图论专题 二分图
图论——二分图1:二分图以及判定

图论——⼆分图1:⼆分图以及判定图,有有向图,⽆向图,稠密图,简单图······算法,有贪⼼法,⼆分法,模拟法,倍增法······那,⼆分图是啥?⼆分法+有向图?于是,我查了许多资料,才对它有⼀定了解。
⼆分图:⼆分图,是图论中的⼀种特殊模型,设G=(V,E)是⼀个⽆向图,如果顶点V可分割为两个互不相交的⼦集(A,B),并且同⼀集合中不同的两点没有边相连。
这就是⼆分图。
举个栗⼦吧:这是不是⼆分图?反正我第⼀次看觉得不是其实,是的,他是⼆分图,尽管看上去是连着的。
若我们将图中的⼀些边转⼀下,变成:这就是⼀个明显的⼆分图。
集合A与B中的点互不相连。
因此,在⼿动判定⼆分图时学会转边!辣魔,⼆分图要⽤计算机判定怎么实现?数竞⼤佬:简单!!!!染⾊⼤法!!!有没有熟悉的感觉0表⽰还未访问,1表⽰在集合A中,2表⽰在集合B中。
col(color)储存颜⾊。
初始化为0.上代码:其实是模板可以记忆。
1 vector <int> v[N];2void dfs(int x,int y){3 col[x]=y;4for (int i=0; i<v[x].size(); i++) {5if (!col[v[x][i]]) dfs(v[x][i],3-y);6if (col[v[x][i]]==col[x]) FLAG=true; //产⽣了冲突7 }8 }9for (i=1; i<=n; i++) col[i]=0; //初始化10for (i=1; i<=n; i++) if (!col[i]) dfs(i,1); //dfs染⾊11if (FLAG) cout<<"NO"; else cout<<"YES";下⼀章我们将讲到⼆分图的匹配,我们明天见。
二分体 图论

二分体图论
1.定义
二分图,又称二部图,是图论中的一种特殊模型。
设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G是一个二分图。
2.判定
无向图G={V, E},如果可以把结点分成不相交的两部分,即X和Y,使得每条边的其中一个端点在X中,另一个端点在Y中,则称图G 是二分图。
二分图-无奇数图
无向图G为二分图的充分必要条件是,G至少有两个顶点,且其所有回路的长度均为偶数。
3.性质
1.最小点覆盖=最大匹配数
2.最小边覆盖=点数-最小点覆盖(最大匹配数)
3.最小路径覆盖=原图的结点数-新图的最大匹配数。
4.最大独立集=点数-最小点覆盖(最大匹配数)
4.匹配
二分图匹配:给定一个二分图G={V, E},将E的子集M称作一个匹配,如果M中的任意两条边都没有公共端点。
多重匹配:二分图中某些点可以被匹配多次。
最大匹配:包含的边数最多的匹配。
X(Y) -完全匹配:X(Y)中的所有顶点都出现在匹配M中。
完全匹配:所有的点都在匹配边上的匹配(M既是X-完全匹配,又是Y-完全匹配)。
最佳匹配:如果G为加权二分图,则权值和最大的完美匹配称为最佳匹配。
5.相关算法:
二分图最大匹配:匈牙利算法、HK算法、网络流最大流
二分图多重匹配:网络流最大流
二分图最佳匹配:KM算法、网络流最大流。
完全二分图

图2
若 (这里表示顶点集中元素的个数),且中无相邻的顶点对,中亦然,则称图为二分图;特别地,若对任意, 与中每个顶点相邻,则称图G为完全二分图(complete bipartite graph),或称完全偶图,记为。
相关概念
图G=(V,E)各条边都加上方向的图称为有向图,否则称为无向图。如果有的边有方向,有的边无方向,则称 为混合图。
完全二分图
数学术语
01 基本概念
03 相关结论
目录
02 相关概念
设G=(V,E)为二分图,V=XUY,且X中的任一顶点与Y中每一个顶点均有且仅有唯一的一条边相连,则称G为完 全二分图或完全偶图。
基本概念
直观地讲,对于平面上的n个点,把其中的一些点对用曲线或直线连接起来,不考虑点的位置与连线曲直长短, 这样形成的一个关系结构就是一个图。记成G=(V,E),V是以上述点为元素的顶点集,E是以上述连线为元素的边 集。
赋权图是指每条边都有一个(或多个)实数对应的图,这个(些)实数称为这条边的权(每条边可以具有多个权)。 赋权图在实际问题中非常有用。根据不同的实际情况,权数的含义可以各不相同。例如,可用权数代表两地之间 的实际距离或行车时间,也可用权数代表某工序所需的加工时间等。
相关结论
定理1 推论1
定理2 推论2
如果图的两顶点间有边相连.则称此两顶点相邻,每一对顶点都相邻的图称为完全图,否则称为非完全图.设 为n阶无向简单图,若中每个顶点均与其余的个顶点相邻,则称为n阶无向完全图,简称n阶完全图,记做。设为n 阶有向简单图,若中每个顶点都邻接到其余的个顶点,又邻接于其余的个顶点,则称是n阶有向完全图。
图1分别列出了。图2分别列出了1阶有向完全图、2阶有向完全图、3阶有向完全图。
图论:二分图多重匹配

图论:⼆分图多重匹配使⽤最⼤流和费⽤流解决⼆分图的多重匹配之前编辑的忘存了好⽓啊。
本来打算学完⼆分图的乱七⼋糟的匹配之后再去接触⽹络流的,提前撞到了之前我们说的⼆分图最⼤匹配和⼆分图最⼤权匹配有⼀个特点,那就是没个点只能与⼀条边相匹配如果规定⼀个点要与L条边相匹配,这样的问题就是⼆分图的多重匹配问题然后根据边是否带权重,⼜可以分为⼆分图最⼤多重匹配和⼆分图最⼤权多重匹配(⼆分图多重最佳完美匹配)⾸先给出⼆分图多重最⼤匹配的做法:在原图上建⽴源点S和汇点T,S向每个X⽅点连⼀条容量为该X⽅点L值的边,每个Y⽅点向T连⼀条容量为该Y⽅点L值的边原来⼆分图中各边在新的⽹络中仍存在,容量为1(若该边可以使⽤多次则容量⼤于1),求该⽹络的最⼤流,就是该⼆分图多重最⼤匹配的值然后给出⼆分图多重最优匹配(⼆分图多重最⼤权匹配)的做法:在原图上建⽴源点S和汇点T,S向每个X⽅点连⼀条容量为该X⽅点L值、费⽤为0的边,每个Y⽅点向T连⼀条容量为该Y⽅点L值、费⽤为0的边原来⼆分图中各边在新的⽹络中仍存在,容量为1(若该边可以使⽤多次则容量⼤于1),费⽤为该边的权值。
求该⽹络的最⼤费⽤最⼤流,就是该⼆分图多重最优匹配的值这道题⾥⾯,⼀共有X⽅点这么多的电影,每个电影需要拍摄多少天就是对应的X⽅点L值,然后每⼀天是⼀个Y⽅点,由于每⼀天只能拍摄⼀部电影,所有Y⽅点的L值均为1下⾯介绍⼀下实现:int n,sum,cnt,ans;int g[maxn],cur[maxn];int str[25][10];struct Edge{int u,v,next,cap,flow;}e[maxm];这⾥⾯的cur数组是g数组的临时数组str⽤来保存每⼀个电影可以在哪⼀天拍摄Edge是⽹络流图⾥⾯的边void addedge(int u,int v,int c){e[++cnt].u=u;e[cnt].v=v;e[cnt].cap=c;e[cnt].flow=0;e[cnt].next=g[u];g[u]=cnt;e[++cnt].u=v;e[cnt].v=u;e[cnt].cap=0;e[cnt].flow=0;e[cnt].next=g[v];g[v]=cnt;}建图的时候,注意怎么赋值的接下来根据题意建图:for(int i=1;i<=n;i++){for(int j=1;j<=7;j++)scanf("%d",&str[i][j]);scanf("%d%d",&d,&w);sum+=d;addedge(0,i,d); //容量为需要多少天for(int j=1;j<=7;j++)for(int k=0;k<w;k++)if(str[i][j]) addedge(i,20+k*7+j,1);}for(int i=21;i<=370;i++) addedge(i,371,1);ans=maxflow(0,371);0为源点,371为汇点sum最后进⾏⼀个统计,和源点出发的最⼤流量进⾏⽐较,如果相等,说明电影排的开然后是求最⼤流的⼀个板⼦int maxflow(int st,int ed){int flowsum=0;while(bfs(st,ed)){memcpy(cur,g,sizeof(g));flowsum+=dfs(st,ed,INF);//cout<<"#"<<flowsum<<" ";}return flowsum;}具体的DFS和BFS这⾥不作为重点,以后再说下⾯给出完整的实现:1 #include<cstdio>2 #include<cstring>3 #include<algorithm>4using namespace std;5const int INF=1000000000;6const int maxn=1005;7const int maxm=20005;8int n,sum,cnt,ans;9int g[maxn],cur[maxn];10int str[25][10];11struct Edge{int u,v,next,cap,flow;}e[maxm];12void addedge(int u,int v,int c)13 {14 e[++cnt].u=u;e[cnt].v=v;e[cnt].cap=c;15 e[cnt].flow=0;e[cnt].next=g[u];g[u]=cnt;1617 e[++cnt].u=v;e[cnt].v=u;e[cnt].cap=0;18 e[cnt].flow=0;e[cnt].next=g[v];g[v]=cnt;19 }20int q[maxn],vis[maxn],d[maxn];21bool bfs(int st,int ed)22 {23 memset(q,0,sizeof(q));24 memset(vis,0,sizeof(vis));25 memset(d,-1,sizeof(d));26 vis[st]=1;d[st]=0;27int h=0,t=1;28 q[t]=st;29while(h!=t)30 {31 h=h%maxn+1;32int u=q[h];33for(int tmp=g[u];tmp;tmp=e[tmp].next)34 {35if(!vis[e[tmp].v]&&e[tmp].cap>e[tmp].flow)36 {37 vis[e[tmp].v]=1;38 d[e[tmp].v]=d[u]+1;39if(e[tmp].v==ed) return true;40 t=t%maxn+1;41 q[t]=e[tmp].v;42 }43 }44 }45return false;46 }47int getpair(int x)48 {49if(x%2==0)50return x-1;51else return x+1;52 }53int dfs(int x,int ed,int a)54 {55if(x==ed||a==0) return a;56int flow=0,f;57for(int tmp=cur[x];tmp;tmp=e[tmp].next)58 {59if(d[e[tmp].v]==d[x]+1&&(f=dfs(e[tmp].v,ed,min(a,e[tmp].cap-e[tmp].flow)))>0)60 {61 e[tmp].flow+=f;62 e[getpair(tmp)].flow-=f;63 a-=f;64 flow+=f;65if(a==0) break;66 }67 }68return flow;69 }70int maxflow(int st,int ed)71 {72int flowsum=0;73while(bfs(st,ed))74 {75 memcpy(cur,g,sizeof(g));76 flowsum+=dfs(st,ed,INF);77//cout<<"#"<<flowsum<<" ";78 }79return flowsum;8081 }82void init()83 {84 sum=cnt=0;85 memset(g,0,sizeof(g));86 }87int main()88 {89int T,d,w;90 scanf("%d",&T);91while(T--)92 {93 init();94 scanf("%d",&n);95for(int i=1;i<=n;i++)96 {97for(int j=1;j<=7;j++)98 scanf("%d",&str[i][j]);99 scanf("%d%d",&d,&w);100 sum+=d;101 addedge(0,i,d); //容量为需要多少天102for(int j=1;j<=7;j++)103for(int k=0;k<w;k++)104if(str[i][j]) addedge(i,20+k*7+j,1);105 }106for(int i=21;i<=370;i++) addedge(i,371,1);107 ans=maxflow(0,371);108if(ans==sum) printf("Yes\n");109else printf("No\n");110 }111return0;112 }据说这是典型的最⼤流题⽬,然⽽为了强⾏安利⼀波⼆分图的多重匹配,就不说成那个了。
二分图理论

*7.5 二部图及匹配7.5.1二部图在许多实际问题中常用到二部图,本节先介绍二部图的基本概念和主要结论,然后介绍它的一个重要应用—匹配。
定义7.5.1 若无向图,G V E =的顶点集V 能分成两个子集1V 和2V ,满足(1)12V V V =,12V V φ=;(2)(,)e u v E ∀=∈,均有1u V ∈,2v V ∈。
则称G 为二部图或偶图(Bipartite Graph 或Bigraph),1V 和2V 称为互补顶点子集,常记为12,,G V V E =。
如果1V 中每个顶点都与2V 中所有顶点邻接,则称G 为完全二部图或完全偶图(Complete Bipartite Graph),并记为,r s K ,其中12,r V s V ==。
由定义可知,二部图是无自回路的图。
图7-55中,(),(),(),(),()a b c d e 都是二部图,其中(),(),(),()b c d e 是完全二部图1,32,32,43,3,,,K K K K 。
图7-55二部图示例显然,在完全二部图中,r s K 中,顶点数n r s =+,边数m rs =。
一个无向图如果能画成上面的样式,很容易判定它是二部图。
有些图虽然表面上不是上面的样式,但经过改画就能成为上面的样式,仍可判定它是一个二部图,如图7-56中()a 可改画成图()b ,图()c 可改画成图()d 。
可以看出,它们仍是二部图。
图7-56二部图示例定理7.5.1 无向图,G E =为二部图的充分必要条件为G 中所有回路的长度均为偶数。
证明 先证必要性。
设G 是具有互补节点子集1V 和2V 的二部图。
121(,,,,)k v v v v 是G 中任一长度为k 的回路,不妨设11v V ∈,则211m v V +∈,22m v V ∈,所以k 必为偶数,不然,不存在边1(,)k v v 。
再证充分性。
设G 是连通图,否则对G 的每个连通分支进行证明。
算法学习:图论之二分图的最优匹配(KM算法)

二分图的最优匹配(KM算法)KM算法用来解决最大权匹配问题:在一个二分图内,左顶点为X,右顶点为Y,现对于每组左右连接XiYj有权wij,求一种匹配使得所有wij的和最大。
基本原理该算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。
设顶点Xi的顶标为A[ i ],顶点Yj的顶标为B[ j ],顶点Xi与Yj之间的边权为w[i,j]。
在算法执行过程中的任一时刻,对于任一条边(i,j),A[ i ]+B[j]>=w[i,j]始终成立。
KM算法的正确性基于以下定理:若由二分图中所有满足A[ i ]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。
首先解释下什么是完备匹配,所谓的完备匹配就是在二部图中,X点集中的所有点都有对应的匹配或者是Y点集中所有的点都有对应的匹配,则称该匹配为完备匹配。
这个定理是显然的。
因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。
所以相等子图的完备匹配一定是二分图的最大权匹配。
初始时为了使A[ i ]+B[j]>=w[i,j]恒成立,令A[ i ]为所有与顶点Xi关联的边的最大权,B[j]=0。
如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。
我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。
这时我们获得了一棵交错树,它的叶子结点全部是X顶点。
现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现:1)两端都在交错树中的边(i,j),A[ i ]+B[j]的值没有变化。
也就是说,它原来属于相等子图,现在仍属于相等子图。
2)两端都不在交错树中的边(i,j),A[ i ]和B[j]都没有变化。
二分图概念及性质

⼆分图概念及性质 段段续续的看⼆分图已经有些时⽇了。
现在借着周末整理⼀下这么多天对⼆分图的掌握程度。
也好对⼆分图有个整体的认知。
另外,此⽂只针对与⼆分图的⼀些概念和性质,不涉及求最⼤匹配的算法。
好吧,切⼊正题: ⾸先我们抛开⼆分图严谨准确的定义,从⼀个感性的⾓度来认识⼀下什么是⼆分图。
所谓⼆分图,就是能够把图中的定点分成两个X,Y两部分;并且整个图的边只存在于X与Y之间。
就是说,X与Y的内部是不存在边的,否则的话就不是⼆分图了。
举个例⼦:如果把整个⼈类中的男⼈和⼥⼈看成顶点,⼈与⼈之间的恋爱关系(这⾥只讨论异性之间的正常恋爱,同性恋是不被承认的)为边来建⽴图模型的话。
那么这其实就是⼀个⼆分图,其中的男⼈为X部分,⼥⼈为Y部分。
好了,现在我们给出⼆分图严谨的科学定义: 假设图G=(V,E)是⼀个⽆向图,若顶点集 V 可以分解成两个互不相交的⼦集(A,B),并且图中的所有边(i,j)的端点 i,j 分别属于⼦集 A,B 中的元素,则称图 G 是⼀个⼆分图。
为了更好的叙述下⽂,先让我们清楚⼀个概念: 匹配:⽆公共点的边集合。
(形象点就是 X与Y之间的边的个数) 匹配数:边集中边的个数。
最⼤匹配:匹配数最⼤的匹配。
边独⽴集:指图中边集的⼀个⼦集,且该⼦集中的任意两条边之间没有公共点。
(对⽐匹配的概念我们发现,其实边独⽴集和匹配是⼀个概念) 最⼤边独⽴集:包含边数最多的边独⽴集。
(其实就是最⼤匹配,为了⽅便,以后统称最⼤匹配)图1如图1,如果<1,4>是⼀个合法匹配,那么<1,5>就不是⼀个合法的匹配,因为它们有公共点1 。
同样的如果<2,5>是⼀个合法的匹配,那么<2,6>和<3,5>就不是⼀个合法的匹配。
不难看出,其中最⼤匹配是边集:{1, 4, 5},最⼤匹配数为3 。
独⽴集: 是指图的顶点集的⼀个⼦集,且该⼦集中的任意两个顶点之间不存在边。
第五章_图论2

通路定理
[定理]通路定理 在n阶图G中,如果有顶点u到v (u v) 的通路,那么u到v必有一条长度小于等
于n1的基本通路。
7
通路定理证明
定理:在有n个顶点的图G中,如果有顶点u到v的通路,必有长 度不大于n-1的基本通路。
证明:(1)先证明u和v之间存在基本通路 若uv之间的通路P中有相同的顶点,则从P中删除相同顶点之间
路径,直到P中没有相同顶点,这样得到的路径为u和v之间的基 本通路。
(2) 再证基本通路长度不大于n-1 (反证法)设u和v之间的基本通路的长度≥n。 ∵ 一条边关联两个顶点, ∴长度≥n的基本通路上至少有n+1个顶点。 ∴至少有两个相同顶点在u和v之间的基本通路上,这与基本通路 的性质“任意两个顶点不同”相矛盾。
图G从vi点到vj点有通路当且仅当?
bij = 1
21
图的连通性与可达矩阵
有向图的连通性(n1): 设有向图G的可达矩阵为B
(1) G强连通 B中元素全为1 (2) G是单向连通的 B中所有关于主对角线对称
的两个元素中至少一个值为1
无向图的连通性(n1): 设无向图G的可达矩阵为B
G连通 B中元素全为1
[定义]基本通(回)路
结点各不相同的通路称为基本通路。 中间结点各不相同的回路称为基本回路。
A
基本通路:ACEBD
B
E
基本回路:ABCDEA
C
D
5
有向通(回)路
[定义]有向通(回)路 若通路v0v1 … vn各边是有向边,且vi-1和vi 分别是有向边的始点与终点,则称该通路为 有向通(回)路。
通路uxv相连。
由u和v的任意性,可知~G是连通的。
27
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图论专题二分图朝花夕拾2010-12-28 17:56:46 阅读66 评论0 字号:大中小订阅二分图:二分图是这样一个图,它的顶点可以分类两个集合X和Y,所有的边关联的两个顶点恰好一个属于集合X,另一个属于集合Y。
二分图匹配:给定一个二分图G,在G的一个子图M中,M的边集中的任意两条边都不依附于同一个顶点,则称M是一个匹配。
最大匹配:图中包含边数最多的匹配称为图的最大匹配。
完美匹配:如果所有点都在匹配边上,则称这个最大匹配是完美匹配。
二分图匹配基本概念:未盖点设VI是G的一个顶点,如果VI不与任意一条属于匹配M的边相关联,就称VI是一个未盖点。
交错轨设P是图G的一条轨,如果P的任意两条相邻的边一定是一条属于M而另一条不属于M,就称P是交错轨。
可增广轨(增广路)两个端点都是未盖点的交错轨称为可增广轨。
可增广轨的性质:1:P的路径长度必定为奇数,第一条边和最后一条边都不属于M。
2:P经过取反操作可以得到一个更大的匹配M’。
3:M为G的最大匹配当且仅当不存在相对于M的增广路径。
二分图最大匹配匈牙利算法:算法的思路是不停的找增广轨,并增加匹配的个数,增广轨顾名思义是指一条可以使匹配数变多的路径,在匹配问题中,增广轨的表现形式是一条"交错轨",也就是说这条由图的边组成的路径,它的第一条边是目前还没有参与匹配的,第二条边参与了匹配,第三条边没有..最后一条边没有参与匹配,并且始点和终点还没有被选择过.这样交错进行,显然他有奇数条边.那么对于这样一条路径,我们可以将第一条边改为已匹配,第二条边改为未匹配...以此类推.也就是将所有的边进行"取反",容易发现这样修改以后,匹配仍然是合法的,但是匹配数增加了一对.另外,单独的一条连接两个未匹配点的边显然也是交错轨.可以证明,当不能再找到增广轨时,就得到了一个最大匹配.这也就是匈牙利算法的思路。
代码://匈牙利算法复杂度o(nm)#include<iostream>using namespace std;const int MAXN = 1001,MAXM = 1001;int n1,n2,m,ans;//n1,n2分别为二分图两边节点的个数,两边的节点分别用1..n1,1..n2编号,m为边数bool g[MAXN][MAXM];//图G邻接矩阵g[x][y]bool y[MAXM];//Y集合中点i访问标记int link[MAXM];//link[y]表示当前与y节点相邻的x节点void init(){int x,y;memset(g,0,sizeof(g));memset(link,-1,sizeof(link));ans = 0;scanf("%d%d%d",&n1,&n2,&m);for (int i = 1;i <= m;i++){scanf("%d%d",&x,&y);g[x][y] = true;}}bool find(int x)//是否存在X集合中节点x开始的增广路{for (int i = 1;i <= n2;i++)if (g[x][i] && !y[i])//如果节点i与x相邻并且未访问过{y[i] = true;if (link[i] == -1 || find(link[i]))//如果找到一个未盖点i中或从与i相邻的节点出发有增广路{link[i] = x;return true;}}return false;}int main(){init();/*for (int j = 1;j <= n2;j++)for (int i = 1;i <= n1;i++)if (g[i][j] && !link[j])link[j] = i;//贪心初始解优化*/for (int i = 1;i <= n1;i++){memset(y,0,sizeof(y));if (find(i))ans++;}printf("%d\n",ans);return0;}真正求二分图的最大匹配的题目很少,往往做一些简单的变化:变种1:二分图的最小顶点覆盖最小顶点覆盖要求用最少的点(X或Y中都行),让每条边都至少和其中一个点关联。
knoig定理:二分图的最小顶点覆盖数= 二分图的最大匹配数(m)。
变种2:DAG图的最小路径覆盖用尽量少的不相交简单路径覆盖有向无环图(DAG)G的所有顶点,这就是DAG图的最小路径覆盖问题。
结论:DAG图的最小路径覆盖数= 节点数(n)- 最大匹配数(m)变种3:二分图的最大独立集结论:二分图的最大独立集数 = 节点数(n)—最大匹配数(m)附上一些题目1:pku 1466 Girls and Boys /problem?id=1466这是一道典型的二分匹配的题目,并且非常简单,使用模板即可AC。
题目大意:在N个点的图G中选出m个点,使这m个点两两之间没有边.求m最大值.如果图G满足二分图条件,则可以用二分图匹配来做.最大独立集点数= N - 最大匹配数。
最大独立数=未匹配的节点+匹配数/2 (1)(设n=匹配数/2,可以理解为去掉二分图某侧匹配好的n个节点,在另一侧对应的n个节点就没有相匹配的了)未匹配的节点=顶点数-匹配数(2)由(1)(2)得: 最大独立数=顶点数-匹配数的一半参考:/zjut_nizhenyang/blog/static/1695700292010920914230/2:pku 1719 Shooting Contest 二分图匹配/zjut_nizhenyang/blog/static/169570029201010199320592/建图,输出匹配就行了//题目分析:题目其实要求你以x,y坐标作为二分图的两个节点部分,然后让你找到一个匹配,然后根据一个部分的节点顺序把对应的另一个节点输出//思路分析:直接用dfs实现的匈牙利算法来解决二分图参考:/zjut_nizhenyang/blog/static/169570029201010199320592/3:pku 1422 二分图,最小路径覆盖/problem?id=1422参考:/zjut_nizhenyang/blog/static/16957002920101025922340/4:pku 2594 Treasure Exploration floyd 重新建图+最小路径覆盖+二分图/problem?id=2594参考:/zjut_nizhenyang/blog/static/1695700292010102583552414/5:pku 3216 Repairing Company floyd 最短路+二分图最大匹配/problem?id=3216参考:/zjut_nizhenyang/blog/static/169570029201010257563738/6:pku 1904 King's Quest 强连通分支,二分图/problem?id=1904参考:/zjut_nizhenyang/blog/static/1695700292010102572022595/7:pku 3041 二分图最小点覆盖数=最大匹配数/problem?id=3041参考:/zjut_nizhenyang/blog/static/1695700292010102462244415/8:zjut 1321 Dividing 二分图匹配/ShowProblem.aspx?ShowID=1321参考:/zjut_nizhenyang/blog/static/1695700292010102454153206/9:pku 2771 Guardian of Decency 二分图,最大独立集/problem?id=2771参考:/zjut_nizhenyang/blog/static/1695700292010111065019932/10:pku 1325 Machine Schedule 二分图最小点覆盖/problem?id=1325参考:/zjut_nizhenyang/blog/static/1695700292010111035942586/11:pku 1486 Sorting Slides 二分图必须边/problem?id=1486参考:/zjut_nizhenyang/blog/static/1695700292010111032443864/12:pku 2536 Gopher II 二分图匹配/problem?id=2536参考:/zjut_nizhenyang/blog/static/1695700292010117113611862/13:pku 2239 Selecting Courses 二分图匹配/problem?id=2239参考:/zjut_nizhenyang/blog/static/16957002920101171151319/ 14:pku 1274 The Perfect Stall 二分图匹配/problem?id=1274参考:/zjut_nizhenyang/blog/static/1695700292010117102245344/ 15:pku 2724 Purifying Machine 二分图最小路径覆盖/problem?id=2724参考:/zjut_nizhenyang/blog/static/1695700292010111495830231/ 16:pku 3020 Antenna Placement 二分图最小路径覆盖/problem?id=3020参考:/zjut_nizhenyang/blog/static/1695700292010111485846859/ 17:pku 2446 二分图最大匹配的应用/problem?id=2446参考:/zjut_nizhenyang/blog/static/169570029201011148555347/ 18:pku 2226 Muddy Fields 二分图最小点覆盖/problem?id=2226参考:/zjut_nizhenyang/blog/static/1695700292010111365944100/ 19:zjut 1478 挽救损失二分图最小点覆盖/ShowProblem.aspx?ShowID=1478参考:/zjut_nizhenyang/blog/static/1695700292010111365248521/20:pku 2060 Taxi Cab Scheme 二分图最小路径覆盖/problem?id=2060参考:/zjut_nizhenyang/blog/static/16957002920101111433360/ 21:pku 1548 Robots 二分图最小路径覆盖/problem?id=1548参考:/zjut_nizhenyang/blog/static/169570029201011113748927/ 22:pku 3692 Kindergarten 二分图最大独立集,求补图的最大独立集/problem?id=3692参考:/zjut_nizhenyang/blog/static/1695700292010111075931537/。