九年级数学中考模拟试题1

合集下载

人教版九年数学中考模拟试题

人教版九年数学中考模拟试题

人教版九年数学中考模拟试题一、选择题(本题共30分,每小题3分)1.为解决“最后一公里”的交通接驳问题,平谷区投放了大量公租自行车供市民使用.据统计,目前我区共有公租自行车3 500辆.将3 500用科学记数法表示应为 A .0.35×104 B . 3.5×103C .3.5×102D . 35×1022.把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画弧交数轴于点A ,则点A 对应的数是 A .1 B .2 C .3 D .23.右图是某几何体从不同角度看到的图形,这个几何体是A .圆锥B .圆柱C .正三棱柱D .三棱锥4.如果x+y =4,那么代数式222222x yx y x y ---的值是A .﹣2B .2C .12 D .12- 5.下列图形中,既是轴对称图形,又是中心对称图形的是A .B .C .D .6.某商场一楼与二楼之间的手扶电梯如图所示.其中AB 、CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的高度h 是A .43mB .8 mC .833mD .4 m7.在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有凫(凫:野鸭)起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞,7天飞到北海;大雁从北海起飞,9天飞到南海.野鸭与大雁从南海和北海同时起飞,经过几天相遇.设野鸭与大雁从南海和北海同时起飞,经过x 天相遇,根据题意,下面所列方程正确的是 A .1)79(=-xB.1)79(=+xC. 1)9171(=+xD. 1)9171(=-xA -1321ABC D150° h 主视图 左视图 俯视图8.如图,是利用平面直角坐标系画出的天安门广场的平面示意图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示国旗杆的点的坐标为(0,2.5),表示中国国家博物馆的点的坐标为(4,1),则表示下列建筑的点的坐标正确的是A.天安门(0,4)B.人民大会堂(﹣4,1)C.毛主席纪念堂(﹣1,﹣3)D.正阳门(0,﹣5)9.1-7月份,某种蔬菜每斤的进价与每斤的售价的信息如图所示,则出售该种蔬菜每斤利润最大的月份是A.3月份B.4月份C.5月份D.6月份10.AQI是空气质量指数(Air Quality Index)的简称,是描述空气质量状况的指数.其数值越大说明空气污染状况越严重,对人体的健康危害也就越大.AQI共分六级,空气污染指数为0-50一级优,51-100二级良,101-150三级轻度污染,151-200四级中度污染,201-300五级重度污染,大于300六级严重污染.小明查阅了2015年和2016年某市全年的AQI指数,并绘制了如下统计图,并得出以下结论:①2016年重度污染的天数比2015年有所减少;②2016年空气质量优良的天数比2015年有所增加;③2015年和2016年AQI指数的中位数都集中在51-100这一档中;④2016年中度污染的天数比2015年多13天.以上结论正确的是A.①③B.①④C.②③D.②④二、填空题(本题共18分,每小题3分)11.如果分式31-+xx的值为0,那么x的值是.12.如图,一个正方形被分成两个正方形和两个一模一样的矩形,请根据图形,写出一个含有a,b的正确的等式.b a13.请写出一个在各自象限内,y 的值随x 值的增大而增大的反比例函数表达式 . 14.一个猜想是否正确,科学家们要经过反复的论证.下表是几位科学家“掷硬币”的实验数据: 实验者德·摩根 蒲丰 费勒 皮尔逊 罗曼诺夫斯基掷币次数6 140 4 040 10 000 36 000 80 640 出现“正面朝上”的次数 3 1092 0484 97918 03139 699频率0.506 0.507 0.498 0.501 0.492请根据以上数据,估计硬币出现“正面朝上”的概率为 (精确到0.01). 15.如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影(圆形).已知灯泡距离地面2.4m ,桌面距离地面0.8m (桌面厚度不计算),若桌面的面积是1.2m²,则地面上的阴影面积是 m². 16.小米是一个爱动脑筋的孩子,他用如下方法作∠AOB 的角平分线:作法:如图,(1)在射线OA 上任取一点C ,过点C 作CD ∥OB ; (2)以点C 为圆心,CO 的长为半径作弧,交CD 于点E ; (3)作射线OE .所以射线OE 就是∠AOB 的角平分线. 请回答:小米的作图依据是____________________________ ____________________________________________________.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程. 17.计算:013122cos302017--+︒-.18.解不等式组32,211,52-≤⎧⎪++⎨<⎪⎩x x x x 并写出它的所有非负整数解......19.如图,在矩形ABCD 中,点E 是BC 上一点,且DE =DA ,AF ⊥DE 于F ,求证:AF=CD .A OE DC BA20.已知关于x 的一元二次方程x 2-(m +2)x +2m =0.(1)求证:方程总有两个实数根; (2)当m =2时,求方程的两个根.21.在平面直角坐标xOy 中,直线()10y kx k =+≠与双曲线()0my m x=≠的一个交点为A (﹣2,3),与x 轴交于点B . (1) 求m 的值和点B 的坐标;(2) 点P 在y 轴上,点P 到直线()10y kx k =+≠,直接写出点P 的坐标.22.随着人们“节能环保,绿色出行”生产的某型号自行车去年销售总额为8车去年每辆售价多少元?23.如图,在△ABC 中,BD 平分∠ABC 交AC 于D ,EF 垂直平分BD ,分别交AB ,BC ,BD 于E ,F ,G ,连接DE ,DF .(1)求证:DE=DF ; (2)若∠ABC =30°,∠C =45°,DE =4,求CF 的长.24.阅读以下材料:2017年1月28日至2月1日农历正月初一至初五,平谷区政府在占地面积6万平方米的琴湖公园举办主题为“逛平谷庙会乐百姓生活”的平谷区首届春节庙会.本次庙会共设置了文艺展演区、非遗展示互动区、特色商品区、儿童娱乐游艺区、特色美食区等五个不同主题的展区.展区总面积1720平方米.文艺展演区占地面积600平方米,占展区总面积的34.9%;非遗展示区占地190平方米,占展区总面积的11.0%;特色商品区占地面积是文艺展演区的一半,占展区总面积的17.4%;特色美食区占地200平方米,占展区总面积的11.6%;还有孩子们喜爱的儿童娱乐游艺区.此次庙会本着弘扬、挖掘、展示平谷春节及民俗文化,以京津冀不同地域的特色文化为出发点,全面展示平谷风土人情及津冀人文特色.大年初一,来自全国各地的约3.2万人踏着新春的脚步,揭开了首届平谷庙会的帷幕.大年初二尽管天气寒冷,市民逛庙会热情不减,又约有4.3万人次参观了庙会,品尝特色美食,观看绿都古韵、秧歌表演、天桥绝活,一路猜灯谜、赏图片展,场面火爆.琳琅满目的泥塑、木版画、剪纸、年画等民俗作品也让游客爱不释手,纷纷购买.大年初三,单日接待游客约4万人次,大年初四风和日丽的天气让庙会进入游园高峰,单日接待量较前日增长了约50%.大年初五,活动进入尾声,但庙会现场仍然人头攒动,仍约有5.5万人次来园参观. (1)直接写出扇形统计图中m 的值;(2)初四这天,庙会接待游客量约_______万人次;(3)请用统计图或统计表,将庙会期间每日接待游客的人数表示出来.FE GDBCA25.如图,⊙O 为等腰三角形ABC 的外接圆,AB =AC ,AD 是⊙O 的直径,切线DE 与AC 的延长线相交于点E . (1)求证:DE ∥BC ;(2)若DF=n ,∠BAC =2α,写出求CE 长的思路.26.有这样一个问题:探究函数+2y x x =-+的图象与性质.小军根据学习函数的经验, 对函数+2y x x =-+的图象与性质进行了探究. 下面是小军的探究过程, 请补充完整:(1)函数+2y x x =-+的自变量x 的取值范围是 ; x ﹣2 ﹣1.9 ﹣1.5﹣1 ﹣0.5 0 1 2 34…y21.60 0.80﹣0.72﹣1.41﹣0.370.76 1.55 …在平面直角坐标系xOy 中, 描出了以上表中各对对应值为坐标的点,根据描出的点, 画出该函数的图象;yx–3–2–11234–2–112345OF BO C(3)观察图象,函数的最小值是; (4)进一步探究,结合函数的图象, 写出该函数的一条..性质(函数最小值除外): .27.直线33y x =-+与x 轴,y 轴分别交于A ,B 两点,点A 关于直线1x =-的对称点为点C . (1)求点C 的坐标;(2)若抛物线()230y mx nx m m =+-≠经过A ,B ,C 三点,求该抛物线的表达式;(3)若抛物线()230y ax bx a =++≠ 经过A ,B 两点,且顶点在第二象限,抛物线与线段AC 有两个公共点,求a 的取值范围.28.在△ABC 中,AB =AC ,∠A =60°,点D 是BC 边的中点,作射线DE ,与边AB 交于点E ,射线DE 绕点D 顺时针旋转120°,与直线AC 交于点F . (1)依题意将图1补全;(2)小华通过观察、实验提出猜想:在点E 运动的过程中,始终有DE=DF .小华把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:由点D 是BC 边的中点,通过构造一边的平行线,利用全等三角形,可证DE =DF ; 想法2:利用等边三角形的对称性,作点E 关于线段AD 的对称点P ,由∠BAC 与∠EDF 互补,可得∠AED 与∠AFD 互补,由等角对等边,可证DE =DF ;想法3:由等腰三角形三线合一,可得AD 是∠BAC 的角平分线,由角平分线定理,构造点D 到AB ,AC 的高,利用全等三角形,可证DE =DF …….请你参考上面的想法,帮助小华证明DE =DF (选一种方法即可); (3)在点E 运动的过程中,直接写出BE ,CF ,AB 之间的数量关系.29.在平面直角坐标系中,点Q为坐标系上任意一点,某图形上的所有点在∠Q的内部(含角的边),这时我们把∠Q的最小角叫做该图形的视角.如图1,矩形ABCD,作射线OA,OB,则称∠AOB为矩形ABCD的视角.图1 图2 备用图(1)如图1,矩形ABCD,A (﹣3,1),B (3,1),C(3,3),D(﹣3,3),直接写出视角∠AOB的度数;(2)在(1)的条件下,在射线CB上有一点Q,使得矩形ABCD的视角∠AQB=60°,求点Q的坐标;(3)如图2,⊙P的半径为1,点P(1,3),点Q在x轴上,且⊙P的视角∠EQF的度数大于60°,若Q(a,0),求a的取值范围.。

【九年级】中考数学第一次模拟考试题(附答案)

【九年级】中考数学第一次模拟考试题(附答案)

【九年级】中考数学第一次模拟考试题(附答案)卷ⅰ(,共24分)一、(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案涂在答题卡上)1.的绝对值就是()a.4b.c.d.2.以下运算中恰当的就是()a.b.c.d.3.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=20°,那么∠3的度数是()a.25°b.30°c.60°d.65°4.不等式3x+1≥2x的解集在数轴上表示为()5.未知四边形中,,如果嵌入一个条件,即可面世该四边形就是正方形,那么这个条件可以就是()a.b.c.d.6.例如图,未知⊙o的直径ab⊥弦cd于点e.以下结论一定恰当的就是()a.ae=oeb.ce=dec.oe=12ced.∠aoc=60°7.某人沿着存有一定坡度的坡面跑了10米,此时他与水平地面的垂直距离为6米,则他水平行进的距离为()米.a.5 b.6 c.8 d.108.种饮料比种饮料单价太少1元,小峰买了2瓶种饮料和3瓶种饮料,一共花掉了13元,如果设种饮料单价为元/瓶,那么下面所列方程恰当的就是()a.b.c.d.9.如图,是一种古代计时器――“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.若用表示时间,表示壶底到水面的高度,下面的图象适合表示一小段时间内与的函数关系的是(不考虑水量变化对压力的影响)()abcd10.如图所示,半圆ab平移到半圆cd的位置时所扫过的面积为()a.3b.3+c.6d.6+11.未知抛物线的开口向上,顶点座标为(2,-3),那么该抛物线有()a.最小值-3b.最大值-3c.最小值2d.最大值212.在平面直角坐标系中,对于平面内任一点(,n),规定以下两种变换:①,如;②,如.按照以上变换有:,那么等于()a.(3,2)b.(3,-2)c.(-3,2)d.(-3,-2)卷ii(非选择题,共96分)请把答案写在答题纸上二、题(本大题共6个小题;每小题3分后,共18分后)13.计算:=;14.例如图,若a就是实数a在数轴上对应的点,则关于a,-a,1的大小关系是.15.学校精心安排三辆车,非政府九年级学生团员回去敬老院看望老人,其中小王与小菲都可以从这三辆车中自由选择一辆乘坐,则小王与小菲同车的概率为__________.16.如果,那么代数式的值是。

2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案2020年九年级数学中考模拟试题第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列实数中,无理数是()。

A。

$\sqrt{2}$。

B。

$-2$。

C。

$\dfrac{1}{2}$。

D。

$0.5$2.(3分)下列图形中,既是轴对称又是中心对称图形的是()。

A。

菱形。

B。

等边三角形。

C。

平行四边形。

D。

等腰梯形3.(3分)图中立体图形的主视图是()。

A。

B。

C。

D。

4.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()。

A。

$10\%x=330$。

B。

$(1-10\%)x=330$。

C。

$(1-10\%)2x=330$。

D。

$(1+10\%)x=330$5.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()。

A。

平均数。

B。

中位数。

C。

众数。

D。

方差6.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间。

A。

B与C。

B。

C与D。

C。

E与F。

D。

7.(3分)若代数式 $A=\dfrac{x+1}{x-1}$,$B=\dfrac{2x-1}{x-2}$ 有意义,则实数x的取值范围是()。

A。

$x\geq1$。

B。

$x\geq2$。

C。

$x>1$。

D。

$x>2$8.(3分)下列曲线中不能表示y是x的函数的是()。

A。

B。

C。

D。

9.(3分)某校美术社团为练素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本。

求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()。

A。

$120=\dfrac{(x+20)\times(4x-480)}{4x-480-20}$。

B。

$120=\dfrac{(x+20)\times(4x-480)}{4x-480}$C。

2024年黑龙江省哈尔滨市中考模拟检测数学试题(一)

2024年黑龙江省哈尔滨市中考模拟检测数学试题(一)

2024年黑龙江省哈尔滨市中考模拟检测数学试题(一)一、单选题1.-5的相反数是( ) A .15-B .15C .5D .-52.下列运算正确的是( ) A .2232a a -=B .23a a a +=C .()3328a a -=-D .623a a a ÷=3.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.五个大小相同的正方体搭成的几何体如图所示,其主视图是( )A .B .C .D .5.如图,AB 是O e 的直径,C 、D 是O e 上两点,CD AB ⊥,若70DAB ∠=︒,则BOC ∠=( )A .70︒B .130︒C .140︒D .160︒6.分式方程12x x 3=+的解是【 】 A .x=﹣2 B .x=1 C .x=2 D .x=37.如图,在ABC V 中,70CAB ∠=︒,将ABC V 绕点A 旋转到AB C ''△的位置,点B 和点B '是对应顶点,点C 和点C '是对应顶点,若CC AB '∥,则BAB ∠'的度数为( )A .30︒B .35︒C .40︒D .50︒8.一个不透明的袋子中装有5个小球,其中3个红球,2个白球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率是( ) A .16B .15C .25D .359.如图,已知AB CD EF ∥∥,:3:5AD AF =,12BE =,那么CE 的长等于( )A .365B .245C .152 D .9210.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是【 】A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h二、填空题11.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米,数据2 500 000用科学记数法表示为.12.如图,在小孔成像问题中,小孔 O 到物体AB 的距离是60 cm ,小孔O 到像CD 的距离是30 cm ,若物体AB 的长为16 cm ,则像 CD 的长是 cm.13. 14.把多项式22ma mb -分解因式的结果是. 15.函数294y x =-的顶点坐标是. 16.不等式组2841+2x x x ⎧⎨-⎩<>的解集是.17.如图,随机闭合开关123S S S ,,中的两个,能够让灯泡发亮的概率是.18.正方形ABCD 的边长为8,E 为BC 边上一点,BE =6,M 为AE 上一点,射线BM 交正方形一边于点F ,且BF =AE ,则BM 的长为.19.半径为4 cm ,圆心角为60°的扇形的面积为cm 2.20.如图,在ABC V 中,D 为ABC V 内的一点,且=90BDC ∠︒,且A B D C D E ∠=∠,若点E 为AC 的中点,3,8DE AB ==,则BC 的长.三、解答题21.先化简,再求代数式()211x x x x -⎛⎫-÷- ⎪⎝⎭的值,其中2cos451x ︒=+22.如图,在由边长为1个单位长度的小正方形组成的网格中,点,,,A B C D 均为格点(网格线的交点).(1)画出线段AB 关于直线CD 对称的线段11A B ;(2)将线段AB 向左平移2个单位长度,再向上平移1个单位长度,得到线段22A B ,画出线段22A B ;(3)描出线段AB 上的点M 及直线CD 上的点N ,使得直线MN 垂直平分AB .23.近年,“青少年视力健康”受到社会的广泛关注.某校综合实践小组为了解该校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力调查.根据调查结果和视力有关标准,绘制了两幅不完整的统计图.请根据图中信息解答下列问题:(1)所抽取的学生人数为__________;(2)补全条形统计图,并求出扇形统计图中“轻度近视”对应的扇形的圆心角的度数; (3)该校共有学生3000人,请估计该校学生中近视程度为“轻度近视”的人数.24.为了加强视力保护意识,欢欢想在书房里挂一张测试距离为5m 的视力表,但两面墙的距离只有3m .在一次课题学习课上,欢欢向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙两位同学设计方案新颖,构思巧妙. 图例(1)甲生的方案中如果大视力表中“E ”的高是3.5cm ,那么小视力表中相应“E ”的高是多少? (2)乙生的方案中如果视力表的全长为0.8m ,请计算出镜长至少为多少米.25.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.”某校为提高学生的阅读品味,现决定购买获得矛盾文学奖的甲、乙两种书共100本,已知购买2本甲种书和1本乙种书共需100元,购买3本甲种书和2本乙种书共需165元. (1)求甲,乙两种书的单价分别为多少元:(2)若学校决定购买以上两种书的总费用不超过3200元,那么该校最多可以购买甲种书多少本?26.已知四边形ABCD 内接于O e ,AB 是O e 的直径»»CDBC ,连接OC .(1)如图1,求证AD OC ∥;(2)如图2,连接BD ,过点C 作CH AB ⊥,垂足为H ,CH 交BD 于点E ,求证:CE BE =; (3)如图3,在(2)的条件下,连接AC ,过O 作OF BC ∥,交AC 于点F ,连接DF 并延长交O e 于点G ,若45ADG ∠=︒,FG EH 的长.27.如图,在平面直角坐标系中,点O 为坐标原点,抛物线235y ax ax =--与x 轴交于点A ,点B ,与y 轴交于点C ,点A 坐标为()2,0-(1)求抛物线解析式;(2)点P 为抛物线上一点,连接PA 交y 轴于点D ,设P 的横坐标为,t CD 的长为d ,求d 关于t 的函数解析式(不要求写出自变量t 的取值范围);(3)当7d =时,过点A 作AG PA ⊥交抛物线于点G ,连接PG ,点E F 、分别是PAG △的边AP GP 、上的动点,且PE GF =,连接AF GE 、,设AF GE m +=,求m 的最小值,并直接写出当m 有最小值时EGP ∠的正切值.。

2024年北京市门头沟区九年级中考一模数学试题(原卷版)

2024年北京市门头沟区九年级中考一模数学试题(原卷版)

门头沟区2024年初三年级综合练习(一)数学考生须知:1.本试卷共10页,共三道大题,28个小题.满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校和姓名,并将条形码粘贴在答题卡相应位置处.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其它试题用黑色字迹签字笔作答.5.考试结束,将试卷、答题卡和草稿纸一并交回.一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 下列几何体中,俯视图是三角形的是( )A. B. C. D.2. 近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为( )A. B. C. D. 3. 下图是手机的一些手势密码图形,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.4. 一个正n 边形的每一个外角都是60°,则这个正n 边形是( )A 正四边形 B. 正五边形 C. 正六边形 D. 正七边形5. 数轴上的两点所表示的数分别为a ,b ,且满足,下列结论正确的是( )A. B. C. D. 6. 如图,,平分交于点,,则().72.110⨯82.110⨯92.110⨯102.110⨯·0,0a b a b >+<0,0a b >>0,0a b <<0,0a b ><0,0a b <>AB CD AD BAC ∠CD D 130∠=︒CAB ∠=A. B. C. D. 7. 同时掷两枚质地均匀的骰子,朝上的一面点数之和为整数的平方的概率为( )A. B. C. D. 8. 如图,在等边三角形中,有一点P ,连接、、,将绕点B 逆时针旋转得到,连接、,有如下结论:①;②是等边三角形;③如果,那么.以上结论正确的是( )A. ①②B. ①③C. ②③D. ①②③二、填空题(本题共16分,每小题2分)9.的取值范围是__________.10 因式分解:______.11. 如图所示,为了验证某个机械零件的截面是个半圆,某同学用三角板放在了如下位置,通过实际操作可以得出结论,该机械零件的截面是半圆,其中蕴含的数学道理是_______.12. 在中,,,,点P 在线段上(不与B 、C 两点重合),如果的长度是个无理数,则的长度可以是______.(写出一个即可).30︒45︒60︒90︒16736142936ABC PA PB PC BP 60︒BD PD AD BPC BDA ≌ BDP △150BPC ∠=︒²²²PA PB PC =+x 22mx mx m -+=ABC 90C ∠=︒3AB =2AC =BC AP AP13. 已知一元二次方程,有两个根,两根之和为正数,两根之积是负数,写出一组符合条件的a、b的值_________.14. “洞门初开,佳景自来”,园林建筑中的门洞设计有很多数学中的图形元素,如图中的门洞造型,由四个相同的半圆构成,且半圆的直径围成了正方形,如果半圆的直径为米,则该门洞的通过面积为_______平方米.15. 下面是某小区随机抽取的50户家庭的某月用电量情况统计表:月用电量x(千瓦时/户/月)户数(户)61511144已如月用电量第三档的标准为大于240小于等于400,如果该小区有500户家庭,估计用电量在第三档的家庭有______户.16. 5月20日是中国学生营养日,青少年合理膳食是社会公共卫生关注的问题之一.某食堂为了均衡学生的营养,特设置如下菜单,每种菜品所含的热量,脂肪和蛋白质如下:编号菜名类别热量/千焦脂肪/g蛋白质/g1宫保鸡丁荤菜1033187 2炸鸡排荤菜12541920 3糖醋鱼块荤菜211218144土豆炖牛肉荤菜109523165香菇油菜素菜911117 20x ax b++=1240x≤240300x<≤300350x<≤350400x<≤400x>6家常豆腐素菜102016137清炒冬瓜素菜564718韭菜炒豆芽素菜491239米饭主食3601810紫菜鸡蛋汤汤10058学校规定每份午餐由1份荤菜,2份素菜,1份汤和1碗米饭搭配.小明想要搭配一份营养午餐,那么他摄入的脂肪最低量是____________g .(12岁岁的青少年男生午餐营养标准:摄入热量为2450千焦,摄入蛋白质为65g ,蛋白质越接近标准越营养)三、解答题(本题共68分,第17~21题每小题5分,第22~24题每小题6分,第25题5分,第26题6分,第27~28题每小题7分)解答应写出文字说明、证明过程或演算步骤.17. .18. .19. 已知,求代数式的值.20. 如图所示,在长为11、宽为10矩形内部,沿平行于矩形各边的方向割出三个完全相同的小矩形,求每个小矩形的面积.21. 如图,在四边形中,,,,点E 为中点,射线交的延长线于点F ,连接.的14-011(2021)22sin 45()3π---+︒-()2131242x x x x ⎧+>-⎪⎨-<+⎪⎩23210x x +-=22(1)(2)(2)3x x x x +-+-+ABCD AD BC ∥90A ∠=︒BD BC =CD BE AD CF(1)求证:四边形是菱形;(2)若,,求的长.22. 在平面直角坐标系中,一次函数的图象由的图象向上平移2个单位得到,反比例函数 的图象过点.(1)求一次函数表达式及m 的值;(2)过点平行于x 轴的直线,分别与反比例函数一次函数的图象相交于点M 、N ,当时,画出示意图并直接写出n 的值.23. 某市统计局为研究我国省会及以上城市发展水平与人均之间关系,收集了年个城市的人均数据(单位:万元)以及城市排名,进行了相关的数据分析,下面给出了部分信息..城市的人均的频数分布直方图(数据分成组:,,,,):频数(城市个数)的BCFD 1AD =2CF =BF xOy ()0y kx b k =+≠1y x =()20m y m x=≠()14A ,()0P n ,2m y x =y kx b =+PM MN =GDP 202331GDP GDP a GDP 558x <≤811x <≤1114x <≤1417x <≤1720x <≤.城市的人均(万元)的数值在这一组的是:;.以下是个城市年的人均(万元)和城市排名情况散点图:根据以上信息,回答下列问题(1)某城市的人均为万元,该城市排名全国第_____;(2)在个城市年的人均和城市排名情况散点图中,请用“”画出城市排名的中位数所表示的点;(3)观察散点图,请你写出一条正确结论.24. 如图,在中,,的平分线交于点,过点作交于点.(1)求证:直线是以点为圆心,为半径的的切线;(2)如果:,,求的半径.25. 如图是某跳台滑雪场的横截面示意图,一名运动员经过助滑、起跳从地面上点O 的正上方4米处的A 点滑出,滑出后的路径形状可以看作是抛物线的一部分,通过测量运动员第一次滑下时,在距所在直线水平距离为d 米的地点,运动员距离地面高度为h 米.获得如下数据:水平距离d /米02468垂直高度h /米488的b GDP 1114x <≤12.313.213.613.8,,,c 312023GD GDP GDP 13.8GDP 312023GDP GDP GDP ABC 90C ∠=︒CAB ∠CB D D OD CB ⊥AB O CD O OA O 3sin 5CAB ∠=3BC =O OA 132172请解决以下问题:(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)结合表中所给数据或所画图象,直接写出运动员滑行过程中距离地面的最大高度为_____米;(3)求h 关 于d 的函数表达式;(4)运动员第二次滑下时路径形状可表示为:,当第一次和第二次距离所在直线的水平距离分别为、,且时能成功完成空中动作,则该运动员_________(填写“能”或“不能”)完成空中动作.26. 在平面直角坐标系中,点,在抛物线上,设抛物线的对称轴为直线.(1)如果抛物线经过点,求的值;2C 215463h d d =-++OA 1d 2d 1223d d ≤≤-xoy ()1,A x m ()2,B x n ()240y ax bx a =++>x h =()2,4h(2)如果对于,,都有,求取值范围;(3)如果对于,或,存在,直接写出的取值范围.27. 如图,,,点在射线上,且,点在上且,连接,取的中点,连接并延长至,使,连接.(1)如图1,当点在线段上时.①用等式表示与的数量关系;②连接,,直接写出,的数量关系和位置关系;(2)如图2,当点在线段的延长线上时,依题意补全图形2,猜想②中的结论是否还成立,并证明.28. 在平面直角坐标系中,的半径为2,点P 、Q 是平面内的点,如果点P 关于点Q 的中心对称点在上,我们称圆上的点为点P 关于点Q 的“等距点”.(1)已知如图1点.①如图1,在点 中,上存在点P 关于点Q 的“等距点”的是________;②如图2,点 ,上存在点P 关于点Q 的“等距点”,则m 的取值范围是________;(2)如图3,已知点,点P 在的图象上,若上存在点P 关于点Q 的“等距点”,14x h =-23x h =m n >h 142h x h -≤≤+21x ≤212x ≥m n >h AB BC =90ABC ∠=︒P AB 90CEP ∠=︒F EP EF EC =AF AF G EG H GH GE =AH P AB AH CE BH BE BH BE P AB xOy O O 40(,)P ()()()12330,2,1,1,1Q Q Q -,O (),Q m n O ()1,1Q y x b =-+O求b的取值范围.。

浙江省丽水市青田县第二中学鹤城校区2024年九年级中考模拟(一)数学模拟试题

浙江省丽水市青田县第二中学鹤城校区2024年九年级中考模拟(一)数学模拟试题

浙江省丽水市青田县第二中学鹤城校区2024年九年级中考模拟(一)数学模拟试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列计算结果为5的是( )A .(5)-+B .(5)+-C .(5)--D .|5|-- 2.中国的领水面积约为370000km 2,将数370000用科学记数法表示为( ) A .37×104 B .3.7×104 C .0.37×106 D .3.7×105 3.若a<0,0b >,则b 、b a +、b a -、ab 中最大的一个数是( )A .bB .b a +C .b a -D .ab 4.下列运算中,正确的是( )A .235a a a ⋅=B .()328=a aC .()2236a a -=D .933a a a ÷= 5.如图,点O 是正五边形ABCDE 的中心,OH CD ⊥于点H .则( )A .•sin36OH OC =︒B .•sin35OH OC =︒ C .•cos36OH OC =︒D .•cos35OH OC =︒6.−次生活常识竞赛共有20题,答对一题得5分,不答得0分,答错一题扣2分.小滨有1题没答,竞赛成绩不低于80分,设小聪答错了x 题,则( )A .95780x ->B .()519280x x --≥C .100780x ->D .()520280x x --≥7.如图,ABC V 的内切圆O e 分别与,,AB BC AC 相切于点,,D E F ,且3,2,4AD BE CF ===,则ABC V 的周长为( )A .18B .17C .16D .158.如图,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .B .C .5D .69.有一道题目:“在ABC V 中,AB AC =,40A ∠=︒,分别以B 、C 为圆心,以BC 长为半径的两条弧相交于D 点,求ABD ∠的度数”.嘉嘉的求解结果是10ABD ∠=︒.淇淇说:“嘉嘉考虑的不周全,ABD ∠还应有另一个不同的值.”下列判断正确的是( ) A .淇淇说得对,且ABD ∠的另一个值是130︒ B .淇淇说的不对,ABD ∠就得10° C .嘉嘉求的结果不对,ABD ∠应得20︒ D .两人都不对,ABD ∠应有3个不同值 10.已知二次函数22y x cx c =++的图像经过点(),A a c ,(),B b c ,且满足02a b <+<.当11x -≤≤时,该函数的最大值m 和最小值n 之间满足的关系式是( )A .34n m =--B .34m n =--C .2n m m =-D .2m n n =+二、填空题11;()22-=.12.分解因式:24m -=.13.一个不透明的布袋里装有8个只有颜色不同的小球,其中3个白球,1个红球,4个黄球.从布袋里任意摸出一个球是黄球的概率为 .14.用半径为10cm ,圆心角为120o 的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm .15.用等分圆周的方法,在半径为1的圆中画出如图所示图形,则图中阴影部分的面积为.16.如图将菱形ABCD 的沿DF 翻折,使点C 落在AB 边上,连结DE ,EF ,如果BE BF =,设EBF △的面积为1S ,DFC △的面积为2S ,则C ∠=,12S S =.三、解答题17.以下是圆圆同学进行分式化简的过程:()2211a b a b a b a b a b a b b a b a b a ab b a ab ab ab a b ab+++++++⎛⎫÷-=⨯-=⋅-⋅=-= ⎪⎝⎭. 圆圆的解答过程是否有错误?若存在错误,请写出正确的解答过程.18.如图,在ABC V 中,AB AC =,以,CB CD 为边作DCBE Y ,DE 交AB 与点F ,(1)若50A ∠=︒,求E ∠的度数.(2)若36AD CD BC ==,,求EF .19.为建设美好公园社区,增强民众生活幸福感,如图1,某社区服务中心在文化活动室墙外安装遮阳篷,便于社区居民休憩.在如图2的侧面示意图中,遮阳篷靠墙端离地高记为BC ,遮阳篷AB 长为5米,与水平面的夹角为16°.(1)求点A 到墙面BC 的距离;(2)当太阳光线AD 与地面CE 的夹角为45︒时,量得影长CD 为1.8米,求遮阳篷靠墙端离地高BC 的长.(结果精确到0.1米;参考数据:sin160.28︒≈,cos160.96︒≈,tan160.29︒≈)20.某校在11月9日消防日当天,组织七、八年级学生开展了一次消防知识竞赛,成绩分别为A 、B 、C 、D 四个等级,其中相应等级的得分依次记为10分、9分、8分、7分.学校分别从七、八年级各抽取25名学生的竞赛成绩整理并绘制成如下统计图表,请根据提供的信息解答下列问题:(1)根据以上信息可以求出:=a______,b =______,并把七年级竞赛成绩统计图补充完整;(2)依据数据分析表,你认为七年级和八年级哪个年级的成绩更好,并说明理由;(3)该校七、八年级共有1200人参加本次知识竞赛,且规定9分及以上的成绩为优秀,请估计该校七、八年级参加本次知识竞赛的学生中成绩为优秀的学生共有多少人? 21.设函数1k y x=(0k >,k 是常数),函数227y x =+-的图象交于点()11P a b ,,点()22Q a b ,.(1)当12a =时,求k 的值.(2)若122a a =,求12b b 的值.(3)若23k <<时,总有12y y <,求k 的取值范围.22.如图,已知正方形ABCD ,4AB =,点M 在边CD 上,射线AM 交BD 于点E ,交射线BC 于点F ,过点C 作CP CE ⊥,交AF 于点P .(1)求证:ADE CDE ≌△△.(2)判断V CPF 的形状,并说明理由.(3)作DM 的中点N ,连接PN ,若3PN =,求CF 的长.23.二次函数21y ax bx =+-(a ,b 为常数,0a ≠)的图像经过点()1,2A .(1)求该二次函数图像的对称轴(结果用含a 的代数式表示)(2)若该函数图像经过点()3,2B ;①求函数的表达式,并求该函数的最值.②设()()1122,,M x y N x y ,是该二次函数图像上两点,其中12x x ,是实数.若121x x -=,求证:12112y y +≤ 24.已知:如图1,AB 是半径为r 的O e 的弦,点C 是O e 的半径OB 的延长线上一点,将ABC V 翻折得到ABC 'V ,AC '交半径OB 于点D .(1)求证:BC OA '∥.(2)若AC 与O e 相切.①如图2,点C '落在O e 上,求sin C 的值.②如图3,点C '落在O e 外,判断OD OC ⋅是否为定值.若是,求出该定值;若不是,请说明理由.。

九年级中考数学模拟试卷(01)

九年级中考数学模拟试卷(01)一、选择题(本大题共12小题,每小题3分,共36分)1.﹣2的相反数等于()A.﹣2 B. 2 C.D.2.下列实数中,是有理数的为()A.B.C.πD.03.如图,直线AB、CD相交于点O,OE平分∠AOD,若∠COE=140°,则∠BOC=()A.50°B.60°C.70°D.80°4.使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠35.下列图形:是轴对称图形且有两条对称轴的是()A.①②B.②③C.②④D.③④6.化简(a﹣)÷的结果是()A.a﹣b B.a+b C.D.7.广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处,到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是()A.5 B.5.2 C.6 D.6.48.若(ax+3y)2=4x2﹣12xy+by2,则a,b的值分别为()A. 2,9 B.2,﹣9 C.﹣2,9 D.﹣4,99.A .B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .﹣=30B .﹣=C .﹣=D . +=3010.如图,AD 是△ABC 的中线,CE 是△ACD 的中线,DF 是△CDE 的中线,若S △DEF =2,则S △ABC 等于( )A . 16B . 14C . 12D . 1011.如图,在Rt △ABC 中,∠ABC=90°,BD ⊥AD 于点D ,其中,则=( )A .B .C .D .12.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-,对称轴为直线x =1,下列结论:①0abc <;②b c <;③30a c +=;④当0y >时,13x -<<其中正确的结论有( )A .1个B .2个C .3个D .4个的关系.解题的关键在于2y ax bx c ++=的图像的开口方向、对称轴、与y 轴的交点的决定因素.二、填空题(本大题共6小题,每小题3分,共18分)13.已知x+=5,那么x 2+= . 14.若关于x 的方程x 2﹣2x+m =0有两个相等的实数根,则实数m 的值等于 .15.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的54快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为 米.16.作图:已知线段a 、b ,请用尺规作线段EF 使EF =a+b .请将下列作图步骤按正确的顺序排列出来(只填序号)_____.作法:①以M 为端点在射线MG 上用圆规截取MF =b ;②作射线EG ;③以E 为端点在射线EG 上用圆规截取EM =a ;④EF 即为所求的线段.17.已知点A (2,y 1)、B (m ,y 2)是反比例函数y=的图象上的两点,且y 1<y 2.写出满足条件的m的一个值,m 可以是 .18.在四边形ABCD 中,AD ∥BC ,∠ABC=90°,AB=BC ,E 为AB 边上一点,∠BCE=15°,且AE=AD .连接DE 交对角线AC 于H ,连接BH .下列结论正确的是 .(填序号)①AC ⊥DE ;② =;③CD=2DH ;④ =.三、解答题(本大题共8小题,共66分)19.(1)计算:031(2019)2sin 3012()2π---︒- (2)解方程:23220x x --=20.反比例函数y =k x的图象经过点A(2,3). (1)求这个函数的解析式;(2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.21.课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.22.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.23.元宵节将至,我校组织学生制作并选送50盏花灯,共包括传统花灯、创意花灯和现代花灯三大种.已知每盏传统花灯需要35元材料费,每盏创意花灯需要33元材料费,每盏现代花灯需要30元材料费.(1)如果我校选送20盏现代花灯,已知传统花灯数量不少于5盏且总材料费不得超过1605元,请问选送传统花灯、创意花灯的数量有哪几种方案?(2)当三种花灯材料总费用为1535元时,求选送传统花灯、创意花灯、现代花灯各几盏?24.保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)25.在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A.B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A.B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A.B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.26.在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,M为AB的中点,连接MD,ME.(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是;(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求的值.。

2024年河南省焦作市中考第一次模拟考试数学模拟试题(含解析)

2023-2024学年焦作市九年级第一次模拟测试试卷数学注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上答在试卷上的答案无效一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.下列各数中比大的数是( )A .B .C .D2.如图是焦作市博物馆的四件特色藏品,其中主视图与左视图相同的是( )A .汉“山阳”陶罐B .东汉五层彩绘陶仓楼C .东汉彩绘陶房D .西汉铜提梁卣3.记者1月19日从焦作海关了解到,2023年我市实现进出口总值亿元,进出口规模创历史新高数据“亿”用科学记数法表示为( )A .B .C .D .4.如图,直线相交于点平分,若,则的度数为( )12-0.6181-221.4221.492.21410⨯102.21410⨯922.1410⨯110.221410⨯,AB CD ,O OE BOD ∠113AOE ∠=︒BOC ∠A .B .C .D .5.化简的结果为( )A .B .C .D .6.如图,在中,,以为直径作,分别交于,,连接,若,则的度数为( )A .B .C .D .7.下图为某商家2023年1月至10月“人工智能机器人”的月销售量,下列说法错误的是( )A .这10个月的月销售量的众数为28B .这10个月中7月份的月销售量最高C .前5个月的月销售量的方差大于后5个月的月销售量的方差D .4月至7月的月销售量逐月增加8.二次函数的图象如图所示,则关于的一元二次方程的根的情况是( )46︒56︒67︒77︒2111m m m -⋅+1m m +11m m -+1m m -1m m+ABC AB AC =AC O ,AB BC D E ,DE CD 70B ∠=︒CDE ∠10︒20︒30︒40︒2y ax bx c =++x 20x ax b +-=A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根9.如图,已知矩形的顶点,若矩形绕点逆时针旋转,每次旋转,则第75次结束时,矩形对角线交点的坐标为( )A .B .C .D .10.如图1,点从等腰直角三角形的顶点出发,沿直线运动到三角形内部一点,再从该点沿直线运动到的中点.设点运动的路程为的面积为,图2是点运动时随变化的关系图象,则的长为( )A .1B .2CD .二、填空题(每小题3分,共15分)11.代数式可表示的实际意义是 .12.方程组的解为 .13.焦作市两部优秀作品人选河南省2023年度重点文艺创作项目名单,某校七、八、九年级分别从如图所示文艺项目中随机选择一部组织本年级学生欣赏,则这三个年级选择的文艺项目相同的概率为 .OABC ()()0,0,B 4,4O O 45︒D ()2,2(0,()-()2,2-P ABC A AC D P ,x PBC △y P y x BC 3n 25238x y x y +=⎧⎨+=⎩14.如图,在中,以为直径作交于点,过点作的切线交于点.则的长为 .15.如图,在矩形中,,点为的中点,取的中点,连接,当为直角三角形时,的值为 .三、解答题(本大题共8个小题,共75分)16.(1;(2)化简:.17.某学校为了解学生“消防安全知识”的掌握情况,从七、八年级各随机抽取名同学进行测试,并对成绩(百分制)进行整理,描述和分析,下面给出部分信息:a .七年级成绩的频数分布直方图如下:b .七年级成绩在这一组的是:80 80.5 82 82 82 82 83.5 84ABC 4120AB AC BAC ==∠=︒,AB O BC D D O AC E DE ABCD 1,AB BC a ==E CD AE F ,BE BF BEF △a 1132-+-()2(2)4x y x x y +-+508090x ≤<84 85 86 86.5 87 88 89 89c .七、八年级学生成绩的平均数、中位数如下:年级平均数中位数七年级85.3八年级87.285根据以上信息,回答下列问题:(1)在这次测试中,七年级测试成绩的中位数是______分,七年级成绩的众数不可能在_______组;(2)甲同学侧试成绩为分,在他所在的年级,他的成绩超过了一半以上被调查的同学,请判断甲同学是哪个年级的学生,并说明理由;(3)七年级共有名学生,若成绩在分以下(不含分)的同学需要参加消防安全知识培训,请你估计七年级有多少名同学需要参加消防安全知识培训.18.如图,是等边三角形,是边上一点,连接.(1)请用无刻度的直尺和圆规在的上方作等边(保留作图痕迹,不写作法);(2)连接,求证:.19.小晃同学借助反比例函数图像设计一个轴对称图形.如图,正方形的中心与平面直角坐标系的原点重合,边分别与坐标轴平行,反比例函数的图象经过正方形的顶点,以点为圆心,的长为半径作扇形交于点;以为对角线作正方形,再以点为圆心,的长为半径作扇形.m m 835008080ABC D AB CD CD CDE AE BD AE =ABCD k y x=()2,2A C CB ,BCD BDAC F CF CEFG C CE ECG(1)求反比例函数的解析式;(2)求的长;(3)直接写出图中阴影部分面积之和.20.南水北调第一楼位于山阳故城乐南,是一座具有汉代风格,可以望山、观水、展陈的文化地标.某小组利用无人机测量第一楼高度,如图是测量第一楼高度的示意图,无人机在距地面136.65米的P 处测得第一楼顶部A 的俯角为,测得第一楼底部B 的俯角为.求南水北调第一楼的高度(结果精确到).21.为庆祝中华人民共和国成立75周年,某平台店计划购进A ,B 两种纪念币,进价和售价如下表所示:品名A B 进价(元/枚)4560售价(元/枚)6690(1)第一次购进A 种纪念币80枚,B 种纪念币40枚,求全部售完后获利多少元?(2)第二次计划购进两种纪念币共150枚,且A 种纪念币的进货数量不超过B 种纪念币的进货数量的2倍,应如何设计进货方案才能获得最大利润,最大利润为多少?22.根据以下素材,探索完成任务设计小区大门灯笼的悬挂方案EG 11.3︒45︒AB 0.1m,sin11.30.196,cos11.30.980,tan11.30.200︒≈︒≈︒≈素材一图1是某小区的正门,图2是正门的示意图,小航查阅相关资料获得以下信息:①正门是由一个矩形和一个抛物线形拱组成的轴对称图形,②矩形的宽为,高为,抛物线形拱的高为.素材二为迎接龙年春节,拟在图1正门抛物线形拱上悬挂直径为的灯笼,如图3为了美观,要求悬挂灯笼的数量为双数,且平均分布,间隔在之间.问题解决任务1确定拋物线形拱形状在图2中建立合适的直角坐标系,求抛物线的函数表达式任务2探究悬挂数量给出符合所有悬挂条件的灯笼数量.任务3拟定设计方案根据你建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标23.在综合实践课上,老师设计下面问题,请你解答.10m 12m 2m 1m 0.8-1.5m(1)观察发现如图1,在平面直角坐标系中,过点作轴的对称点,再分别作点关于直线和轴的对称点,则点可以看作是点绕点顺时针旋转得到的,旋转角的度数为___________;点可以看作是点关于点___________的对称点.(2)探究迁移如图2,正方形中,为直线下方一点,作点关于直线的对称点,再分别作关于直线和直线的对称点和,连接,,请仅就图2的情况解决以下问题:①请判断的度数,并说明理由;②若,求两点间的距离.(3)拓展应用在(2)的条件下,若,请直接写出的长.()1,3A -y 1A 1A y x =x 23,A A 2A A O 3A A ABCD P AD P CD 1P 1P BD AD 2P 3P PD 2PD 2PDP ∠PD m =23,PP 30PD PDC =∠=︒12PP参考答案与解析1.D 【分析】本题考查实数比较大小,解题关键在于对二次根式进行正确的估算.【解答】A 、,不符合题意,选项错误;B 、,不符合题意,选项错误;C 、,不符合题意,选项错误;D,符合题意,选项正确.故选:D .2.A【分析】本题考查了三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.根据从正面看到的图形是主视图,从左边看到的图形是左视图,可得答案.【解答】解:根据主视图和左视图的定义,结合A 选项各个面的形状都一样,因此主视图与左视图相同.故选:A .3.B【分析】本题考查用科学记数法表示绝对值大于1的数.科学记数法的表示形式为的形式,其中为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值时,n 是正数;当原数的绝对值时,n 是负数.熟记相关结论即可.【解答】解:∵亿,故选:B4.A【分析】本题考查几何图形中角度的计算,与角平分线有关的计算,利用邻补角和角平分线的定义进行求解即可.【解答】解:平分,21-<0.6181<11-<1.4141≈>10n a ⨯110a n ≤<,1>1<221.41022140000000 2.21410==⨯113AOE ∠=︒ ,18011367BOE ∴∠=︒-︒=︒,OE BOD ∠67,BOE DOE ∴∠=∠=︒故选:A5.C【分析】本题主要考查了分式的乘除法,利用分式的乘法法则解答即可.【解答】解:原式.故选:C .6.B【分析】本题主要考查了圆周角定理,等腰三角形的性质,圆心角、弧、弦的关系等知识点,正确作出辅助线是解题的关键.【解答】解:连接,,,,,,,故选:B7.C【分析】本题考查了折线图,众数、方差等知识,解题的关键知道方差是描述波动程度的量,方差越大,波动越大.【解答】解:A .这10个月的月销售量的众数为28出现了两次,出现次数最多,故众数为28,选项说法正确,不符合题意;18026746BOC ∴∠=︒-⨯︒=︒1(1)(1)1m m m m +-=⋅+1m m-=OE AB AC = 70ACB B ∴∠=∠=︒OE OC = 70CEO ACE ∴∠=∠=︒180707040COE ∴∠=︒-︒-︒=︒1202CDE COE ∴∠=∠=︒B .这10个月中7月份的月销售量为40,为最高,选项说法正确,不符合题意;C .前5个月的月销售量的波动程度小于后5个月的波动程度,故方差小于后5个月的方差,选项说法错误,符合题意;D .4月至7月的折线图是上升的,故月销售量逐月增加,选项说法正确,不符合题意;故选:C .8.A【分析】本题考查抛物线与轴的交点、根据判别式判断一元二次方程根的情况以及二次函数图象与各项系数符号,由函数图象可知,根据可以得到关于的一元二次方程的根的情况.【解答】函数图象开口向上.对称轴在轴左侧故一元二次方程有两个不相等的实数根故选:A .9.C【分析】本题考查了矩形的性质,点的坐标特点,旋转的性质,根据求出,进而求出,每次旋转,8次一个循环,,第75次结束时,矩形的对角线交点D 与第3次的点D 的坐标相同,第3次点D 落在x 轴的负半轴上,由此可得结论.【解答】解:∵四边形是矩形,,∴∴∵每次旋转,8次一个循环,,∴点D 在x 轴的负半轴上,∴点D 的坐标为.x 0,0a b >>24b ac =- x 20x ax b +-= 0a ∴> y 02b a∴-<0a >0b ∴>()224140a b a b ∴=-⨯⨯-=+> 0x ax b +-=()B 4,4OB OD 45︒75893÷=L L ABCO ()B 4,4OB ==OD =45︒75893÷=L L ()-故选:C .10.B【分析】本题考查了动点问题的函数图象.由图象知,时,的面积为,当点在()上运动时,的面积不变,为,当点位于点时,此时为等腰直角三角形,据此,利用的面积,求解即可.【解答】解:由图象知,当点在点,即时,的面积为,当点运动到点,此时时,的面积为,而在运动到的过程中,的面积不变,为,如图,当点在()上运动时,的面积不变,为,∴当点位于点时,此时为等腰直角三角形,,∵,∴,∴,∴,∴,∴,∵的面积,即,∴,∴,故选:B .11.一支笔3元,支笔的钱数(答案不唯一)【分析】本题考查了代数式表示的实际意义,结合实际生活即可求解.【解答】解:可表示一支笔3元,支笔的钱数,0x =PBC 2y a =P DE DE BC ∥PBC y a =P E AED △EBC 12BC EF a ⨯=P A 0x =PBC 2y a =P D 2x a =PBC y a =x a =2x a =PBC y a =P DE DE BC ∥PBC y a =P E AED △AE ED x a ===DE BC ∥1AE AD EF CD==AF EF a ==AD ==2AC AD ==4BC a ==EBC 12BC EF a ⨯=142a a a ⨯⨯=12a =1422BC =⨯=n 3n n故答案为:一支笔3元,支笔的钱数(答案不唯一)12.【分析】本题考查了二元一次方程组的求解,掌握消元法是解题关键.【解答】解:由①得:③,将③代入②得:,解得:,将代入①得:∴原方程组的解为:,故答案为:13.【分析】本题主要考查了树状图法或列表法求解概率,先画出树状图得到所有等可能性的结果数,再找到这三个年级选择的文艺项目相同的结果数,最后依据概率计算公式求解即可.【解答】解:设用A 、B 表示两部文艺项目,画树状图如下:由树状图可知,一共有8种等可能性的结果数,其中这三个年级选择的文艺项目相同的结果数有2种,n 12x y =⎧⎨=⎩25238x y x y +=⎧⎨+=⎩①②52x y =-()25238y y -+=2y =2y =5221x =-⨯=12x y =⎧⎨=⎩12x y =⎧⎨=⎩14∴这三个年级选择的文艺项目相同的概率为,故答案为:.14【分析】本题考查了切线的性质,圆周角定理,解直角三角形,等腰三角形的性质等,作出辅助线,构造直角三角形,是求解的关键.连接,,根据等腰三角形可求出,可证 ,求出,为等边三角形,根据切线的性质,可证,再证,在直角三角形中,解直角三角形即可求解.【解答】解:如图,连接,∵,,∴,∵为直径,∴,在中,,,∴,∵∴是等边三角形,∴,∵是切线,∴,∴,∴,又∵,,∴,∴2184=14OD AD 30B ∠=︒AD BD ⊥2AD =OAD △30ADE ∠=︒DE AE ⊥ADE ,OD OA AB AC =120BAC ∠=︒30B C ∠=∠=︒AB AD BD ⊥Rt ABD 30B ∠=︒4AB =2AD =2OA OD AD ===OAD 60ADO ∠=︒DE OD DE ⊥90ODA ADE ∠+∠=︒30ADE ∠=︒AB AC =AD BD ⊥1260DAE BAC ∠=∠=︒90AED ∠=︒在中,,,∴,15.【分析】本题考查了矩形的性质,全等三角形的判定与性质,等边三角形的性质,掌握分类讨论是解题的关键.先证明,当时,;当时,为正三角形,运用勾股定理求解即可.【解答】解:,,,,,,分情况解答:①时,则,,;②时,,,为正三角形,,,则③,不存在,故答案为:Rt ADE 30ADE ∠=︒2AB =1AE =DE ==12() ≌ADE BCE SAS 90BEF ∠=︒1122BC CE CD ===90BFE ∠=︒BEF △AD BC = DE CE =D C ∠=∠(SAS)ADE BCE ∴△≌△AE BE ∴=AED BEC ∠=∠90BEF ∠=︒45AED BEC ∠=∠=︒1122BC CE CD ∴===12α∴=90BFE ∠=︒1122EF AE BE ∴==60BEF ∴∠=︒BEA ∴ 1BE AB ∴==12CE ∴=BC ==α∴90FBE ∠=︒12α=16.(1);(2)【分析】本题考查了实数的混合运算,整式的化简,完全平方公式,解题的关键是熟练掌握实数的运算法则,(1)根据实数的运算法则即可解答;(2)先去括号再合并即可,【解答】解:(1)原式;(2)原式17.(1),(2)七年级,见解析(3)210人【分析】本题考查频数分布直方图,中位数、众数及用样本估计总体,理解中位数、众数的定义,掌握中位数的计算方法是正确解答的关键.(1)根据中位数、众数的定义直接求解即可;(2)从七、八年级的中位数进行分析,即可得出甲同学是七年级的同学;(3)先求出从抽取的50名学生中参加消防安全知识竞赛得人数,再结合统计图给出的数据,即可得出答案.【解答】(1)解:∵从七年级随机抽取名同学进行测试,∴中位数是第,名学生的成绩的平均数,∵,,三组的数据为、、,∴第,名学生的成绩在这一组,由这一组的成绩可知:第,名学生的成绩为、,∴,∵这一组中,82出现4次,次数最多,∴七年级成绩的众数不能小于4,由七年级成绩的频数分布直方图可知:成绩在一组的人数为,232y 111232=-+23=2224444x xy y x xy=++--2y =825060x ≤<5025265060x ≤<6070x ≤<7080x ≤<251425268090x ≤<8090x ≤<252682828282822m +==8090x ≤<5060x ≤<24<∴七年级成绩的众数不可能在组.故答案为:,(2)甲同学是七年级的同学,理由如下:∵,八年级成绩的中位数为,,∴甲同学是七年级的同学.(3)∵七年级成绩在分以下的有(人),∴七年级需要参加消防安全知识培训的人数为(人),答:七年级名同学需要参加消防安全知识培训.18.(1)见解析(2)见解析【分析】本题主要考查作等边三角形,等边三角形的性质以及全等三角形的判定与性质:(1)分别以点C ,D 为圆心,为半径画弧,两弧在的上方相交于点E ,连接,则等边三角形即为所求作;(2)根据证明,可得【解答】(1)解:如图,即为所求作;(2)证明:是等边三角形,即,19.(1)(3)5060x ≤<825060x ≤<82m =85828385<<80251421++=2150021050⨯=210CD CD ,CE DE CDE SAS BCD ACE ≌BD AE=CDE ,ABC CDE △△,,60CA CB CE CD ACB ECD ∴==∠=∠=︒ACB ACD ECD ACD ∴∠-∠=∠-∠BCD ACE∠=∠即BCD ACE ∴ ≌BD AE∴=4y x=246π-【分析】(1)将代入,可求,进而可得反比例函数的解析式;(2)由题意知,,计算求解即可;(3)根据,计算求解即可.【解答】(1)解:将代入得,,解得,,∴反比例函数的解析式为;(2)解:由题意知,∴,∴;(3)解:由题意知,,∴图中阴影部分面积之和为.【点拨】本题考查了反比例函数解析式,反比例函数与几何综合,弧长,扇形面积等知识.熟练掌握反比例函数解析式,反比例函数与几何综合,弧长,扇形面积是解题的关键.20.南水北调第一楼的高度约为109.3米【分析】本题考查了解直角三角形的应用,过P 作交的延长线于点D ,则米,根据等腰直角三角形的性质可得,在中,利用锐角三角形函数求解即可.【解答】解:过P 作交的延长线于点D ,则米,在中,,∴,在中,,∴,.()2,2A k y x=4k =CE OC OA ==== EG ABCD CEFG BGD ECG S S S S S =-+-阴影正方形正方形扇形扇形()2,2A k y x =22k =4k =4y x=CE OC OA ==== EG == EG ABCD CEFG BGD ECGS S S S S =-+-阴影正方形正方形扇形扇形(2229044360π⋅=-+246π=-246π-AB PD BA ⊥BA 136.65BD PC ====136.65PD BD Rt PAD PD BA ⊥BA 136.65BD PC ==Rt PBD 45BPD ∠=︒==136.65PD BD Rt PAD 11.3APD ∠=︒tan11.3136.650.20027.33AD PD =⋅≈⨯=︒136.6527.33109.32109.3AB BD AD ∴=-=-=≈答:南水北调第一楼的高度约为109.3米.21.(1)2880元(2)按照A 种纪念币购进100枚,B 种纪念币购进50枚的进货方案,才能使利润最大,最大利润为3600元【分析】本题考查了一元一次不等式的应用、一次函数的应用,解题的关键是:(1)根据题意分别计算两种纪念币的利润,即可求解;(2)设购进x 枚A 种纪念币,则购进枚B 种纪念币,获利y 元,根据题意分别列出关于y 与x 的一次函数,关于x 的一元一次不等式,从而求得,再根据一次函数的性质求解即可.【解答】(1)解:由题意得,(元),答:全部售完后获利2880元;(2)解:设购进x 枚A 种纪念币,则购进枚B 种纪念币,获利y 元.由题意得:,∵A 种纪念币的进货数量不超过B 种纪念币的进货数量的2倍,,∴,∵,,∴y 随x 的增大而减小,当时,(元),∴B 种纪念币的数量为(枚),答:按照A 种纪念币购进100枚,B 种纪念币购进50枚的进货方案,才能使利润最大,最大利润为3600元.AB (150)x -100x ≤()()6645809060402880-⨯+-⨯=(150)x -()()()6645906015094500y x x x =-+--=-+()2150x x ∴≤-100x ≤=94500y x -+90k =-<100x =910045003600y =-⨯+=最小15010050-=22.任务1:见解析,;任务2:4个;任务3:最左边一盏灯笼悬挂点的横坐标为【分析】本题考查了二次函数的应用,一元一次不等式组的应用;任务1:以中点为原点,以所在直线为轴建立平面直角坐标系,可得抛物线的顶点,且过点,然后利用待定系数法求解即可;任务2:设悬挂个灯笼,先根据“间隔在之间”列不等式求解,再根据“悬挂灯笼的数量为双数”得出答案;任务3:先求出间隔的距离,然后计算即可.【解答】解:任务1:以中点为原点,以所在直线为轴,建立如图所示的平面直角坐标系,∵矩形的宽为,高为,抛物线形拱的高为,∴抛物线的顶点,且过点,设抛物线的解析式为:,把点代入得:,解得:,所以抛物线的解析式为:;任务2:设悬挂个灯笼,依题意得:,解得:,因为灯笼的个数为双数,所以符合悬挂条件的灯笼数量为4个;221425y x =-+3310-BC O BC x ()0,14P ()5,12D x 0.8-1.5m BC O BC x 10m 12m 2m ()0,14P ()5,12D 214y ax =+()5,12D 122514a =+225a =-221425y x =-+x ()()0.8110 1.51x x x +≤-≤+213559x ≤≤任务3:由题意得间隔为,所以最左边一盏灯笼悬挂点的横坐标为.23.(1)(2)①90°,见解析;【分析】本题主要考查勾股定理以及逆定理,一次函数图象,轴对称的性质,中心对称的性质(1)根据轴对称和中心对称的性质以及勾股定理以及逆定理求解即可;(2)①连接,可得,进而即可求解;②先推出,再根据勾股定理求解即可;(3)分当点P 在正方形外部时,当点P 在正方形内部时,结合勾股定理求解即可【解答】(1)解:连接,∵,∴,∴,∴点可以看作是点绕点顺时针旋转得到的,旋转角的度数为,∵共线,∴点可以看作是点关于点的对称点,故答案为:;()61045m 5-÷=613355210-++=-90,O︒1112323PD P D P D P P 、、、112PDC PDC PDB P DB ∠=∠∠=∠,3290P DP ∠=︒322OA OA OA AA ,,,22OA OA AA =====22222OA OA AA =+290AOA ∠=︒2A A O 90︒3O A A O ===3A O A 、、3A A O 90O ︒,(2)①解:连接由对称性可得:,∴;②由(1)可知:共线,∴∵,∴;(3)解:①当点P 在正方形外部时,连接,过点作,则,,∴,∴∴;②当点P 在正方形内部时,连接,过点作,则,,12323PD P D P D P P 、、、112PDC PDCPDB P DB ∠=∠∠=∠,()2112224590PDP PDC PDB BDC ∠=∠+∠=∠=⨯︒=︒3P D P 、、321809090P DP ∠=︒-︒=︒32DP DP DP m ===23P P ==12PP 1P12PH DP ⊥()122453030PDP ∠=⨯︒-︒=︒12DP DP DP ===1HP HD ==2HP =121PP ==-12PP 1P12PH DP ⊥()1223045150PDP ∠=⨯︒+︒=︒12DP DP DP ==∴,∴,∴∴,综上所述:130PDH ∠=︒1HP HD ==2HP =121PP ==121PP =1。

2023年初三数学中考模拟试题

2023年九年级数学中考模拟试题一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列实数中最小的数是()A.2B.0C.D.﹣22.(3分)世界卫生组织2022年4月9日公布的最新数据显示,全球累计新冠确诊病例达5.17亿,数据“5.17亿”可用科学记数法表示为()A.5.17×109B.5.17×108C.0.517×1010D.0.517×109 3.(3分)在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.6个B.15个C.12个D.13个4.(3分)已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1B.5x+1C.﹣13x﹣1D.13x+15.(3分)同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是()A.B.C.D.6.(3分)已知9m=3,27n=4,则32m+3n=()A.1B.6C.7D.127.(3分)方程组的解是()A.B.C.D.8.(3分)下列图形是正方体展开图的个数为()A.1个B.2个C.3个D.4个9.(3分)如图,某校劳动实践课程试验园地是长为20m,宽为18m的矩形,为方便活动,需要在园地中间开辟一横两纵共三条等宽的小道.如果园地余下的面积为306m2,则小道的宽为多少?设小道的宽为xm,根据题意,可列方程为()A.(20﹣2x)(18﹣x)=306B.(20﹣x)(18﹣2x)=306C.20×18﹣2×18x﹣20x+x2=306D.20×18﹣2×20x﹣18x+x2=30610.(3分)如图,已知正方形ABCD的边长为4,E是AB边延长线上一点,BE=2,F是AB边上一点,将△CEF沿CF翻折,使点E的对应点G落在AD边上,连接EG交折痕CF于点H,则FH的长是()A.B.C.1D.二.填空题(共5小题,满分15分,每小题3分)11.(3分)已知一个多边形每一个外角都是60°,则它是边形.12.(3分)在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值是.13.(3分)已知x=1是关于的一元二次方程x2+mx+3=0的一个根,则m=.14.(3分)一大门的栏杆如图所示,杆BA垂直于地面AE于A,杆CD平行于地面AE,已知AB=1米,BC=2.4米,∠BCD=150°,则此时杆CD到地面AE的距离是米.15.(3分)如图,弧AB所对圆心角∠AOB=90°,半径为4,点C是OB中点,点D弧AB上一点,CD绕点C逆时针旋转90°得到CE,则AE的最小值是.三.解答题(共7小题,满分55分)16.计算:.17.解方程:x2﹣4x﹣12=0.18.为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图.(1)填空:样本容量为,a=;(2)把频数分布直方图补充完整;(3)老师准备从E类学生中随机抽取2人担任广播体操领队.已知E类学生中有2名男生,1名女生,求恰好选中1名男生和1名女生的概率.19.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O的直线DE∥BC,分别交AB、AC于点D、E.(1)求证:DE=BD+CE.(2)若AD=3,BD=CE=2,求BC的值.20.如图,在平面直角坐标系中,直线y=ax+b与y轴正半轴交于A点,与反比例函数交于点B(﹣1,4)和点C,且AC=4AB,动点D在第四象限内的该反比例函数上,且点D在点C左侧,连接BD、CD.(1)求点C的坐标;(2)若S△BCD=5,求点D的坐标.21.冰墩墩(BingDwenDwen),是2022年北京冬季奥运会的吉祥物.将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员.冬奥会来临之际,冰墩墩玩偶非常畅销.小李在某网店选中A,B两款冰墩墩玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如表:A款玩偶B款玩偶进货价(元/个)2015销售价(元/个)2518(1)第一次小李以1650元购进了A,B两款玩偶共100个,求两款玩偶各购进多少个?(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小李计划购进两款玩偶共100个,应如何设计进货方案才能获得最大利润,最大利润是多少?22.如图,在矩形ABCD中,点E是BC边上一点,且AD=DE,以AB为半径作⊙A,交AD边于点F,连接EF.(1)求证:DE是⊙A的切线;(2)若AB=2,BE=1,求AD的长;(3)在(2)的条件下,求tan∠FED.23.如图,△ABC中,CD⊥AB于点D,CD=BD,点E在CD上,DE=DA,连接BE.(1)求证:BE=CA;(2)延长BE交AC于点F,连接DF,求∠CFD的度数;(3)过点C作CM⊥CA,CM=CA,连接BM交CD于点N,若BD=12,AD=4,直接写出△NBC的面积.24.已知,如图,抛物线y=ax2+bx﹣8与x轴交于A、B两点,与y轴交于点C,OA=6,OB=,点P为x轴下方的抛物线上一点.(1)求抛物线的函数表达式;(2)连接AP、CP,求四边形AOCP面积的最大值;(3)是否存在这样的点P,使得点P到AB和AC两边的距离相等,若存在,请求出点P 的坐标;若不存在,请说明理由.。

2024年江苏省常州市中考模拟数学试题(一)

2024年江苏省常州市中考模拟数学试题(一)一、单选题1.数a 的相反数是12024,则数a 为( ) A .12024- B .2024- C .12024 D .20242.下列数学符号中,是中心对称图形但不是轴对称图形的是( )A .QB .∠C .≠D .≌3.下列计算,正确的是( )A .437x x x +=B .236x x x ⋅=C .65x x x ÷=D .236(2)6x x = 4.图1是一个地铁站入口的双翼闸机,如图2,它的双翼展开时,双翼边缘的端点A 与B 之间的距离为12cm ,双翼的边缘64cm AC BD ==,且与闸机侧立面夹角30PCA BDQ ∠=∠=︒,当双翼收起时,可以通过闸机的物体的最大宽度为( )A .76cmB .()12cmC .()12cmD .64cm5.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是( )A .12B .34C .112D .5126.下面四组a ,b 的值,能说明命题“若22a b >,则a b >”是假命题的是 ( ) A .2a =,1b = B .2a =-,1b = C .2a =,1b =- D .3a =,2b =- 7.如图,△ABC 内接于⊙O ,若∠OAB =35°,则∠C 的度数是( )A .35°B .45°C .65°D .55°8.如图1,矩形ABCD 绕点A 逆时针旋转180︒,在此过程中A 、B 、C 、D 对应点依次为A 、E 、F 、G ,连接DE ,设旋转角为x ,2y DE =,y 与x 的函数图象如图2,当30x =︒时,y 的值为( )A B .C .3 D .4二、填空题9.我国钓鱼诸岛面积约6344000平方米,数据6344000用科学记数法表示为. 10.因式分解:34a a -=.11.一元二次方程22x x =的根是.12.已知扇形的圆心角为80︒,半径为3cm ,则这个扇形的面积是2cm .13.如图,AB CD ∥,EF DB ⊥,垂足为点E ,150∠=︒,则2∠的度数是 .14.约在两千五百年前,如图(1),墨子和他的学生做了世界上第1个小孔成倒像的实验,并在《墨经》中有这样的精彩记录:“景到,在午有端,与景长,说在端”.如图(2)所示的小孔成像实验中,若物距为10cm ,像距为15cm ,蜡烛火焰倒立的像的高度是6cm ,则蜡烛火焰的高度是cm .15.如图,矩形ABCD 中,3AB =,5BC =,点P 在边BC 上,且1CP =,点E ,F 分别是AP 、AD 的中点,则AE EF +=.16.在九年级《数学实验手册》中,我们探究了最小覆盖圆与图形之间的关系.现有如图所示的等边三角形ABC V ,边长为3,若分别以顶点A B C 、、为圆心作三个等圆,这三个等圆能完全覆盖ABC V ,则所作等圆的最小半径是.17.已知点(),P m n 在双曲线1y x =上,则223m mn n -+的最小值为.18.如图,在四边形ABCD 中,对角线AC 平分BAD ∠,2BCA DCA ∠=∠,点E 在AC 上,EDC ABC ∠=∠.若5BC =,CD =2AD AE =,则AC 的长为.三、解答题19.计算: (1)()2013tan 45π20242-⎛⎫--︒-- ⎪⎝⎭(2)()()()2111x x x +--+20.解不等式组:562(3)311143x x x x -≤+⎧⎪+-⎨>-⎪⎩ 21.某小组去年3月至10月对当地西红柿与黄瓜市场价格进行调研,经过整理、描述和分析得到了部分信息.a .西红柿与黄瓜市场价格的折线图:b .西红柿与黄瓜价格的平均数和中位数:根据以上信息,回答下列问题:(1) m =,n =;(2)在西红柿与黄瓜中,的价格相对更稳定(填西红柿或黄瓜);(3)如果这两种蔬菜的价格随产量的增大而降低,结合题中信息推测今年这两种蔬菜在 月的产量相对更高.22.置于桌面,甲乙两个同学从中随机各抽取一张卡片(注:第一个同学抽取到的卡片不放回).(1)(2)求甲乙两个同学抽到的卡片数字都是无理数的概率.(用画树状图或列表的方法求解) 23.已知购买1千克甲种水果和3千克乙种水果共需52元,购买2千克甲种水果和1千克乙种水果共需44元.(1)求每千克甲种水果和每千克乙种水果的售价;(2)如果购买甲、乙两种水果共20千克,且甲种水果的重量不少于乙种水果的重量.则购买多少千克甲种水果,总费用最少,最少总费用是多少?24.已知直线y mx n =+与x 轴交于点()2,0M ,与反比例函数k y x=图象交于点A ,C ,若()2,A a -,AB x ⊥轴, 3tan 4AMO ∠=.(1)求反比例函数和直线的函数表达式;(2)过点O 作直线AO 的垂线,交直线AC 于点P ,求P 点坐标.25.如图,在ABC V 中,点D 在边AC 上,BD 平分ABC ∠,经过点B 、C 的O e 交BD 于点E ,连接OE 交BC 于点F ,OF BC ⊥.(1)求证:AB 是O e 的切线;(2)若AB BC =,BD =,1tan 2CBD ∠=,求O e 的半径. 26.在学习了“中心对称图形…平行四边形”这一章后,同学小明对特殊四边形的探究产生了浓厚的兴趣,他发现除了已经学过的特殊四边形外,还有很多比较特殊的四边形,勇于创新的他大胆地作出这样的定义:有一个内角是直角,且对角线互相垂直的四边形称为“双直四边形”.请你根据以上定义,回答下列问题:(1)下列关于“双直四边形”的说法,正确的有 (把所有正确的序号都填上);①双直四边形”的对角线不可能相等:②“双直四边形”的面积等于对角线乘积的一半;③若一个“双直四边形”是中心对称图形,则其一定是正方形.(2)如图①,正方形ABCD 中,点E 、F 分别在边AB 、AD 上,连接CE ,BF ,EF ,CF ,若AE DF =,证明:四边形BCFE 为“双直四边形”;(3)如图②,在平面直角坐标系中,已知点()0,6A ,()8,0C ,点B 在线段OC 上且AB BC =,是否存在点D 在第一象限,使得四边形ABCD 为“双直四边形”,若存在;求出所有点D 的坐标,若不存在,请说明理由.27.定义:若两个三角形中,有两组边对应相等且其中一组等边所对的角对应相等,但不是全等三角形,我们就称这两个三角形为“融通三角形”,相等的边所对的相等的角称为“融通角”.(1)①如图1,在ABC V 中,CA CB =,D 是AB 上任意一点,则ACD V 与BCD △“融通三角形”;(填“是”或“不是”)②如图2,ABC V 与DEF V 是“融通三角形”,其中A D AC DF BC EF ,,??=,则B E ∠+∠=.(2)若互为“融通三角形”的两个三角形都是等腰三角形,求“融通角”的度数.(3)如图3,在四边形ABCD 中,对角线430105180AC CAB B D B =∠=︒∠=︒∠+∠=︒,,,,且ACD V 与ABC V 是“融通三角形”,AD CD >,求AD 的长.28.抛物线21164y ax x =+-与x 轴交于(),0A t ,()8,0B 两点,与y 轴交于点C ,直线y =kx -6经过点B .点P 在抛物线上,设点P 的横坐标为m .(1)求抛物线的表达式和t ,k 的值;(2)如图1,连接AC ,AP ,PC ,若△APC 是以CP 为斜边的直角三角形,求点P 的坐标;(3)如图2,若点P 在直线BC 上方的抛物线上,过点P 作PQ ⊥BC ,垂足为Q ,求12C Q P Q +的最大值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

兴义五中教育集团四中校区2018-2019学年度第二学期
九年级数学模拟试卷
(试卷考试时间120分钟 满分150分)
一、选择题(本题共10小题,每小题4分,共40分)
1、-22
3的绝对值倒数是(
)
2、斑叶兰被列为国家二级保护植物,它的一粒种子重约0.000 000 5克.将0.000 000 5用科学记数
法表示为( )
A .5×107
B .5×10-7
C .0.5×10-6
D .5×10-
6 3. 六个大小相同的正方体搭成的几何体如图所示,其俯视图是( )
4、关于x 的一元二次方程x 2-(k +3)x +k =0的根的情况是( )
A. 有两个不相等实数根
B. 有两相等实数根
C. 无实数根
D. 不能确定 5不等式x +1≥2x -1的解集在数轴上表示为( )
5、如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB =27,CD =1,则BE 的长是( )
A. 5
B. 6
C. 7
D. 8
7题 9题
10

6、已知一组数据45,51
,54,52,45
,44,则这组数据的众数、中位数分别为( ) A. 45
,48 B. 44,45 C. 45,51 D. 52,53
7、如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值为( ) A.
24 B. 14 C. 13 D. 23
8、甲、乙两船从相距300 km 的A 、B 两地同时出发相向而行,甲船从A 地顺流航行180 km 时与从B 地逆流航行的乙船相遇,水流的速度为6 km/h ,若甲、乙两船在静水中的速度均为x km/h ,则求两船在静水中的速度可列
方程为( )
9、如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =6,将Rt △ABC 绕点C 按逆时针方向旋转得到Rt △A′B′C ,此时点A ′恰好在AB 边上,则点B ′与点B 之间的距离为( ) A. 12 B. 6 C. 6 2 D. 6 3
10、二次函数2
y ax bx c =++的图象如图所示,以下结论:①abc >0;②4ac <b 2;③2a +b >0;④其顶点坐标为(
12,﹣2);⑤当x <12
时,y 随x 的增大而减小;⑥a +b +c >0正确的有( ) A .3个 B .4个 C .5个 D .6个
二、填空题(本题共10小题,每小题3分,共30分)
11、因式分解:x 3y 2-x 3=________.
12、如图,数轴上点A 表示的数为a ,化简:a +a 2-4a +4=________
13、一组数据2,x ,1,3,5,4,若这组数据的中位数是3,则这组数据的方差是________.
14、若关于x 的一元一次不等式组⎩
⎪⎨⎪⎧x -a >0
1-x >2x -5,有3个整数解,则a 的取值范围是________.
15、如图,圆锥侧面展开得到扇形,此扇形半径CA =6,圆心角∠ACB =120°,则此圆锥高OC 的长度是________.
16、在一个不透明的袋子中装有n 个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为1
3
,那么n 的值是________
17、如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB =60°,弦AD 平分∠CAB ,若AD =6,则AC =________.
18、如图,在平面直角坐标系xOy 中,菱形OABC 的边长为2,点A 在第一象限,点C 在x 轴正半轴上,∠AOC =60°,若将菱形OABC 绕点O 顺时针旋转75°,得到四边形OA′B′C′,则点B 的对点B ′的坐标为________.
19、如图,有一张矩形纸片,长10 cm ,宽6 cm ,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32 cm 2,求剪去的小正方形的边长.设剪去的小正方形边长是x cm ,根据题意可列方程为________
第18题图
A .223
B .-312
C .-
38
D .
3
8
5题
第15题图 第12题图 第17题图
20、如图:Rt △ABC 中,∠C=90°,BC=1,AC=2,把边长分别为x 1,x 2,x 3,…x n 的
n 个正方形依次放在△ABC 中:第一个正方形CM 1P 1N 1的顶点分别放在Rt △ABC 的各边上;第二个正方形M 1M 2P 2N 2的顶点分别放在Rt △AP 1M 1的各边上,…其他正方形依次放入,则第2016个正方形的边长X 2019为 .
20题
三、解答题(本题共计80分,6个小题)
21、(1)(6分) 计算:|2-3|+(2+1)0
-3tan30°+(-1)
2018
-(12
)-
1.
(2)(6分)先化简,再求值:x 2x 2-1÷(1
x -1+1),其中x 为整数且满足不等式组⎩
⎪⎨⎪⎧x -1>18-2x ≥2
22、(12分) 如图,AB 为⊙O 直径,C 、D 为⊙O 上不同于A 、B 的两点,OC 平分∠
ACD ,过点C 作CE ⊥DB ,垂足为E ,直线AB 与直线CE 相交于F 点. (1)求证:CF 为⊙O 的切线; (2)当BF=2,∠F=30°时,求BD 的长.
23、(14分) 某学校为了解全校学生对电视节目的喜爱情况(新闻、体育、动画、娱乐、戏曲),从
全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图 请根据以上信息,解答下列问题:(1)这次被调查的学生共有多少人? (2)请将条形统计图补充完整;
(3)若该校约有1500名学生,估计全校学生中喜欢娱乐节目的有多少人?
(4)该校广播站需要广播员,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2名,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).
24、(14分)为迎接“七·一”党的生日,某校准备组织师生共310人参加一次大型公益活动,
租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个. (1)求每辆大客车和每辆小客车的座位数;
(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?
25、(12分) 如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C 点周围200米范围
内为原始森林保护区,在MN 上的点A 处测得C 在A 的北偏东45°方向上,从A 向东走600米到达B 处,测得C 在点B 的北偏西60°方向上.
(1)MN 是否穿过原始森林保护区?为什么?(参考数据:≈1.732)
(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原
计划完成这项工程需要多少天?
26、(16分) 如图,已知直线y =12x +1
2
与抛物线y =ax 2+bx +c 相交于A (-1,0),B (4,m )两点,抛
物线y =ax 2+bx +c 交y 轴于点C (0,-3
2
),交x 轴正半轴于D 点,抛物线的顶点为M. (1)求抛物线的解析式及点M 的坐标;
(2)设点P 为直线AB 下方的抛物线上一动点,当△P AB 的面积最大时,求此时△P AB 的面积及点P 的坐标;
(3)点Q 为x 轴上一动点,点N 是抛物线上一点,当△QMN ∽△MAD (点Q 与点M 对应),求Q 点坐标.
第19题图。

相关文档
最新文档