工程力学之扭转

工程力学之扭转

x
②计算并校核剪应力强度
max
T Wt
1.55 103
0.073 16
23MPa
[ ]
③此轴满足强度要求。
材料力学讲义(扭 转 )
§3–5 圆轴扭转时旳变形
一、扭转时旳变形
由公式
d T
dx GI p
知:长为 l一段杆两截面间相对扭转角φ 为
l
d
T
dx
0 GI p
Tl (若T 值不变) GI p
[]=30MPa,试设计杆旳外径;若[φ]=2º/m ,试校核此杆旳刚
度,并求右端面转角。
解:①设计杆旳外径
Wt
Tmax
[ ]
Wt 1D6(3 1 4)
1
D
16Tmax
(1义(扭 转 )
T 40Nm
1
D
16Tmax
(1 4)[
]
3
代入数值得: D 0.0226m。
tg
G1G dx
d
dx
d
dx
距圆心为 任一点处旳与到圆心旳距离成正比。
d —— 扭转角沿长度方向变化率。
dx
材料力学讲义(扭 转 )
2. 物理关系:
虎克定律:
G
代入上式得:
G
G
d
dx
G
d
dx
G
d
dx
材料力学讲义(扭 转 )
3. 静力学关系:
T A dA
A
G
2
d
dx
dA
G
2 0
0.033 (弧度)
T
40Nm
x
材料力学讲义(扭 转 )
[例4] 某传动轴设计要求转速n = 500 r / min,输入功率N1 = 500 马力, 输出功率分别 N2 = 200马力及 N3 = 300马力,已知:

材料力学-扭转问题解读

材料力学-扭转问题解读

d1 86.4mm
4.直径d2的选取 按强度条件:
3 3
d1
A
M e1

C
M e2
d2
B M e3
16T 16 4580 d2 π[ ] π 70106 69.3 103 m 69.3mm
4580 N m 7640 N m
按刚度条件 :
32T 180 32 4580 180 3 d2 76 10 m 76mm 2 9 2 Gπ [ ] 80 10 π 1
§3.7 非圆截面杆扭转 矩形截面杆扭转
变 形 特 征
T Wt
T
12100
x
max
Wt
D 3
16

T [ ]
-1590
D3
16 Mn

58.7 mm
刚度条件:
T 180 G Ip
D 4 T 180 Ip 32 G
32 Mn 180 D4 49mm G
4
圆轴扭转的强度条件:
max
T T T R I Ip Wt p R Wt 抗扭截面系数
Wt Wt
D 3
16 16
实心圆
4
D 3
1
d 空心圆 D
d
对阶梯轴,因各段的Wt不同 ,最大切应 力不一定在最大T所在截面,须综合考 虑T和Wt,确定T/ Wt极值。
1 G1 2 G2
2) 在下述三种情况下的切应力分布情况: (1)G1 > G2; (2) G1=G2 ; (3) G1<G2
G2Ip2
R2
G1Ip1

材料力学第三章 扭转

材料力学第三章 扭转

n
250
横截面上的最大切应力为
max
T Wt
T (D4 d 4)
16D
16 0.55573000 Pa 19.2MPa [ ] 50MPa (0.554 0.34 )
满足强度要求。
跟踪训练 7.机车变速箱第II轴如图所示,轴所传递的功率为
p 5.5KW,转速n 200r / min,材料为45钢,
(3)主动轮放在两从动轮之间可使最大扭矩取最小值
B
A
C
Me2
Nm
M e1
Me3
4220
2810
本章小结
1.外力偶矩的计算 内力的计算——扭矩图
P M e 9549 n (N m)
2.圆轴扭转切应力公式的建立
τρ
Tρ Ip
强度条件的应用
max
Tmax Wt
[ ]
刚度条件的应用
' max
T
180 [']
(3)主动轮和从动轮应如何安排才比较合理。
再根据平衡条件,可得 Me1 Me2 Me3 (2810 4220)N m 7030N m
所作扭矩图如右图
(1)试确定AB段的直径d1和BC段的直径d2。
根据强度条件确定AB直径d1
AB
TAB Wt
16TAB
d12
[ ]
根据刚度条件确定AB直径d1
mB
(a)
1
350 2
C
1
2
T1
11463
446
A
D
3
mB
(b)
(c) mB
mC
T2
mC
mA T3
mD
T1 350N m 350 1 350 2

材料力学-第三章扭转

材料力学-第三章扭转

3、物理方程 mA a mA a AC 2GI p GI p
BC
2 mB a GI p
4 解得: m A 7 T 3 mB T 7
AB AC BC 0
例:由实心杆 1 和空心杆 2 组成的组合轴,受扭矩 T, 两者之间无相对滑动,求各点切应力。 T 解: 设实心杆和空心杆承担的扭矩分别为 G 2 Ip 2 M n 1 、 M n2 。 R2
二 刚度条件
M 180 刚度 n 0.50~1.0 / m 一般轴 l G Ip 条件

0.25~0.5 / m 精密轴
1.0 ~3.0 / m 粗糙轴
例 传动主轴设计,已知:n = 300r/m,P1 = 500kW,P2=200kW P3=300kW,G=80GPa [ ] 40MPa , [] 0.3 求:轴的直径d 解:1、外力分析




圆轴扭转的强度条件
max
Mn D Mn I p 2 Wp
Wp
2I p D
Mn
D 3 D 3 Wp 1 4 抗扭截面系数Wp : W p 16 16


强度条件:
Mn max Wp
例 已知汽车传动主轴D = 90 mm, d = 85 mm [ ] 60MPa, T = 1.5 kNm
Mn d
3
圆形优于矩形
Aa
= 0.208
3
a
3

4
3
d 0.886 d
2
Mn
a
2

Mn 0.208 0.886 d
b
6.913

材料力学第3章扭转

材料力学第3章扭转

试问:纵向截面里的切应力是由什么内力平衡的?
§3.8 薄壁杆件的自由扭转
薄壁杆件:杆件的壁厚远小于截面的其它尺寸。 开口薄壁杆件:杆件的截面中线是不封闭的折线或曲
线,例如:工字钢、槽钢等。 闭口薄壁杆件:杆件的截面中线是封闭的折线或曲线,
例如:封闭的异型钢管。
一、开口薄壁杆的自由扭转
= Tl
GI t
变形特点:截面发生绕杆轴线的相对转动 本章主要研究圆截面等直杆的扭转
§3.2 外力偶矩的计算 扭矩和扭矩图
功率: P(kW) 角速度:ω 外力偶矩:Me
P = Meω
转速:n(r/min)
2n/ 60
Me
1000 P=9549
P n
(N
m)
内力偶矩:扭矩 T 求法:截面法
符号规则: 右手螺旋法则 与外法线同向“ + ” 与外法线反向“-”
max
T max
It
It
1 3
hi
3 i
二、闭口薄壁杆的自由扭转
max
T
2 min
TlS
4G 2
其中:ω截面为中线所围的面积
S 截面为中线的长度
闭口薄壁杆的应力分布:
例: 截面为圆环形的开口和闭口薄壁杆件如图所 示,设两杆具有相同平均半径 r 和壁厚δ,试 比较两者的扭转强度和刚度。
开=3 r 闭 开=3( r )2 闭
8FD3n Gd 4
C
ห้องสมุดไป่ตู้
Gd 4 8D3n
F C
§3.7 矩形截面杆扭转的概念
1) 翘曲
变形后杆的横截面不再保持为平面的现象。
2) 自由扭转和约束扭转
自由扭转:翘曲不受限制的扭转。 各截面翘曲程度相同,纵向纤维无伸缩, 所以,无正应力,仅有切应力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
'
d


b
'
c
§3-4 圆轴扭转时横截面上的应力
一、圆轴扭转时横截面上的应力 一)、几何关系:由实验找出变形规律→应变的变化规律 1、实验:
观察变形规律:
圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动 了一个不同的角度。 纵向线——倾斜了同一个角度,小方格变成了平行四边形。
扭转平面假设:变形前的横截面,变形后仍为平面,且形状 、大小
A
D
T1 4.78kN m T2 9.56kN m
T3 6.37kN m
4.78
T 图(kN· m)
9.56 Tmax = 9.56 kN· m 在BC段内
§3-3 关于切应力的若干重要性质
薄壁圆筒轴的扭转 一、薄壁圆筒横截面上的应力 (壁厚 1、实验:
t
1 r0 , r0:为平均半径) 10

2
d
T dA.r0 r0 td r0 t 2
2 A 0
2

T 2 2r0 t
薄壁圆筒横截面上的切应力计算式
二、关于切应力的若干重要性质 1、剪切虎克定律 l

为扭转角
r0 l
r0 l

做薄壁圆筒的扭转试验可得
T T—— 2 2r0 t r0 l
3
C
二、分别计算各段的扭矩
M2 A M2 A
1 1
1 1
M3
B T1 x M3 B
2 2
M1 C
3
3
M4
D
T1 M 2 4.78kN m
2 2
M2
T2
T2 M 2 M 3
x
9.56kN m
3
A
M4 D
T3 M 4 6.37kN m
T3
3
x
扭矩图 M2 M3 B M1 C 6.37 M4
P M e 7.024 (kN m) n
其中:P — 功率,马力(PS)
1PS=735.5N· m/s , 1kW=1.36PS
二、扭转杆件的内力——扭矩及扭矩图
1、扭转杆件的内力(截面法)
取左段为研究对象:
m
m
m
x
0, T m 0
m T
T m
取右段为研究对象:
x
m
m
T m
以及间距不变,半径仍为直线。
定性分析横截面上的应力 (1) 0 0 (2) 0 0 因为同一圆周上剪应变相同,所以同 一圆周上切应力大小相等,并且方向 垂直于其半径方向。
剪应变的变化规律:
D’
取楔形体 O1O2ABCD 为 研究对象
微段扭转 变形 d
DD' Rd tan dx dx
第三章
扭 转
§3-1 扭转概念和工程实例
§3-2 自由扭转杆件的内力计算 §3-3 关于切应力的若干重要性质
§3-4 圆轴扭转时横截面上的应力
§3-5 扭转变形 扭转强度和刚度计算
§3-6 圆轴扭转破坏分析
§3-1
扭转概念和工程实例
一、扭转的工程实例 1、螺丝刀杆工作时受扭。
Me
主动力偶
阻抗力偶
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
二、扭转的概念 受力特点:杆两端作用着大小相等、方向相反的力偶,且力 偶作用面垂直于杆的轴线。 变形特点:杆任意两截面绕轴线发生相对转动。
Me
mA
阻抗力偶
主动力偶
me
主要发生扭转变形的杆——轴。
§3-2
自由扭转杆件的内力计算
一、外力偶矩计算
功率、转速与外力偶矩的关系:
P Me 其中:P — 功率(W), — 角速度(1/s) 2n P Me 其中:n — 转速,转/分(rpm, r/min) 60 P 其中:P — 功率,千瓦(kW) M e 9549 (N m) n .m/s 1kW=1000N P M e 9.55 (kN m) n
x
0, m T 0
T
x
内力偶矩——扭矩 T
2、扭矩的符号规定:按右手螺旋法则判断。
右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若 其矢量方向与截面的外法线方向相同,则扭矩规定为正值,反之为
负值。
+
T
-
3、内力图(扭矩图)表示构件各横截面扭矩沿轴线变化的图形。
扭矩图作法:同轴力图: 例 1 一传动轴如图,转速n = 300r/min; 主动轮输入的功 率P1= 500kW,三个从动轮输出的功率分别为: N2= 150kW, N3= 150kW, N4= 200kW。试作轴的扭矩图。

F 0 F 0 M 0
y x z
自动满足
存在'

y
切应力互等定理
'
a dy

O ' dx
d

c x
z
b

在相互垂直的两个面上,切 应力总是成对出现,并且大小相 等,方向同时指向或同时背离两 个面的交线。

单元体在其两对互相 垂直的平面上只有切应力 而无正应力的状态称为纯 剪切应力状态。
2、变形规律:

'


圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动了一个角度。 纵向线——倾斜了同一个角度,小方格变成了平行四边形。
结论:
横截面上
0, 0 0 0

D
t
t D, 可认为切应力沿壁厚均匀分布,
且方向垂直于其半径方向。
3、切应力的计算公式:
tan dd d
dx
dx
d dx
d / dx-扭转角变化率
二)物理关系:由应变的变化规律→应力的分布规律
解:
一、计算作用在各轮上的外力偶矩
M2 A
M3 B
M1
M4
D
500 M 1 (9.55 10 ) N m 15.9kN m 300 3 150 M 2 M 3 (9.55 10 ) N m 4.78kN m 100 200 3 M 4 (9.55 10 ) N m 6.37kN m 300
剪切虎克定律
在弹性范围内切应力 与切应变成正比关系。
p,
G
E G 2(1 )
2、切应力互等定理
单元体—— 从受扭的薄壁圆筒表面处截取一微小的正六面体 Me M
e
y a
dy b
'
d x d z
d

O '

c
d yd z
x
z
dx
d y d z d x d x d z d y
相关文档
最新文档