西南交通大学《大学物理》气体分子动理论

合集下载

大学物理气体的动理论习题答案

大学物理气体的动理论习题答案

(4)从微观上看,气体的温度表示每个气体分子的冷热程度。
上述说法中正确的是
(A)(1)、(2)、(4);(B)(1)、(2)、(3);(C)(2)、(3)、(4);(D)(1)、(3)、(4)。
2. 两 容 积 不 等 的 容 器 内 分 别 盛 有 He 和 N2 , 若 它 们 的 压 强 和 温 度 相 同 , 则 两 气 体
9.速率分布函数 f(v)的物理意义为:
[B ]
(A)具有速率 v 的分子占总分子数的百分比。
(B)速率分布在 v 附近的单位速率间隔中的分子数占总分子数的百分比。
(C)具有速率 v 的分子数。
(D)速率分布在 v 附近的单位速率间隔中的分子数。
1
10.设 v 代表气体分子运动的平均速率,vP 代表气体分子运动的最可几速率,( v2 )2 代表
℃升高到 177℃,体积减小一半。试求:
(1)气体压强的变化;
(2)气体分子的平均平动动能的变化;
(3)分子的方均根速率为原来的倍数。
解:
(1)由
p1V1 T1
p2V2 T2
,
代入T1
=300K,T2
=450K,V2
=
1 2
V1可得
p2 =3p1
即压强由p1变化到了3 p1。
(2)分子的平均平动动能
(D) 6 p1 。
5. 一瓶氦气和一瓶氮气,两者密度相同,分子平均平动动能相等,而且都处于平衡状态, 则两者[ C ]
(A)温度相同,压强相等; (B)温度,压强都不相同; (C)温度相同,但氦气的压强大于氮气压强; (D)温度相同,但氦气的压强小于氮气压强。
6.1mol 刚性双原子分子理想气体,当温度为 T 时,其内能为

大学物理-气体分子动理论

大学物理-气体分子动理论

v
v1 v2 v3 … …
N ΔN1 ΔN2 ΔN3 … …
速率为 vi 的概率为:
Pi
Ni N
长时间“观测”理想气体分子的速率 v :
v
0 ~ +∞ 连续分布
速率为 v → v + dv 的概率为:
Pv~vdv
dNv N
0
???
速率分布函数
Pv~vdv
dNv N
f (v)dv
f (v) dNv Ndv
刚性双原子分子的动能
分子动能
平动动能
t x
t y
t z
转动动能
r
r
t x
t y
t z
r
r
1 kT 2
t x
t y
t z
r
r
5 kT 2
温度较高时,双原子气体分子不能看作刚性分子,分子
平均能量更大,因为振动能量也参与能量均分
理想气体分子的平均能量
分子模型 刚性单原子分子 刚性双原子分子 刚性多原子分子
每个分子频繁地发生碰撞,速度也因此不断变化;
二、压强形成的微观解释
单个分子与器壁碰撞 冲力作用瞬间完成,大小、位置具有 偶然性;
大量分子(整个气体系统)与器壁碰撞 气体作用在器壁上是一个持续的、不 变的压力;
压强是气体分子给容器壁冲量的 统计平均量
三、理想气体的压强公式
建立三维直角坐标系 Oxyz
vz i N
气体处于平衡态时,气体分子沿各个方向运动的机会均等。
vx vy vz
气体分子速率平方的平均值
v v1 v2 v3 … …
N ΔN1 ΔN2 ΔN3 … …
v

大学物理第十一章气体动理论习题详细答案

大学物理第十一章气体动理论习题详细答案

第十一章 气体动理论习题详细答案一、选择题1、答案:B解:根据速率分布函数()f v 的统计意义即可得出。

()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。

2、答案:A解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,后面三个选项的说法都是对的,而只有而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。

正确。

3、答案: A 解:2rms 1.73RT v v M ==,据题意得222222221,16H O H H H O O O T T T M M M T M ===,所以答案A 正确。

正确。

4、 由理想气体分子的压强公式23k p n e =可得压强之比为:可得压强之比为:A p ∶B p ∶C p =n A kA e ∶n B kB e ∶n C kC e =1∶1∶1 5、 氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RT n =代入内能公式2iE RT n =可得2iE pV =,所以氧气和氦气的内能之比为5 : 6,故答案选C 。

6、 解:理想气体状态方程PV RTn =,内能2iU RT n =(0m M n =)。

由两式得2UiP V =,A 、B 两种容积两种气体的压强相同,A 中,3i =;B 中,5i =,所以答案A 正确。

正确。

7、 由理想气体物态方程'm pV RT M=可知正确答案选D 。

8、 由理想气体物态方程pV NkT =可得气体的分子总数可以表示为PV N kT =,故答案选C 。

9、理想气体温度公式21322k m kT e u ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。

大学物理第六版第七章气体动理论基础总结

大学物理第六版第七章气体动理论基础总结

大学物理第六版第七章气体动理论基础总结
1. 气体分子模型:气体由大量无限小的分子组成,分子之间几乎没有相互作用,分子运动是无规则的。

2. 气体分子的运动:气体分子具有随机热运动,并遵循牛顿力学定律。

分子的速度和方向是随机的。

3. 气体的压强:气体分子与容器壁的碰撞会产生压强。

气体的压强与分子的速度、分子间平均自由程、分子总数等因素有关。

4. 理想气体状态方程:理想气体状态方程描述了气体的状态。

PV = nRT,其中P为气体压强,V为体积,n为物质的量,R为气体常数,T为温度。

5. 分子平均动能:气体分子的平均动能与气体的温度成正比。

分子平均动能与分子质量无关。

6. 温度和热力学温度:温度是描述物体热平衡状态的物理量。

热力学温度是温度的定量度量,它与分子平均动能的平方成正比。

7. 气体分子的速率分布:气体分子的速率分布服从麦克斯韦-波尔兹曼分布。

分子速率分布与温度相关,高温下分子速率分布图会变得更加平坦。

总结起来,第七章主要介绍了气体动理论的基本概念和定律,包括气体分子的运动、气体压强、气体状态方程、分子平均动能、温度和速率分布等内容。

《大学物理》第十章气体动理论习题参考答案

《大学物理》第十章气体动理论习题参考答案

第十章 气体动理论一、选择题参考答案1. (B) ;2. (B );3. (C) ;4. (A) ;5. (C) ;6. (B );7. (C ); 8. (C) ;9. (D) ;10. (D) ;11. (C) ;12. (B) ;13. (B) ;14. (C) ;15. (B) ;16.(D) ;17. (C) ;18. (C) ;19. (B) ;20. (B) ;二、填空题参考答案1、体积、温度和压强,分子的运动速度(或分子的动量、分子的动能)2、一个点;一条曲线;一条封闭曲线。

3. kT 21 4、1:1;4:1 5、kT 23;kT 25;mol /25M MRT 6、12.5J ;20.8J ;24.9J 。

7、1:1;2:1;10:3。

8、241092.3⨯9、3m kg 04.1-⋅10、(1)⎰∞0d )(v v v Nf ;(2)⎰∞0d )(v v v f ;(3)⎰21d )(212v v v v v Nf m 11、氩;氦12、1000m/s ; 21000m/s13、1.514、215、12M M三、计算题参考答案1.解:氧气的使用过程中,氧气瓶的容积不变,压强减小,因此可由气体状态方程得到使用前后的氧气质量,进而将总的消耗量和每小时的消耗量比较求解。

已知atm 1301=p ,atm 102=p ,atm 13=p ;L 3221===V V V ,L 4003=V 。

质量分布为1m ,2m ,3m ,由题意可得RT Mm V p 11=RT Mm V p 22= RT M m V p 333=所以该瓶氧气使用的时间为h)(6.94000.132)10130(3321321=⨯⨯-=-=-=V p V p V p m m m t 2.解:设管内总分子数为N ,由V NkT nkT p ==有 1210611)(⨯==.kT pV N (个)空气分子的平均平动动能的总和= J 10238-=NkT 空气分子的平均转动动能的总和 = J 106670228-⨯=.NkT 空气分子的平均动能的总和 = J 10671258-⨯=.NkT3.解:(1)根据状态方程RT MRT MV m p RT M m pV ρ==⇒=得 ρp M RT = ,pRT M ρ= 气体分子的方均根速率为1-2s m 49533⋅===ρp M RT v (2)气体的摩尔质量为1-2m ol kg 108.2⋅⨯==-p RTM ρ所以气体为N 2或CO 。

大学物理 气体动理论

大学物理 气体动理论

三、 温 度
决定一个系统是否与其它系统达到热平衡的宏观性质。
处于热平衡的多个系统具有相同的温度
具有相同温度的几个系统放在一起必然处于热平衡。
温度测量
酒精或水银
A
B
A 和 B 热平衡,TA = TB
热胀冷缩特性,标准 状态下,冰水混合, B 上留一刻痕, 水沸 腾,又一刻痕,之间 百等份,就是摄氏温 标(Co)。
生碰撞的�数目为:Ni = nivix dt d A 速度为 vi 分子在 dt 时间对 dA 的冲量为:

x
vxi
dA
vidt
nivixdAdt ⋅ (2mvix )
∑ 所有分子在
dt
时间内对
dA 产生的总冲量为:dI = 1 2
i
2mni
v
2
ix
dAdt
∑ ∑ 气体对器壁的宏观压强为:
p=
mni
T0
273.15
= 8.31(Jmol⋅K)
若写成 ν = N NA
N A = 6.023 × 1023 / mol
N为气体分子总数 阿伏伽德罗常量
µN
R
pV = RT = N T
µNA
NA

k

R NA
=
1.38 × 10−23
J
K
玻耳兹曼常数
pV = NkT
p = N kT = nkT V
n:气体分子数密度
2
三、气体分子的平均总动能
设分子有: 平动自由度 t 转动自由度 r
分子平均总动能:
1 εk = (t + r) 2 kT
单原子分子 刚性双原子分子
3

大学物理课件气体分子运动论

大学物理课件气体分子运动论

等离子体物理
等离子体类似于气体的物质状 态,气体分子运动论为其研究 提供了理论基础。
生物学
气体分子运动论在生物学领域 的应用包括呼吸、扩散和渗透
等方面。
02
CATALOGUE
气体分子热运动的描述
气体分子的平均动能
平均动能的概念
气体分子在热运动中具有的平均动能是指气体分子在单位时间内 所做的平均动能的平均值。
大学物理课件气体 分子运动论
contents
目录
• 气体分子运动论概述 • 气体分子热运动的描述 • 气体分子之间的相互作用 • 气体分子运动论中的重要定律和公式 • 气体分子运动论中的重要实验和现象 • 气体分子运动论的未来发展与挑战
01
CATALOGUE
气体分子运动论概述
气体分子运动论的基本概念
碰撞频率与平均自由程
气体分子在单位时间内与其他分子碰撞的次数称为碰撞频 率,而分子在两次碰撞之间运动的距离称为平均自由程。
弹性碰撞与非弹性碰撞
根据碰撞过程中能量的传递情况,碰撞可分为弹性碰撞和 非弹性碰撞,弹性碰撞只改变分子的运动方向而不改变其 能量,而非弹性碰撞则会损失能量。
03
CATALOGUE
速率分布函数
描述气体分子速率分布情况的函数称为速率分布函 数,其值越大表示该速率下的分子数越多。
实验验证
通过实验可以验证气体分子的速率分布情况 ,如通过测量分子速度的分布情况来验证麦 克斯韦速度分布律。
气体分子的碰撞过程
碰撞过程的基本概念
气体分子之间的碰撞是指一个分子通过与另一个分子相互 作用而改变其运动状态的过程。
温度与平均动能的关系
温度是气体分子平均动能的量度,温度越高,气体分子的平均动能 越大。

《大学物理》第8章 气体动理论-讲简

《大学物理》第8章 气体动理论-讲简
同的质量为 m 的气体分子,计算 A1壁面所受压强 .
y
A2 o
z
- mmvvvxx
x
v y A1 y
z x vz o
vv x
y
A2 o
z
- mmvvvxx
x
分子运动速度
A1 y
zx
vi
vixi
viy
j
viz k
由气体在平衡态时,分子热运动的统计假设
v2x
v2y
v2z
1 v2 3
单个分子遵循力学规律
能之和)之和.
1摩尔理想气体内能
EA
NA
i 2
kT
i 2
RT
质量为M,摩尔质量为 的理想气体内能:
E M i RT
2
说明: 理想气体内能是态温度的函数,E= f (T) 物体的内能与机械能不同. 内能永不为0 .
例1 一容器内贮有理想气体氧气,压强 p=1.0atm, 温度t=27.0℃,体积V=1.0×10-2m3. 求: (1)氧分子的平均平动动能、平均转动动能与分子的 平均能量; (2)内能;
? 8.2 统计假设 理想气体分子的微观模型
8.2.1 统计规律性与统计假设
宏观物体都是由大量的分子或原子组成 . 分子间频繁的碰撞,导致 分子无规则地运动. 布朗运动.swf
对于由大量分子组成的热 力学系统从微观上加以研究 时, 必须用统计的方法.
统计单方个法分:子在的大运量动偶遵然从事牛件顿中定运律用。几本率章(用概统率计)方的法概,念 结找合出牛所顿存力在学规研律究的宏方观法热。现象的微观本质。
v
2 x
1 3
v2
分子平均平动动能
t
1 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压 强 和 温 度 公 式 的 推 导 中 _________________________________ ; 在 能 均 分 定 律 中
_______________________________________________________ ; 在分 子平 均碰 撞自 由程 的推 导中
J
w(4) 分子的平均动能的总和
wwEk
=N
5 kT
2
=
5 ×1.61×1012 ×1.38 ×10−23 × 300 = 1.67 ×10−8 2
J
3. 一超声波源发射声波的功率为 10 W。假设它工作 10 s,并且全部波动能量都被 1 mol 氧气吸收而用于增
加其内能,问氧气的温度升高了多少?
∑ Ni vi 2 = ∑ Ni
2 ×10.02 + 8× 20.02 + 6× 30.02 + 4 × 40.02 + 2× 50.02 2+8+ 6 +4 + 2
h 2. 一容积为 10 cm3 的电子管,当温度为 300 K 时,用真空泵把管内空气抽成压强为 5×10-6 mmHg 的高真 c 空,问此时管内有多少个空气分子?这些空气分子的平均平动动能的总和是多少?平均转动动能的总和是
= 1.61×1012

kT
1.38 ×10−23 × 300
由能量均分定律有
h (2) 分子的平均平动动能的总和
zEt
=
N
3 2
kT
=
3 2
× 1.61 × 1012
×1.38 ×10 −23
× 300 =1.00 ×10−8
J
(3) 分子的平均转动动能的总和
.Er
=
N
2 kT 2
=
2 ×1.61×1012 ×1.38 ×10−23 × 300 = 0.67 ×10−8 2
多少?平均动能的总和是多少?(已知 760 mmHg=1.013×105 Pa,空气分子可认为是刚性双原子分子,波
n 尔兹曼常量 k =1.38×10-23 J/K)
a 解:设管内总分子数为 N 。
N 由状态方程 p = nkT = kT 有
n V
(1) 管内空气分子数为
i N
=
pV
5 ×10−6 ×1.013×105 / 760 ×10 ×10−6 =
(氧气分子视为刚性分子,摩尔气体常量 R = 8.31 J·mol −1 ·K −1 )
解:超声波源发射出的声波总能量为 ∆E = Pt (式中 P 为超声波源功率),而理想气体的内能改变为
∆E = M ⋅ i R∆T ,则由题意有氧气的温度升高为 µ2
∆T
=
Pt M5

R
=
10 ×10 5
= 4.81(K)
3
5
. 别为 CV He = 2 R, CV H2 = 2 R
M3
w现在给氦气等容加热由题意有
QHe
=
µ
⋅ R ⋅ ∆T 2
=6J
所以,升高同样的温度,应向氢气传递热量为
w M5
M3
55 5
w QH2
=
µ
⋅ R ⋅ ∆T 2
=
µ

2 R ⋅ ∆T ⋅ 3 = 3QH2
= ×6 = 10 J 3
故选 B
___________________________________________ 。
解:在压强和温度公式的推导中
视为有质量而无大小的质点
;在能均分定律中
视为 有结 构的物 体—— 质点 组,可 以发 生平动 、转动 和振 动
;在 分子 平均碰 撞自 由程的 推导 中
有一定大小(体积)的刚性小球
o ∑ v = Nivi = 2×10.0 + 8 × 20.0 + 6 ×30.0 + 4× 40.0 + 2 ×50.0 ≈ 28.2(m⋅ s−1)
∑ Ni
2+8 +6 + 4+ 2
粒子的最概然速率为
c vp = 20.0(m⋅ s−1)
. 粒子的方均根速率为
e v2 =
≈ 30.3(m⋅ s−1 )
(ln h=
n0 )RT n
(ln =
2)RT

M mol ⋅ g
M mol ⋅ g
h 4. 当理想气体处于平衡态时,气体分子速率分布函数为 f (v),则分子速率处于最概然速率 v p 至∞范围内
z ∆N
的概率 =

N
. 解:由气体分子速率分布函数 f (v) = dN 可知: Ndv
w∞
∫ ∫ 分子速率处于最概然速率 vP 至∞之间的分子数为

m 2. 一能量为 1012 eV 的宇宙射线粒子,射入一氖管中,氖管内充有 0.1 mol 的氖气,若宇宙射线粒子的能
量全部被氖分子所吸收,则氖气温度升高了
K。
o [1eV = 1.6×10 −19 J,摩尔气体常数 R = 8.31 J·mol −1 ·K −1]
3
c 解:氖气为单原子分子,其等体摩尔热容为 CV
动能总和为:
[
] (A) 2 J
(C) 5 J
(B) 3 J (D) 9 J
解:由能量均分定理有一个分子的平均平动动能为 w = 3 kT, 则容器中气体分子的平均平动动能总和为
m 2
o Et
= Nw
=
M µ
N
A

3 2
kT
=
3 2
M µ
RT
=
3 2
pV
=
3 × 5 ×102 × 4 ×10−3 2
4. 在标准状态下, 若氧气(视为刚性双原子分子的理想气体)和氦气的体积比 V1 = 1 ,则其内能之比 V2 2
E1 / E2 为:
[
] (A) 1/2
(B) 5/3
(C) 5/6
(D) 3/10
解:氧气为双原子分子,其总自由度为 5,氦气为单原子分子,其总自由度为 3,故它们的摩尔热容量分
3
5
处的分子数密度。
n 若大气中空气的摩尔质量为 M mol ,温度为 T,且处处相同,并设重力场是均匀的,则空气分子数密度减少
a 到地面的一半时的高度为
。(符号 exp[α ],即 e α )
− Mmol gh
n 解:由玻尔兹曼粒子数按势能(高度)分布规律 n = n0e RT 得
i 空气分子数密度减少到地面的一半时的高度为
o M
c 二者内能之比为 E1
( µ ) O2 =
⋅ iO2
=1 ⋅5= 5
E2
M ( µ ) He
iHe
23 6
故选 C
(e) .( ) 5.
设图示的两条曲 线分别表示在相同温度下氧气和氢 气分子的速率分布曲线;令
vp
O2 和 v p
分别表
H2
示氧气和氢气的最概然速率,则
( ) ( ) h [
] (A) 图中a表示氧气分子的速率分布曲线;
别为 CVO2
=
R, 2
CV H 2
=
R 2
由理想气体状态方程 pV = M R 和题意标准状态下(两气体压强、体积相同)有 Tµ
M
( 两气体的摩尔数之比为 µ
) O2
=
p 1V1 T1
= V1 = 1
M ( µ ) He
p2V 2 V 2 2 T2
m 根据理想气体内能公式 E = M ⋅ i RT 得 µ2
f( v)
vp
O2 / v p
=4
H2
a
( ) ( ) c (B) 图中a表示氧气分子的速率分布曲线;
b
vp
O2 / v p
=1/4
H2
n (C) 图中b表示氧气分子的速率分布曲线;
( ) ( ) v p
O2 / v p
=1/4
H2
O
v
a (D) 图中b表示氧气分 子的速率分布曲线;
( ) ( ) v p
1 × × 8.31
µ2
2
(氧气分子视为刚性双原子分子,总自由度数为 5)

2RT
公式知:在相
µ
2 × 10 −3 = 1 ,再 32 × 10 −3 4
z故选 B
. 6. 一定量的某种理想气体若体积保持不变,则其平均自由程 λ 和平均碰撞频率 z 与温度的关系正确的是:
[
] (A) 温度升高, λ 减少而 z 增大 (B) 温度升高, λ 增大而 z 减少
w(C) 温度升高, λ 和 z 均增大
O2 / v p

H2
4
n 解:因氧气摩尔质量(32)比氢气摩尔质量(2)大,故由理想气体最概然速率 v p =
hi ( ) 同温度下,氧气的最概然速率比氢气的最概然速率小,其比值为 v p O2 = ( )v p H2
µ H2 = µ O2
因速率分布曲线下面积应相等归一化,所以氧气分子的速率分布曲线要陡一些。
=
M µ
RT
可得
c 理想气体的内能 E = pVCV R 可见只有当体积 V 不变时,内能 E 才和压强 p 成正比,在相图中为过坐标原点的直线。 n 故选 C
a 3. 两个相同的容器,一个盛氢气,一个盛氦气(均视为刚性分子理想气体 ),开始时它们的压强和温度都
相等。现将 6 J 热量传给氦气,使之升高到一定温度。若使氦(应为:氢)气也升高同样的温度,则应向
n 氦(应为:氢)气传递热量:
[
] (A) 6 J
相关文档
最新文档