泛函分析中的概念和命题

合集下载

理解泛函分析学习泛函分析的基本概念和方法

理解泛函分析学习泛函分析的基本概念和方法

理解泛函分析学习泛函分析的基本概念和方法泛函分析是数学中的一个重要分支,它研究的是函数的集合和函数间的映射关系。

泛函分析的基本概念和方法对于理解和应用许多数学分支和应用科学领域都具有重要意义。

本文将介绍泛函分析的基本概念和方法,帮助读者更好地理解和学习泛函分析。

1. 范数和内积空间泛函分析的基本概念之一是范数和内积。

范数是定义在线性空间上的一种函数,用来度量空间中的向量的大小。

内积是定义在内积空间上的一种函数,用来度量空间中向量之间的夹角和长度。

了解范数和内积的定义和性质是学习泛函分析的基础。

2. 巴拿赫空间巴拿赫空间是泛函分析中的一个重要概念,它是一个完备的赋范线性空间。

完备性意味着空间中的柯西序列在该空间中有极限。

了解巴拿赫空间的定义和性质对于理解泛函分析的相关定理和方法至关重要。

3. 可分性和正交性可分性是指线性空间中存在可数的稠密子集。

泛函分析中的许多定理和方法依赖于对可分空间的研究。

正交性是指内积空间中存在满足正交关系的向量组。

正交性在泛函分析中有重要应用,如勾股定理和傅里叶级数展开等。

4. 对偶空间和弱收敛对偶空间是泛函分析中的一个重要概念,它是一个原空间的线性函数全体构成的线性空间。

对偶空间的研究对于理解泛函分析的双重性质及其在数学和物理问题中的应用具有重要意义。

弱收敛是指序列在对偶空间中的收敛性质。

了解对偶空间和弱收敛的定义和性质有助于掌握泛函分析中的重要思想和方法。

5. 紧算子和谱理论紧算子是泛函分析中的一个重要概念,它是一种在巴拿赫空间中有紧性的线性算子。

紧算子在泛函分析和泛函微分方程等领域的研究中具有重要应用。

谱理论研究的是算子的谱结构及其与算子性质的关系。

理解紧算子和谱理论对于深入理解泛函分析的相关概念和方法非常重要。

6. 泛函分析的应用领域泛函分析作为数学中的一个重要分支,在许多领域都有广泛的应用,包括数学分析、微分方程、优化理论、量子力学等。

了解泛函分析在不同领域的应用,可以帮助读者更好地理解泛函分析的实际意义,并将其应用于实际问题的研究和解决中。

泛函分析中的概念和命题

泛函分析中的概念和命题

泛函分析中的概念和命题赋范空间,算子,泛函定理:赋范线性空间是有限维的当且仅当它的单位球是列紧的;有限维赋范线性空间上的任两个范数是等价的;有限维赋范线性空间是Banach 空间.定理:M 是赋范线性空间()||||,⋅X 的一个真闭线性子空间,则,1||||,,0=∈∃>∀y X y ε使得: M x x y ∈∀->-,1||||ε定理:设X 是赋范线性空间,f 是X 上的线性泛函,则1.*X f ∈()()的闭线性子空间是X x f X x f N }0|{=∈=⇔ 2.()()中稠密在是不连续的非零线性泛函X f N x f ⇔定理:()空间是空间是则是赋范空间,Banach ,Banach },{,Y X B Y X Y X ⇔≠θ()()()||||||||||||,,,,,,,,B A AB Z X B AB Z Y B Y X B A Z Y X ≤∈∈∈且则是赋范空间,可分B 空间:()()[]可分b a C c c p l L p P ,,,,1,1,00∞<≤ ()∞∞l L ,10,不可分 Hahn-Banach 泛函延拓定理设X 为线性空间,上的实值函数是定义在X p ,若:(1)()()()()为次可加泛函则称p X y x y p x p y x p ,,,∈∀+≤+(2)()()()为正齐性泛函,则称p X x x p x p ∈∀≥∀=,0,ααα (3) ()()()为对称泛函,则称p X x x p x p ∈∀∈∀=,K ,||ααα 实Hahn-Banach 泛函定理: 设X 是实线性空间,()x p 是定义在X 上的次可加正齐性泛函,0X 是X 的线性子空间,0f 是定义在0X 上的实线性泛函且满足()()()00X x x p x f ∈∀≤,则必存在一个定义在X 上的实线性泛函f ,且满足:1.()()()X x x p x f ∈∀≤02. ()()()00X x x f x f ∈∀=复Hahn-Banach 泛函定理: 设X 是复线性空间,()x p 是定义在X 上的次可加对称泛函,0X 是X 的线性子空间,0f 是定义在0X 上的线性泛函且满足()()()00||X x x p x f ∈∀≤,则必存在一个定义在X 上的线性泛函f ,且满足:1.()()()X x x p x f ∈∀≤||02. ()()()00X x x f x f ∈∀=定理: 设X 是线性空间, 若}{θ≠X , 则在X 上必存在非零线性泛函。

大学数学泛函分析

大学数学泛函分析

大学数学泛函分析一、引言数学泛函分析是数学的一分支,研究数学空间中的函数和它们的性质。

本文将介绍大学数学泛函分析的基本概念、定理和应用,以帮助读者更好地理解和应用泛函分析知识。

二、范数空间与内积空间1. 范数空间范数空间是指一个向量空间上定义了范数的空间。

范数是一个函数,它将向量映射到非负实数。

我们要介绍的几个常见的范数包括:欧几里得范数、p-范数等。

2. 内积空间内积空间是指一个向量空间上定义了内积的空间。

内积是一个二元运算,它将两个向量映射到一个实数。

内积空间具有许多有用的性质,如共轭对称性、正定性等。

三、泛函分析的基本概念1. 线性算子线性算子是指将一个向量空间映射到另一个向量空间的线性映射。

我们要介绍的几类线性算子包括有界线性算子、紧线性算子等。

2. 连续性与收敛性在泛函分析中,我们关心函数序列的收敛性问题。

连续性和收敛性是泛函分析中的重要概念,它们可以帮助我们刻画函数的性质和行为。

3. 凸集与凸函数凸集是指包含所有连接两点的线段的集合。

凸函数是指定义在凸集上的函数,满足一定的凸性质。

凸集和凸函数在泛函分析中有着广泛的应用。

四、泛函分析的重要定理1. Banach不动点定理Banach不动点定理是泛函分析中的重要定理,它与函数的收敛性和连续性有密切关系。

该定理表明,在某些条件下,一个映射总能找到一个不动点。

2. Hahn-Banach定理Hahn-Banach定理是泛函分析中的核心定理,它在函数的延拓性和存在性方面有重要应用。

该定理表明,在一定条件下,我们可以将一个线性函数延拓到整个向量空间上。

3. Riesz表示定理Riesz表示定理是泛函分析中的经典定理之一,它将内积空间中的连续线性泛函表示为内积的形式。

该定理在量子力学等领域有着重要的应用。

五、泛函分析的应用泛函分析在科学和工程领域有着广泛的应用。

以下是几个典型的应用领域:1. 偏微分方程泛函分析在偏微分方程中有着重要的应用。

通过泛函分析的方法,我们可以研究偏微分方程的解的存在性、唯一性和稳定性等性质。

高等数学中的泛函分析及应用

高等数学中的泛函分析及应用

高等数学中的泛函分析及应用泛函分析是数学中一个重要的分支,广泛应用于物理学、工程学、经济学和计算机科学等领域。

在高等数学中,泛函分析是一个非常重要的课程,它不仅是数学基础课程的一部分,也是许多专业的必修课程。

本文旨在介绍泛函分析的基本概念和应用,以便读者对该领域有更深入的了解。

一、泛函的概念泛函是将一个函数映射到一个实数集上的函数。

通常的情况下,泛函被定义为一个变量为函数的积分或微积分方程,这种定义方式在实际问题中更加常见。

泛函经常用来描述物理学和工程学中的问题,例如流体力学中的能量等。

具体地说,泛函是对一个无限维的向量空间内的函数进行操作的工具,可以对其进行求导、积分等运算。

二、泛函分析的基本概念泛函分析中的基本概念包括:线性空间、范数、内积、完备性、集合的紧性、分离性等。

线性空间:泛函分析描述的是函数空间,函数空间是一个线性空间,即一个向量空间,它含有基本的数乘和向量加法运算。

泛函分析中讨论的函数通常是连续函数,函数值域是实数或者复数。

范数:范数是度量向量的大小的函数,它可以是任意实数或者复数。

标准范数是欧几里得范数,也就是向量的模长。

内积:内积是一个向量空间中定义的二元函数,它满足线性性和对称性。

对于实向量空间中的两个向量,内积定义为它们的点积积分。

对于复向量空间中的两个向量,内积定义为它们的共轭积的积分。

完备性:完备性是一个在泛函分析中很重要的概念,它指函数空间中存在极限。

对于一个函数序列,如果其所有元素的范围在函数空间中,则该函数序列完备。

集合的紧性:一个函数集合是紧的,当且仅当它满足一直存在最小诺依曼-阿克马兹斯基定理(弱紧定理)。

分离性:在泛函分析中,分离性是指向量空间中可以找到保证它们不等同的闭子空间的一对向量。

这对向量的分离距离是它们之间的最小距离。

分离性是基本的、非常重要的概念,因为它形成了许多定理和原理的基础。

三、泛函分析的应用泛函分析在实际问题中的应用非常广泛,例如:1、量子力学:量子力学中的哈密顿算子可以被视为一个泛函,而波函数则可以被视为一个函数。

数学的泛函分析分支

数学的泛函分析分支

数学的泛函分析分支泛函分析是数学中的一个重要分支,它研究的是无限维的函数空间及其上的算子。

泛函分析的研究对象往往是函数的函数,是更抽象更广义的数学对象。

本文将介绍泛函分析的基本概念、主要研究内容及其在数学和应用领域的重要性。

一、泛函分析的基本概念在介绍泛函分析的基本概念之前,我们先来回顾一下函数空间的概念。

函数空间是指一组具有特定性质的函数的集合,常用的函数空间有$L^p$空间、连续函数空间$C(X)$等。

泛函分析的研究对象就是这些函数空间及其上的算子。

泛函是一种将函数映射到复数域上的映射,即一个泛函是一个函数的函数,它把一个函数映射到一个复数。

泛函的定义域通常是一个函数空间,而值域是复数域。

泛函分析的核心问题就是研究这些泛函的性质、连续性、可微性等。

二、主要研究内容泛函分析的主要研究内容包括:线性空间、拓扑空间、度量空间等基本概念;距离、内积、拓扑及其性质;泛函的连续性、可微性、极值问题等;线性算子、线性泛函、自伴算子、紧算子等;泛函分析与现代数学其他分支的关系等。

在泛函分析的研究中,我们常常会用到一些重要的定理和工具。

比如,泛函分析中的典型定理有泛函空间的Hahn-Banach定理、泛函空间的开映射定理和闭图像定理等。

此外,我们还会利用拓扑和测度理论、泛函分析与概率论、泛函分析与偏微分方程等工具进行研究。

三、泛函分析的重要性泛函分析在数学研究中起到了重要的作用。

首先,在数学的其他分支中,如偏微分方程、最优化理论等领域中都有广泛的应用。

其次,在物理学、工程学、经济学等应用科学领域中也有重要的应用。

泛函分析提供了描述这些应用的数学模型和工具,使得我们能够更好地理解和解决实际问题。

此外,泛函分析还与纯数学的其他分支有着密切的联系。

在纯数学的研究中,泛函分析经常与测度论、概率论、调和分析等交叉,相互借鉴,推动了数学的发展。

因此,泛函分析是现代数学中一门重要而且有影响力的学科。

总结起来,泛函分析作为数学的一个重要分支,研究的是无限维的函数空间及其上的算子。

数学的泛函分析方法

数学的泛函分析方法

数学的泛函分析方法泛函分析是数学中的一个分支领域,它研究的是函数空间及其上的线性算子等数学结构。

在数学的各个领域中,泛函分析方法都得到了广泛的应用,包括数论、微分方程、偏微分方程、概率论等等。

本文将介绍数学的泛函分析方法及其在不同领域中的应用。

一、泛函分析的基本概念和原理泛函分析的基本概念包括函数空间、线性算子、内积、范数等。

函数空间是泛函分析的重要概念之一,它是一组具有一定性质的函数的集合。

常见的函数空间有无穷可微函数空间、有界函数空间、连续函数空间等。

线性算子则是函数之间的映射,它保持线性性质。

内积是一个函数空间上的二元运算,它满足线性性、对称性和正定性。

范数是函数空间上的一种度量,它衡量函数的大小和距离。

泛函分析的原理主要包括函数的连续性、可微性、积分等性质。

连续性是泛函分析的基本性质之一,它描述了函数在某一区间上的变化情况。

可微性是指函数在某一点附近存在导数,它描述了函数的变化速率。

积分是泛函分析中常用的计算工具,它描述了函数在某一区间上的总体情况。

二、泛函分析在数论中的应用泛函分析在数论中的应用主要体现在数论函数的性质研究、数论方程的解法等方面。

数论函数是研究整数性质的函数,如欧拉函数、狄利克雷级数等。

泛函分析方法可以用来研究这些数论函数的性质,如连续性、可微性等。

此外,泛函分析方法还可以用来解决一些数论方程,如椭圆曲线方程、费马方程等。

三、泛函分析在微分方程中的应用泛函分析在微分方程中的应用是非常广泛的,它主要体现在解析解的存在性和唯一性、解的稳定性等方面。

微分方程是描述变化的数学模型,而泛函分析方法可以用来证明微分方程的解的存在性和唯一性,以及解的稳定性。

此外,泛函分析方法还可以用来研究微分方程的数值解法,如有限元法、有限差分法等。

四、泛函分析在偏微分方程中的应用泛函分析在偏微分方程中的应用同样是非常广泛的,它主要体现在偏微分方程的解的存在性和唯一性、解的稳定性等方面。

偏微分方程是描述空间变化的数学模型,而泛函分析方法可以用来证明偏微分方程的解的存在性和唯一性,以及解的稳定性。

浅析泛函分析的基本概念

浅析泛函分析的基本概念泛函分析是现代数学中的一个重要分支, 它研究的是无限维空间上的函数集合, 以及函数与函数之间的关系, 使我们能够描述、研究和解决很多实际问题. 泛函分析独有的优点在于它能够描述和处理各种各样的无限维问题, 能够更加完美地对函数序列或函数空间上的各类性质进行分析, 而且很多经典数学中不能解决的问题, 泛函分析却能够给出解决的方案.泛函分析的基本概念主要包括:向量空间、集合、范数、内积、正交、测度、函数空间等等.以下是这些概念的具体阐述: 1. 向量空间向量空间是指一个满足一定公理的集合,其中这些公理一般包括向量运算的封闭性、加法结合律和交换律、零向量的存在、负向量的存在等等. 这些公理使得向量空间在进行加法和数乘运算时能够满足特定的条件.2. 范数范数是将向量空间中的向量映射到实数集合上的函数, 它通常定义为一个函数||·|| : V → R ,使得对于向量空间V中的任意两个向量,它们的范数都会有一定的关系,这关系通常包括非负性、齐次性和三角不等式等三个条件. 知道向量的范数, 可以想象向量在向量空间中的长度.3. 内积内积是向量空间中的两个向量进行一种数乘运算得到的数. 通常表示为(x, y) .内积可以描述两个向量在几何意义上是夹角余弦值. 从而可以定义正交和两个向量之间的距离.4. 正交在向量空间中, 如果两个向量的内积为0, 则这两个向量互相称之为正交向量. 在物理、机械等领域, 这个概念是经常用到的, 比如向量空间中的两个力相对偏轴正交等等,都是通过正交概念来进行描述的.5. 测度测度是将集合映射为其在一定空间上的数字性质.测度通常用于描述空间上的某些性质,如长度、面积、体积等,它们都是通过某种测度来进行度量的.这个概念经常用于描述概率论、拓扑学、微积分等领域中的问题.6. 函数空间函数空间是指一类函数的集合,函数空间中的元素是函数. 这些函数在某些特定的条件下,可以构成一个向量空间.通过对函数空间的研究, 可以得到很多关于函数性质的结论.总之,泛函分析中涉及的基本概念非常多,范围也很广.我们无法在短时间内全部理解, 因此需要不断地进行学习、思考、理解与探索, 才能真正掌握这门学科.。

泛函分析复习与总结汇编

泛函分析复习与总结汇编泛函分析是数学中的一个重要分支,它研究的是无穷维空间中的函数和函数空间的性质。

泛函分析具有很强的抽象性和广泛的应用性,在数学和物理学中都有着重要的地位。

本文将对泛函分析的基本概念、定理与应用进行复习与总结。

一、基本概念1.线性空间与赋范线性空间:线性空间是指满足线性运算规则的集合,包括实数域上的向量空间和复数域上的向量空间。

赋范线性空间是在线性空间的基础上,引入了范数的概念,即给每个向量赋予一个非负实数,满足非负性、齐次性和三角不等式等性质。

2.内积空间与希尔伯特空间:内积空间是在赋范线性空间的基础上,引入了内积的概念,即给每一对向量赋予一个复数,满足线性性、共轭对称性和正定性等性质。

希尔伯特空间是一个完备的内积空间,即内积空间中的柯西序列收敛于该空间中的元素。

3.函数空间:函数空间是指由特定性质的函数组成的集合,常见的函数空间有连续函数空间、可微函数空间和L^p空间等。

二、定理与性质1.希尔伯特空间的性质:希尔伯特空间是一个完备的内积空间,任意一序列收敛于希尔伯特空间中的元素,该序列收敛于该元素的充分必要条件是该序列的柯西序列。

2. Riesz表示定理:Riesz表示定理是希尔伯特空间的一个重要定理,它指出了希尔伯特空间中的任意线性连续泛函都可以由内积表示。

具体地说,对于希尔伯特空间中的任意线性连续泛函f,存在唯一的y∈H,使得对于所有的x∈H,有f(x)=(x,y)。

3.泛函分析的基本算子理论:算子是泛函分析中的一个重要概念,它用来描述线性变换的性质。

常见的算子包括线性算子、连续算子和紧算子等。

4.开放映射定理:开放映射定理是泛函分析中的一个重要定理,它指出了一个连续算子的开集的像还是开集。

具体地说,如果X和Y是两个赋范线性空间,并且T:X→Y是一个连续线性算子,如果T是开映射,则其像T(X)也是Y中的开集。

三、应用泛函分析在数学和物理学的各个领域都有重要的应用,包括偏微分方程、最优控制理论和量子力学等。

高等数学中的泛函分析初探

高等数学中的泛函分析初探一、引言高等数学是大学数学的重要组成部分,其中泛函分析作为其重要分支之一,在许多应用领域如工程、物理等都有重要意义。

本文将从基本概念出发,对高等数学中的泛函分析进行初步探讨。

二、泛函的定义与性质泛函是将一个函数映射到一个实数的映射。

设X和Y是两个实数域上的线性空间,如果对于每一个x∈X,都有唯一的实数f(x)与之对应,那么称f:X→Y为一个泛函。

泛函分析着重研究泛函的性质以及泛函空间上的结构。

三、泛函分析的基本概念在泛函分析中,我们常常研究的对象是泛函空间,即由所有满足某些条件的泛函构成的集合。

泛函空间上一般定义了一种拓扑结构,以便研究其性质。

四、泛函的连续性与收敛性泛函的连续性是泛函分析中的核心问题之一。

一个泛函f在某点x0处连续,指的是当自变量沿着某个逼近x0的数列收敛时,函数值沿着相应的数列也收敛。

泛函的收敛性与连续性密切相关,研究各种收敛性是泛函分析的重要课题。

五、泛函空间的完备性在泛函分析中,一个泛函空间如果满足某种收敛准则下任何Cauchy序列都有一个极限存在,那么称该空间是完备的。

完备性是刻画泛函空间中的一个重要性质,也是泛函空间中许多性质的基础。

六、泛函分析在实际问题中的应用泛函分析在实际问题中有着广泛的应用。

例如,在信号处理中,我们常常会运用泛函分析的方法来处理信号处理中的多种问题,提高信号处理的效率和精度。

七、结语通过本文的初步探讨,我们对高等数学中的泛函分析有了一定的了解。

泛函分析作为数学中的一个重要分支,其理论与应用都呈现出极大的价值。

希望通过深入学习,可以更好地掌握泛函分析的相关理论和方法,应用于更多的科学领域中。

以上就是本文对高等数学中泛函分析的初步探讨,希望能够为读者提供一定的帮助。

泛函分析总结范文

泛函分析总结范文泛函分析是数学中的一个重要分支领域,主要研究无穷维空间上的函数和算子的性质及其应用。

泛函分析是分析学、线性代数和拓扑学的交叉学科,涉及了大量的数学工具和理论。

本文将对泛函分析的基本概念、主要内容和一些典型应用进行总结。

泛函分析的基本概念主要包括:线性空间、范数、完备性等。

线性空间是泛函分析的基础,它是一个向量空间,具有加法和标量乘法运算,并且满足数乘和向量加法的线性性质。

范数是用来度量线性空间中向量的大小的一种方法,它满足非负性、齐次性和三角不等式等性质。

完备性是指拓扑空间中的序列具有极限,即序列的极限点也在该空间中。

泛函分析的主要内容包括:线性算子、连续算子、紧算子、Hilbert空间、巴拿赫空间等。

线性算子是将一个线性空间映射到另一个线性空间的映射,它保持向量的线性性质。

连续算子是一种满足一些特定性质的线性算子,它能够保持拓扑性质不变。

紧算子是一种特殊的连续算子,它将有界集映射为列紧集。

Hilbert空间是一种完备的内积空间,具有内积和范数的结构,它在量子力学和信号处理等领域有广泛应用。

巴拿赫空间是一种完备的范数空间,它在泛函分析和函数论中起着重要作用。

泛函分析的典型应用主要包括:函数逼近、偏微分方程、优化问题等。

函数逼近是利用泛函分析的方法来研究函数序列的极限性质,它在信号处理和图像处理等领域有广泛应用。

偏微分方程是描述自然界中各种现象的重要数学模型,通过泛函分析的方法可以研究其解的存在性和唯一性等性质。

优化问题是在给定一定条件下寻求最优解的问题,泛函分析可以提供寻找最优解的方法和工具。

总之,泛函分析是数学中重要的分析工具和理论体系,它对于理解和解决现实问题具有重要意义。

通过研究线性空间、范数、完备性、线性算子、连续算子、紧算子、Hilbert空间、巴拿赫空间等概念,可以建立起一套完整的理论框架。

通过应用泛函分析的方法和理论,可以解决函数逼近、偏微分方程、优化问题等实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泛函分析中的概念和命题赋范空间,算子,泛函定理:赋范线性空间是有限维的当且仅当它的单位球是列紧的;有限维赋范线性空间上的任两个范数是等价的;有限维赋范线性空间是Banach 空间.定理:M 是赋范线性空间()||||,⋅X 的一个真闭线性子空间,则,1||||,,0=∈∃>∀y X y ε使得: M x x y ∈∀->-,1||||ε定理:设X 是赋范线性空间,f 是X 上的线性泛函,则1.*X f ∈()()的闭线性子空间是X x f X x f N }0|{=∈=⇔ 2.()()中稠密在是不连续的非零线性泛函X f N x f ⇔定理:()空间是空间是则是赋范空间,Banach ,Banach },{,Y X B Y X Y X ⇔≠θ ()()()||||||||||||,,,,,,,,B A AB Z X B AB Z Y B Y X B A Z Y X ≤∈∈∈且则是赋范空间,可分B 空间:()()[]可分b a C c c p l L p P ,,,,1,1,00∞<≤ ()∞∞l L ,10,不可分 Hahn-Banach 泛函延拓定理设X 为线性空间,上的实值函数是定义在X p ,若:(1)()()()()为次可加泛函则称p X y x y p x p y x p ,,,∈∀+≤+(2)()()()为正齐性泛函,则称p X x x p x p ∈∀≥∀=,0,ααα (3) ()()()为对称泛函,则称p X x x p x p ∈∀∈∀=,K ,||ααα 实Hahn-Banach 泛函定理: 设X 是实线性空间,()x p 是定义在X 上的次可加正齐性泛函,0X 是X 的线性子空间,0f 是定义在0X 上的实线性泛函且满足()()()00X x x p x f ∈∀≤,则必存在一个定义在X 上的实线性泛函f ,且满足:1.()()()X x x p x f ∈∀≤02. ()()()00X x x f x f ∈∀=复Hahn-Banach 泛函定理: 设X 是复线性空间,()x p 是定义在X 上的次可加对称泛函,0X 是X 的线性子空间,0f 是定义在0X 上的线性泛函且满足()()()00||X x x p x f ∈∀≤,则必存在一个定义在X 上的线性泛函f ,且满足:1.()()()X x x p x f ∈∀≤||02. ()()()00X x x f x f ∈∀=定理: 设X 是线性空间, 若}{θ≠X , 则在X 上必存在非零线性泛函。

Hahn-Banach 延拓定理: 设X 是赋范线性空间, 0X 是X 的线性子空间,0f 是定义在0X 上的有界线性泛函,则必存在一个定义在X 上的有界线性泛函f ,满足:1.0||||||||0X f f =2. ()()()00X x x f x f ∈∀=定理:设X 是赋范线性空间,M 是X 的线性子空间,(),0,,00>=∈d M x X x ρ则必有 *X f ∈,满足:(1)()()1||||)3()2(,00==∈∀=f d x f M x x f ;;定理:设X 是赋范空间,()1||||||,||,},{00*0==∈∃-∈∀f x x f X f X x 使必θ定理:设X 是赋范空间,1}||||,|)(sup{|||||,*000=∈=∈∀f X f x f x X x :必有凸集分离定理极大线性子空间:一个线性空间的子空间,真包含它的线性空间是全空间超平面:它是线性空间中某个极大线性子空间对某个向量的平移,也称极大线性流形承托超平面:的在点凸集0x E 承托超平面0x L L E L 有公共点的一侧,且与在是指 Minkowski 泛函:上作一个点的凸子集,在的含有是是线性空间,设X X M X θ 取值于],0[+∞的函数: ()()X x M x x p ∈∀∈>=},|0inf{λλ与M 对应,称函数p 为M 的Minkowski 泛函定理:L 是赋范空间X 的(闭)超平面⇔存在X 上的非零(连续)线性泛函f 及()}|{,,r x f X x H H L R r r f rf =∈==∈其中使Hahn-Banach 定理的几何形式: 设X 是赋范空间,E 是X 的具有内点的真凸子集,又设00,x E E X x 与离则必存在一个超平面分-∈定理:设X 是赋范空间,;具有内点,且的两个非空凸集,是和φ=⋂F E E X F E 0则 F E H X f s sf 和分离使得超平面及},{R *θ-∈∈∃Ascoli 定理:设X 是赋范空间,E 是X 的真闭凸子集,则R ,,*0∈∈∃-∈∀αX f E X x 适合()()()E x x f x f ∈∀<<,0α Mazur 定理:设X 是赋范空间,E 是X 的一个有内点的凸子集,F 是X 的一个线性流形,又设的一侧在,使的闭超平面则存在一个包含L E L F F E ,0φ=⋂定理:设X 是赋范空间,E 是X 的一个含有内点的闭凸集,则通过E 的每个边界点都可以作出E 的一个承托超平面 基本定理定理:()()()εθθε,1,,0,Banach ,O TB Y X B T Y X ⊃>∃∈使得是满射,则空间,是设 开映射定理:()是开映射是满射,则空间,是设T Y X B T Y X ,Banach ,∈Banach 逆算子定理:()()Y X B T Y X B T Y X ,,Banach ,1∈∈-是双射,则空间,是设等价范数定理:设X 是线性空间,1||||•和2||||•是X 上的两个范数,若X 关于这两个范数都成为Banach 空间,而且2||||•强于1||||•,则1||||•也强于2||||•,从而1||||•和2||||•等价闭算子:是赋范空间,设Y X ,()的映射,到是Y X T D T ⊂若T 的图像()()}|,{T D x Tx x ∈是赋范线性空间Y X ⨯中的闭集,则称T 是闭映射或闭算子闭算子判别定理:设Y X ,是赋范空间,()⇔⊂是闭映射的映射,则到是T Y X T D T(),}{T D x n ⊂∀若()00000,,Tx y T D x Y y Tx X x x n n =∈∈→∈→,且则闭图像定理:空间,是设Banach ,Y X ()的线性映射到是Y X T D T ⊂,而且是闭算子,若 ()T D 是X 的闭线性子空间,则T 是连续的定理:空间,是设Banach ,Y X 的线性算子到是Y X T ,则T 连续⇔T 是闭算子 共鸣定理:空间,是设Banach X Y 是赋范空间,().,,Λ∈∈λλY X B T 如果X x ∈∀,都有有界:则}||{||,||||sup Λ∈+∞<Λ∈λλλλT x T自反空间与共轭算子除声明外下面的Y X ,都是一般的赋范线性空间共轭空间:[]()[]()共轭,,q p p b a C l c c l l L L q p q P ,,1b ,a V ,,)(,)(,)(0*1*0***∞<≤===== 伴随算子:()()()()||||||||,,*******T T X Y B T f f T Tx f x f Y X B T =∈==∈,,,, 1.()()||||||||,,,**********T T T T X X T T X B T ==∈的延拓且是则的子空间看成若将记 2.()()1**1*)(,--=⇔∈T T T T Y X B T 有有界逆,且此时有有界逆,则3.()()的保范线性算子到是由映射***,,X Y B Y X B A A4.()()()***,,,,A B AB Z Y B B Y X B A =∈∈则若 定理:若)(11*不自反,可分。

可分,则l L X X ⇒;X 是Banach 空间,自反自反X X ⇔* 自反空间的闭线性子空间是自反空间自然嵌入映射**x x →:τ是赋范空间X 到**X 的保范的有界线性算子,即:||||||||**x x =Riesz 表示定理:设X 是局部紧空间,()()则:时,},|sup{|||||X x x f f X C f c ∈=∈ (1) 若()X C c 是ϕ上的正线性泛函,则存在X 上一个正则Borel 测度u ,使得对任()X C f c ∈都有()⎰=u f f d ϕ(2) 若()*X C c ∈ϕ,则存在X 上一个广义正则Borel 测度u ,使()⎰=u f f d ϕ(3) 若()X C c 是X 上具有紧支集的复连续函数空间,则对()X C c 上任一有界复线性泛函ϕ,存在复正则Borel 测度u ,使()⎰=u f f d ϕ弱收敛和弱列紧基本概念:弱收敛;算子列的一致收敛,强收敛,弱收敛;泛函列的*弱收敛;弱列紧;局部弱列紧;*弱列紧;局部*弱列紧定理:设()()当且仅当:强收敛于某个空间,是Y X T Y X B T Y X n ,B ,}{Banach ,∈⊂1.() ,3,2,1||||0||}{||=≤>n M T M T n n ,使有界,即有2.收敛,,使中的稠集存在}{x T D x D X n ∈∀定理:设当且仅当:弱收敛于某个则空间,是***}{,}{Banach X f f X f X n n ∈⊂1.有界;||}{||n f2.()收敛,,使中的稠集存在}{x f D x D X n ∈∀ 定理:设当且仅当:弱收敛于某个是赋范空间,则X x X x X n ∈⊂}{1.有界;||}{||n x2.()()x f x f D f D X n 收敛于,有,使中的稠集存在}{*∈∀定理:设,}{X x X x X n ∈⊂弱收敛于某个是赋范空间,则存在由}{n x 的凸组合构成的点列使其强收敛到x ,且||||lim ||||n n x x ∞→≤ 定理:可分赋范空间的共轭空间是局部*弱列紧的;自反空间是局部弱列紧的Hilbert Space基本概念:除声明外下面所涉及的空间都是Real or Complex Hilbert Space X内积:一个(数域K 上)线性空间X 上的内积指的是共轭双线性泛函:K →⨯X X ,它满足正定性和共轭对称性。

内积空间:定义了内积的线性空间。

定义了内积的复(实)线性空间称为复(实)内积空间。

内积导出的范数满足平行四边形公式。

内积(按内积导出的范数)是X X ⨯上的连续函数.若由内积导出的范数是完备的,这样的内积空间称为Hilbert 空间定理:设()()⋅⋅,,X 是内积空间,||||⋅是由内积()⋅⋅,导出的范数,则||||⋅与()⋅⋅,满足如下关系:当X 是实线性空间时,()()X y x y x y x y x ∈∀--+=,,||||||||41,22 当X 是复线性空间时,()()X y x iy x i iy x i y x y x y x ∈∀--++--+=,,||||||||||||||||41,2222 极化恒等式:()()()()()[]iy x iA iy x iA y x A y x A y Ax --++--+=41,,()()x Ax x A ,= 定理:为了在赋范线性空间()||||,⋅X 中引入内积()⋅⋅,,使得由()⋅⋅,导出的范数就是||||⋅,当且仅当||||⋅满足平行四边形公式:()2222||||||||2||||||||y x y x y x +=-++定理:设()()⋅⋅,,X 是内积空间,M 是X 的非空子集,()X n y y x n ∈= ,2,1,,,则1.222||||||||||||y x y x y x +=+⇒⊥ 2.()y x y y n y x n n ⊥⇒→=⊥,,2,1 3.M x M x span ⊥⇒⊥ 4.()⊥⊥⊥⊥=⊂M M M M , 5.}{θ=⇒⊥MX M 中稠在 6.()⊥⊥⊥=spanM M X M 的闭线性子空间,且是定理:设X 是希尔伯特空间,M 是X 的非空闭凸子集,则M y X x o ∈∃∈∀唯一的,,使得()}||inf{||,||||0M y y x M x y x ∈-==-:ρ正交分解定理:设M 是希尔伯特空间X 的一个闭线性子空间,X x ∈∀,存在唯一的正交分解:⊥⊥⊕=∈∈+=M M X M x M x x x x 即:),,(,1010定理:设()()⋅⋅,,X 是希尔伯特空间,M 是X 的线性子空间,则:1.()M M =⊥⊥2. }{θ=⇔⊥M X M 中稠在定理:系中必存在完备标准正交空间}){(θ≠H H H ilb ert定理:假定}|{Λ∈=ααe S 是中的标准正交系空间H H ilb ert ,那么.H x ∈∀有Parseval 不等式:∑Λ∈≥αα2||||2||||c x定理:}|{Λ∈=ααe S 是中的完备标准正交系空间H Hilbert ,⇔.H x ∈∀有Fourier 展开式和Parseval 等式:∑Λ∈=∑Λ∈=ααααα2||||2||||,c x e c x ,其中:()()系数的称为Fourier ,x e x c Λ∈=ααα。

相关文档
最新文档