带钢板形的概念及CVC轧机板形控制原理综述共32页

合集下载

轧机测厚仪带钢轧机与板形控制技术研究

轧机测厚仪带钢轧机与板形控制技术研究

轧机测厚仪带钢轧机与板形控制技术研究对常见带钢轧机的类型进行讨论,对先进板形控制技术展开阐述。

关键词:轧机;自动厚度控制;板形控制目前,hc轧机已发展了多种机型。

我们所说的中间辊移动的hc 轧机,也称为hcm六辊轧机。

此外,还有工作辊移动的hcw四辊轧机,以及工作辊和中间辊都移动的hcwm六辊轧机。

hc轧机的主要特点是:(1)通过轧辊的轴向移动,消除了板宽以外辊身间的有害接触部分,提高了辊缝刚度;(2)由于工作辊一端是悬臂的,在弯辊力作用下,工作辊边部变形明显增加。

如果对弯控制板形能力的要求不变时,则在hc轧机上可选用较小的弯辊力,这就提高了工作辊轴承的使用寿命并降低了轧机的作用载荷;(3)由于可通过弯辊力和轧辊轴向移动量两种手段进行调整,使轧机具有良好的板形控制能力;(4)能采用较小的工作辊直径,实现大压下轧制;(5)工作辊和支承辊都可采用圆柱形辊子,减小了磨辊工序,节约了能耗。

这种轧机典型应用如宝钢1550冷轧酸洗——连轧机组。

轧辊凸度边续可变轧机-cvc(continuouslyvariablecrown)轧机cvc轧机的基本特征是:(1)轧辊(工作辊)的原始辊型为s形曲线呈瓶状,上下轧辊互相错位1800布置;(2)带s形曲线的轧辊具有轧辊轴向抽动装置。

虽然cvc轧机与hc轧机一样有轧辊轴向抽动装置,但其目的和板形控制的基本原理是不同的。

hc轧机是为了消除辊间的有害接触部分来提高辊缝刚度,以实现板形调整的,是刚性辊缝型。

cvc轧机则是通过轧辊轴向抽动装置来改变s形曲线形成的原始辊缝形状来实现板形控制的,是柔性辊缝型。

当上下轧辊对称布置时,辊缝各部分高度相同。

如果上轧辊向右移动,下轧辊以相同的移动量向左移动,则辊缝中部高度变小。

反之,上辊向左移动,下辊以相同的移动量向右移动,辊缝中部高度变大(如图1所示)。

cvc轧机的主要特点是:(1)通过一组s形曲线轧辊可代替多组原始辊型不同的轧辊,减少了轧辊备品量;(2)可以进行无级辊缝调整来适应不同产品规格的变化,以获得良好的板带平直度和表面质量;(3)辊缝调节范围大,与弯辊装置配合使用时,如1700mm板带轧机的辊缝调整量可达600μm。

浅谈轧机板形控制系统的组成及控制原理

浅谈轧机板形控制系统的组成及控制原理
M1 是以 Intel Pentium III(因特奔腾 III )处理器和相 应的输入 / 输出板、接口板为基础的高级计算机系统(M1 系 统是 G. Bachmann Electronic GmbH(电子公司)的产品)。 为了计算在带材横截面上的张力分布情况,对储存的测量值 进行计算和评价是 M1 系统执行的任务。M1 系统通过以太 网接口板与可视化 PC 相连(VIS PC)。可视化 PC(VIS PC) 的主要任务是在操作台上处理可视化系统。
电荷放大器将压电传感器生成的电荷信号转换为电压。 旋转变送器(PCM 变送器)将这些电荷放大器的输出信号 转换为(PCM 编码的)数字信号。数据通过电缆从旋转变 送器传递给安装在控制柜内的 PCM 解码器插架(PCM 已 经停产,现在基本都采用集成的 SIKO 模块代替 IOP 模块及 PCM 插架)。下图是 SIKO 模块实物图。
[1] 阿 亨 巴 赫 .OPTIROLL i2 SFC and SCA Training[CP/ K].2004[2021.5]. 设备厂家 .
Fti = 每个测量区铝箔张力 Fri= 每个传感器的径向力 HExit= 铝箔出口厚度
图 2 传感器受力模型
图 1 板形辊结构
收稿时间 :2021-05 作者简介 :郭明明,生于 1985 年,男,助理工程师,高级技师,研究方向 : 自动化控制、传动控制、设备管理。
铝箔两边张力 Fti 会产生一个向下的压力 Fri 即传感器的 径向压力。那压电传感器上会产生电荷脉冲。每个脉冲的强 度取决于轧制铝箔在铝箔横截面上的长度分布情况 , 铝箔精 确位置对覆盖少的传感器影响很大,以至于只有传感器覆盖 面积超过额定 50%,系统才可以使用测量。
M 冶金冶炼 etallurgical smelting

带钢板形的概念及CVC轧机板形控制原理

带钢板形的概念及CVC轧机板形控制原理
CW (6a3 L2s 3a3 L3 2a2 L2 ) / 4 Cm (6a3 L2s m 3a3 L3 2a2 L2 ) / 4
Cn (6a3 L2s n 3a3 L3 2a2 L2 ) / 4 a3 (Cm Cn ) /(3L2 sm )
a2
(2sm L)Cm (2sm L)Cn 2 L2 sm
2
R Rt ( B0 ) Rt (0) B0 (a1 a2 B0 a3 B0 )
a1 与辊缝凸度无关,为了减小带钢参与应力 及改善带钢质量,实际生产中可以用辊径差 最小作为设计依据
解得:a1
1 2 3 (R a2 B0 a3 B0 ) B0 a0 Rt ) (0
横截面形状:凸度、楔形度、边部减薄、局部
高点
hEL
hL
hc 图1.凸度
hR
hER
hL
hR
图2.楔度
凸度 楔形度(左右标志点厚度之差) CT hR hL 边部减薄 EL=hL-hEL ER=hR-hER
CR hc (hL hR ) / 2
平直度(Flatness)
带钢平直度可以用波形表示法,也可以用相长度表示法来描述。 波形表示法定义的带钢平直度 式中: R-----波高;L-----波距。
变态


错位
动态鼓肚
CVC轧机工作原理

CVC(Continuously Variable Crown)技术是
由德国SMS公司于1984年提出的控制轧件板形 的一种新型轧辊技术,由于该技术控制板形的
优越性能而在热轧和冷轧板带材中获得了广泛
的应用

CVC轧辊辊身曲线呈S形,图5为CVC轧辊的辊

CVC精轧机概述

CVC精轧机概述

CVC精轧机概述摘要:CVC轧机是在HC轧机的基础上发展起来的一种轧机,它虽然与HC轧机一样有轧辊轴向抽动装置,但其目的和板形控制的基本原理是不同的。

HC轧机是为了消除辊间的有害接触部分来提高轧缝刚度,以实现板形调整的,是刚性辊缝型。

CVC轧机则是通过轧辊轴向抽动装置来改变S形曲线形成的原始辊缝形状来实现板形控制的,是柔性辊缝型。

关键词:CVC轧机、CVC工作辊、液压弯辊缸、轴向横移缸1 CVC轧机的原理CVC时Continuously Variable Croun的英文缩写,所谓CVC轧机就是指为了满足调整热带钢板凸度和板型的需要,将工作辊加工成具有S性辊身的CVC辊,在将上下工作辊相互倒置180度,从而具有工作辊轴向移动时空载辊缝形状连续可变能力的轧机。

工作辊轴向移动可分为正向抽动和反向抽动,其中正向定义为加大辊型凸度的方向,反之定义为反向抽动。

轧辊抽动量一般为±80~±150毫米,CVC辊的辊型曲线设计在过去常采用二次曲线,目前已经开始采用高次(含三次及四次)曲线以便有利于控制更宽更薄的热带钢,其中辊型的最大直径与最小直径之差不超过1毫米,差值过大将使轴向力过大而无法应用。

CVC轧机通常采用CRA表示轧辊辊型,以数值形式体现出来,即:CRA=中间直径—边缘直径,对于CVC工作辊来讲,CRA应是一个经过换算的当量值。

CVC技术在热轧是仅用于对空载辊缝形状的调解,因此主要用于板型设定模型对辊缝形状的设定,在线控制一般只用液压弯辊进行调解,但是目前已经开始研究当热轧采用润滑油轧制时是否将CVC用于在线调节。

2 采用CVC技术的轧机具有很多显著的优点:1、具有良好的带钢平直度控制能力和稳定性,它可以通过调整工作辊的弯辊力和轴向抽动量来获得最佳辊风从而得到最理想的平直度。

2、其弯辊力在最佳辊缝情况下始终处于最小状态,大大提高了轧辊和轴承的使用寿命。

3、CVC轧机可以使用较小的工作辊直径,从而减小了轧制力,实现了大压下量轧制。

板形指标及CVC轧机

板形指标及CVC轧机

-150 -100
-150 -100
-50
50 -100 -200 -300 -400 -500
100
150
CRA = -500 µm
CRA = -700 µm
+
+
+
+
+
(a) )
(b) ) (c) ) 图8 CVC辊形曲线与轧辊原始凸度的关系
经过我们的理论推导,可以证明,CVC轧辊凸度与轧辊窜动量之 间的关系不是线性关系,而是图9所示的曲线关系。线性关系的导出 没有考虑轧辊移动后对实际辊缝的影响,这与轧辊的实际凸度有一定 的误差,原因在于在推导线性轧辊凸度关系时,当轧辊相对移动一定 的量后,仍然认为两个轧辊的接触长度为原始辊身长度,忽略了轧辊 移动距离对有效凸度的影响, 从而使计算轧辊凸度与轧辊 移动量之间的结果产生误差。 由于误差是由于忽略了轧辊 移动而引起的,因此,轧辊 移动量越大,则这些公式的 计算结果误差越大,图9中的 曲线a和曲线b证明了这一点。
带钢板形指标及CVC轧机
2006年5月15日


1.带钢板形指标 1.带钢板形指标 2.CVC轧机工作原理 2.CVC轧机工作原理
1. 带钢板形指标
带钢尺寸质量指标包括纵向和横向尺寸,其中纵向厚度 尺寸精度由AGC AGC(Automatic Gauge Control)系统控制,AGC AGC 经过几十年的应用,目前已经很成熟。最近几年,热轧、冷 轧带钢的板形控制研究及应用也日趋成熟,新建的板带轧机 都装备了板形控制系统。一个完整的板形控制系统必须具备 以下三个条件: 可靠的、高精度的板形指标检测系统; 成熟的板形理论模型; 快速的板形调节、执行机构。
hEL

轧钢板形讲解

轧钢板形讲解
1.2板形控制的基本理论
板形控制的基本理论包含三个方面相互关联的理论体系,即:
轧件三维弹塑性变形理论。
辊系变形理论(弹性变形、热变形和磨损变形)。
轧后带钢失稳理论。
根据这三个方面的理论和实验所建立的数学模型也是相互联系、密不可分的统一体。轧件弹塑性三维变形为辊系弹性变形模型提供轧制压力的横向分布,同时为带钢失稳判别模型提供前张力的横向分布,辊系变形模型为轧件变形模型提供有载辊缝横向分布。三者关系如图1.5所示。
2.1.1解析法
解析法是三维轧制理论研究的开端,其物理模型仍然是构建于Karman或Orown的力平衡方程式上,只不过三维轧制理论在平面变形理论基础之上又添加了一个板宽方向(轧辊轴向)的平衡方程式,再结合三个主应力的塑性条件进行求解。柳本左门应用解析法给出了热轧问题的近似解析解。柳本在计算中采用了以下假设:
自20世纪60年代以来,人们对构成板形理论体系的三个模型进行了大量的研究。辊系弹性变形模型的研究起步较早,发展至今日已形成相对完善的理论体系,无论从计算精度及计算效率方面均可满足工程应用的要求;由于轧件变形特性的高度非线性,轧件的弹塑性变形计算较辊系的弹性变形计算复杂得多,虽然借助有限元法方法也能获得较好的计算精度,但计算量大,计算时间过长,不具有工程应用 价值;相对来说,对于轧后带钢失稳判别模型的研究较少。
图1.2带钢的平坦度
图1.3带钢的应力分布
1.1.2.3带钢的张力分布
带钢的张力分布可以回归为多项式形式:
σ(x) = A0+A1x+A2x2+A4x4+…(1-8)
式中σ(x)-带钢横向张力分布;
A0-带钢横向张力分布平均值;
A1-带钢横向张力分布的线性不对称分量;

热轧带钢板形控制

热轧带钢板形控制

热轧带钢板形控制一、 板形基本概念板形是指成品带钢的断面形状和平直度两项指标,二者都是标志带钢质量的重要指标,并且在生产中有着密不可分的联系。

1、断面形状断面形状是带钢厚度沿板宽方向的分布情况,如图1所示。

在实际生产中,以凸度来简单表示,如下式:e c h h -=δ式中:δ——带钢凸度。

h c ——带钢中部厚度。

h e ——带钢两边厚度平均值(由于存在“边部减薄”现象,一般取距带钢边部25~50mm 处的厚度作为边部厚度)。

2、平直度平直度指标表示带钢是否存在翘曲及翘曲的程度,即浪形,见图2。

可用以下几种方法表示:(1) 相对波峰值表示法%1000⨯=L hλ式中:h 、L 0——分别表示浪高和浪距。

(2) 相对长度差表示法相对长度差表示波浪部分的曲线长度对于平直部分标准长度的相对增长量。

可用下式表示:I L L x L x 5010)()(⨯-=ε 式中:L(x)——宽度方向任一点x 上的波浪弧长I ——表示平直度的单位,1I 单位相当于1m 长的带材中有10μm 的相对长度差。

图1 带钢横断面形状图2 带钢浪形示意图另外,还有张力差表示法、向量表示法和带钢断面的多项式表示法等。

二、 板形控制原理 1、凸度控制在带钢轧制过程中,其断面形状最终将取决于两工作辊间的辊缝形状。

因为辊缝形状由工作辊辊型曲线决定,所以,凡是影响工作辊辊型曲线形状的因素都会改变带钢的断面形状。

影响带钢凸度的因素有:(1) 工作辊原始凸度; (2) 工作辊热凸度; (3) 工作辊磨损凸度;(4) 工作辊在轧制力及弯辊力作用下产生的弯曲挠度;(5) 工作辊在不均匀分布的轧制力作用下沿板宽方向产生的弹性压扁。

控制带钢凸度(即控制工作辊辊缝形状)的方法因轧机的技术装备水平不同而不同。

(1) 以原始辊型设计为基础,合理地编制轧制规程。

通过合理分配各架轧机的负荷,来补偿因轧辊热凸度、磨损凸度和弹性变形而带来的辊缝形状的改变。

板形控制技术第一章

板形控制技术第一章

2021/6/2
9
双边浪
中浪
2021/6/2
两肋浪 单边浪
10
轧件与辊缝
2021/6/2
带钢宽度方向内应力发布
带钢外观
11
2021/6/2
12
2021/6/2
13
➢ 板形表示法 A 相对长度差表示法
将带钢设想成是由若干纵条组成,各窄条之间相互牵 制、相互影响。若带钢沿横向厚度压下不一样,则各窄条 就会相应地发生延伸不均,从而在各窄条之间产生相互作 用的内应力。当该应力足够大时,就会引起带钢的翘曲。
钢中心和接近带钢边部的某点的厚度差表
示断面形状。下面讨论采用这种表示方法
良好板形条件应取何种形式。仍如上图,
设轧前带钢中心和边部的厚度分别为Hc和 He,轧后相应的厚度为hc和he,应有:
2021/6/2
36
2021/6/2
37
2021/6/2
38
1. 4 良好板形的力学条件
2021/6/2
39
2021/6/2
44
2021/6/2
40
边部减薄是辊系变形和带钢金属三维变形共 同造成的:
(1)由于轧制过程中工作辊发生弹性压扁,因 而轧辊在轧件边部的压扁量明显小于在中部 的压扁量,相应地轧件发生边部减薄,见图。
2021/6/2
41
2021/6/2
42
(2) 对于一般的冷轧生产,轧辊原始辊 形采用凹辊形,对应的辊缝为凸辊缝,在 轧制过程中边部金属有较大的延伸趋势, 引起轧件边部厚度发生较大变化。
2021/6/2
20
平直度缺陷形式 a—长度方向瓢曲;b—宽度方向瓢曲;c—纵向波浪;d—马鞍型瓢曲; e—中浪;f—中心波;g—双边浪;h—单边浪;i—近边波;j—镰刀弯
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档