极化作用和变形性
3.离子的极化总结

五、电荷迁移光谱
电荷迁移光谱常称为荷移光谱(C.T),是由配体轨道与 金属离子轨道之间的电子跃迁产生的。已知主要有三种形 式的电荷迁移:一种是配体阴离子向金属离子的电荷迁移, 另一种是金属向配体的电荷迁移,第三种是金属向金属的 电荷迁移。 通常电荷迁移跃迁比d-d跃迁需要较高的能量,因而 吸收峰一般出现在近紫外和紫外区,且吸收强度大,因为 是宇称允许,又是自旋允许的跃迁。 配体向金属离子的电荷跃迁(L→M)一般发生在含有 pπ 给予电子的配体和有空轨道的金属离子之间,这种跃 迁相当于金属离子被还原,配体被氧化,但一般并不实现 电子的完全转移。
三、离子极化对化合物的溶解度的影响
AgF 溶解度g/L 1800 溶度积 AgCl 0.03 AgBr 0.0055
教材P714
AgI 5.6*10-5
1.77*10-10 5.35*10-13 8.51*10-17
这主要是因为F-离子半径很小,不易发生变形,Ag+ 和F-的相互极化作用小,AgF属于离子型化合物,可溶于 水。银的其它卤化物,随着Cl→Br→I的顺序,共价程度 增强,它们的溶解度就依次递减了。 正一价Cu+的卤化物和Ag+的卤化物行为类似。 在这里要注意:影响无机化合物溶解度的因素是很多 的,但离子的极化往往起很重要的作用。
3.离子极化的结果 ① 键型过渡(离子键向共价键过渡)
如:AgF AgCl AgBr AgI
离子键 共价键
核间距缩短。
Ag+ I-
r/pm 126+216 (= 342)
离子位移极化

离子位移极化极化作用和变形性强弱的规律阳离子(1)电荷越大,半径越小,极化作用越强;(2)不同价电子构型的阳离子极化作用的强弱依次为:18或18+2>9-17>8电子构型的离子(3)对于相同电子层结构的离子而言,离子半径越小,极化作用越强,半径越大,变形性越大;(4)18、18+2和9-17电子层的离子,有较大的变形性。
这在于d电子云结构弥散,相对易于变形。
阴离子(1)电子层结构相同的阴离子负电荷越大,变形性越大;半径越大,变形性越大。
(2)一些复杂的无机阴离子,如酸根,极化作用、变形性都不显著。
且复杂阴离子中心离子(即成酸元素)氧化数越高,变形性越小。
常见阴离子变形性顺序:常见阴离子变形性顺序离子极化使得离子电子云发生变形,进而部分重叠,这就使得离子键中有了共价键的成分。
极化作用越显著,电子云重叠程度越大,共价键的成分越大。
离子极化对化合物性质的影响①使化合物的溶解度降低水是极性溶剂,根据相似相溶原理,极性溶剂在水中的溶解度更大。
②导致物质的颜色加深极化使阴、阳离子的原子轨道发生重叠,导致阴离子原子轨道上的电子吸收可见光向阳离子的原子轨道发生跃迁。
极化越显著,原子轨道发生重叠程度越大,阴阳离子原子轨道能量差越小,电子跃迁吸收可见光能量越小,化合物颜色越深。
③导致晶体晶格的变化使晶体有从高配位数向低配位数结构过渡的趋势。
离子键的主要特征是没有方向性、没有饱和性,共价键的特征是有饱和性和方向性。
离子极化使核间距减小,意味着阴阳离子半径的减下,使离子键向共价键过渡。
④导致化合物的熔沸点降低极化导致离子键向共价键过渡,会导致离子晶体向分子晶体转变,由此引起物理性质的变化,导致熔沸点的降低。
⑤对含氧酸盐热解的影响含氧酸盐的热稳定性受其酸根离子的中心原子的极化作用和金属离子的极化作用的影响。
中心原子的极化能力越强,酸根离子越稳定。
金属离子的极化能力越强,电荷越高、半径越小,有效正电荷越强,越容易夺取酸根离子的O原子,热稳定性越差,热分解温度越低。
《无机化学》第十章 固体结构之课后习题参考答案

第十章固体结构之课后习题参考答案7解:最低的为KBr。
因为它们均为离子晶体,其离子所带电荷越高,离子半径越小,离子键越强,即晶体熔点就越高。
MgO中正负离子均带2个电荷,离子键最强,而1价离子中,KBr的正负离子半径之和最大,则离子键最弱,熔点最低。
8解:(1)熔点:NaF>NaCl>NaBr>NaI。
因为阳离子相同时,阴离子从F-→I-离子半径增大,则离子键依次减弱,熔点也依次减弱。
(2)MgO>CaO>SrO>BaO。
原因同(1)。
9解:(1):8e-;(2)(9-17)e-:(3)(18+2)e-;(4)18e-10解:(2)的。
因阴离子的极化率大于阳离子的,而体积越大,阴离子的极化率也越大。
11解:(4)>(3)>(1)>(2).因阳离子的电荷越高,半径越小,即Z/r值越大,其离子极化作用就越强。
13解:(1)色散力;(2)色散力;(3)取向力,诱导力,色散力,氢键;(4)取向力,诱导力,色散力;(5)色散力;(6)色散力;(7)取向力,诱导力,色散力。
14解:不含氢键的有:(1)和(2)。
15解:(1)两者均为分子晶体,但因HF中存在分子间氢键,增大了分子间作用力,使其沸点反高于HCl。
(2)两者均为典型的离子晶体,而离子晶体当电荷相同时,离子半径越小,其离子键越强,晶体的沸点就越高,所以NaCl的沸点高于CsCl。
(3)因Ti4+离子所带电荷高,离子半径又小,即Z/r值非常大,其极化作用很强,导致Ti-Cl 之间由离子键转化为了共价键,成为分子晶体,所以其沸点大大低于离子晶体LiCl。
(4)两者均为分子晶体,且分子量也相同。
但沸点相差较大。
这是因为乙醇分子(后者)之间存在分子间氢键,增大了分子间的作用力导致。
16解:因Ag+为18e电子构型的离子,其极化作用和变形性均大,而阴离子的半径从F-到I-依次增大,变形性也依次增加,导致Ag+与X-离子之间的极化作用从AgF到AgI依次增强,化学键从离子键逐步向共价键过渡,所以溶解度依次减小,即AgF易溶,其它难溶,且溶解度依次减小。
晶体结构

熔点
m.p./oC
993 801 747 661 2852 2614 2430 1918
摩氏 硬度 3.2 2.5
>2.5 >2.5 6.5 4.5 3.5 3.3
一般而言,晶格能越高,离子晶体的熔点越高、 硬度越大。晶格能大小还影响着离子晶体在水中的溶 解度、溶解热等性质。 注:离子晶体在水中的溶解度与溶解热不但与晶 体中离子克服晶格能进入水中吸收的能量有关,还与 进入水中的离子发生水化放出的能量(水化热)有关。 晶格需用实验方法或理论方法估算,获得晶格能 的方法很多,常见的方法有:
○ ○+ ○
-
○ ○- + ○
+
○ ○+ ○
○ ○○
●
● -
+
●
○
○+
○-
○
○+
○
○-
○
4、金属晶体:晶格上结点是金属的原子或正离子。
金 属 晶 体
一、金属键 . . . .. . 金属晶体中原子之间的化学作用力叫做金属键。 ○ . . ○. . . ○ . . .○ . . ○ . ○ + + .+ + + + ○ . . ○ . ○ . .○ ○ .○ . + + + + + + . . . . . . . . . 金属键是一种遍布整个晶体的离域化学键。金属晶 . . . . . . . . . . . . + . ○. ○ . ○ . .○ ○ .○ . + ○ 体是以金属键为基本作用力的晶体。 . . + . .+ . + . + + . ○ . . ○ .. ○ ○ .○ + + + + + . . . . . ... . . . .. . . . . . . . . . . . . 二、电子气理论 ○ . . .○. . . ○. .. . ○. .. . ○. . .○. + + + + .+ .+ ○ . ○ . ○ . . .○ ○ ○ + + + + + + . . . .. . . . . . . . . . 经典的金属键理论叫做“电子气理论”。它把 . . . . . . . . ○ ○ ○ ○ ○ ○ + + + + + ○ 金属键形象地描绘成从金属原子上“脱落”下来的+ + .○ .○ . ○ ○ ○ + + + + + 受外力作用金属原子移位滑动不影响电子气对金属原子的维系作用 大量自由电子形成可与气体相比拟的带负电的“电 (电子气理论对金属延展性的解释) 子气”,金属原子则“浸泡”在“电子气”的“海 洋”之中。 电子气理论定性地解释金属的性质:例如:金 属具有延展性和可塑性;金属有良好的导电性;金 属有良好的导热性;等等。电子气理论的缺点是定
离子的极化

平原大学化学与环境工程学院
三.离子相互极化产生的影响
1. 离子相互极化可使离子键过渡到共价键
离子相互极化作用增强
键的极性减弱
如: NaCl 和
AgCl
离子键
共价键
平原大学化学与环境工程学院
Na+和Ag+电荷相同,半径相近, 极化力: Na+小于Ag+ (Ag+:18电子构型 Na+:8电子构型) 变形性: Na+小于Ag+
与Cl-结合生成AgCl和NaCl后,NaCl仍以离子 键为主,属于离子键化合物;AgCl则由于Ag+离子 和Cl-离子的相互极化作用,使其带有相当部分的 共价键,离子键成分只占25%,所以AgCl 的极性
小于NaCl 。
平原大学化学与环境工程学院
2. 离子相互极化可使晶格和晶体类型发生变化
(1)离子晶体的晶型向配位数减小的趋势变化 离子半径:F- < Cl- <Br- <I变 形 性:F- &l< AgBr < AgI
化合物的熔、沸点不仅与晶体构型有关,而且还 与离子间的极化作用有关。由于离子极化使化学键的 离子性百分数减小,共价性百分数增大,晶体构型随 离子极化作用的增强而由离子型向分子型转变,所以 离子间的极化作用往往使化合物的熔、沸点降低。
平原大学化学与环境工程学院
本课小结
一、离子极化作用
1、离子极化的概念; 2、离子极化力和变形性。
(2)晶体类型的改变
第三周期元素的氯化物
NaCl MgCl2 AlCl3 SiCl4
离子半径:Na+
Si4+ 减小
电荷数:
增多
极化作用:
电子式极化——精选推荐

1、电子式极化:在外电场作用时,电子运动轨道发生了变形,并且与原子核间发生了相对位移,正电荷作用中心不再重合,这种由电子发生相对位移形成的极化称为电子式极化。
2、离子式极化:在有外电场作用时,正、负离子沿电场向相反的方向发生偏移,使平均偶极矩不再为零,介质对外呈现出极性,这种由离子的位移形成的极化称为离子式极化、3、单相触电:人体接触三相电网中带电体中的某一相时,电流通过人体流入大地4、两相触电:当人体同时接触带电设备或线路中的两相导体时,电流从一相导体经人体流入另一相导体,构成闭合回路5、接触电压:指人触及漏电设备的外壳,加于人手与脚之间电位差6、跨步电压:指人在有电位分布的故障区域内行走时,其两脚之间呈现出电位差7、电击:指电流流过人体内部造成人体内部器官的伤害8、电伤:指由于电流的热效应、化学效应和机械效应对人体的外表造成的局部伤害9、保护接地:是将一切正常时不带电而在绝缘损坏时可能带电的金属部分与独立的接地装置相连,从而防止工作人员触及时发生触电事故10.内部过电压:在电力系统内部,由于断路器的操作或系统故障,使系统参数发生变化,由此而引起的电力系统内部电网中电磁能量转化或传递的过渡过程中,将在系统中出现过电压11.直击雷:当雷云通过线路或电气设备放电时称为直击雷12.感应雷:当雷落在输电线附近时,会在输电线上感应出过电压,此过电压沿着输电线向两端传出,落雷点离导线越近,则感应过电压越高13.倒闸操作:电气设备由一种状态转换到另一种状态,或改变电气一次系统运行方式所进行的一系列操作14.物理性爆炸:是由于物质的物理变化如温度、压力、体积等的变化引起的爆炸15.化学性爆炸:物质在短时间完成化学反应,形成其他物质,产生高温高压的气体而引起的爆炸16.基本安全用电:指那些绝缘强度能长期承受的工作电压,并且在该电压等级产生内部过电压时能保证工作人员安全的用具17.电烙印:在人体不被电击的情况下,在皮肤表面留下与带电体接触时形状相似的肿块痕迹18.亲水性电介质:极性电介质的表面与水分子之间的附着力远大于水分子的内聚力,就很容易吸附水分,而且吸附的水分湿润整个表面,形成连续水膜19.憎水性电介质:不含极性分子的电介质表面与水分子之间的附着力小于水分子的内聚力,不容易吸附水分,只在表面形成分散孤立的水珠,不构成连续的水膜20.伸长接地体:在土壤电阻率较高的岩石地区,为了减小接地电阻,有时需要加大接地体的尺寸,主要是增加接地体的长度21.外部过电压:指雷电引起的电力系统过电压,既雷云放电时电气设备由于外部的影响产生过电压22.雷电侵入波:沿着架空线路侵入变配所或客户的雷电波23.感知电流:是人体能够感觉,但不遭受伤害的电流24.摆脱电流:是人体触电后,不需要任何外来帮助的情况下,能够自主摆脱的最大电流分析题1.简述触电事故发生的规律答:1)触电事故的发生与季节有关2)触电事故多发生在低压电气设备上3)触电事故多发生在缺乏电气基本知识的人员身上4)触电事故与工作环境和生产性质有一定的关系5)放电斑点2.简述电子式极化及其特点答:1)极化过程所需的时间极短2)极化过程中没有能量损耗3)温度对极化过程影响很小4)极化过程与频率无关3.简述变电所直击雷防护的措施答:采用避雷针或避雷线4.简述氧化锌避雷器的优点答:1)无间隙2)无续流3)通流容量大,氧化锌避雷器通流容量大,耐操作波的能力强,故可用来限制内过电压,也可使用于直流输电系统4)降低电气设备所受到的过电压5.典型的电气误操作及防治误操作的组织措施答:误操作:1)带负载拉、合隔离开关2)带地线合隔离开关3)带电挂接电线4)误拉、合断路器5)误入带电间隔组织措施:操作命令的操作命令复诵制度;操作票制度;操作监护制度;操作票管理制度6.保证电气工作安全的组织措施有哪些答:1)工作票制度2)工作许可制度3)工作监护制度4)工作间断、转移和终结制度7.简述雷云对地的放电过程答:由于主放电过程中高速运动时的强烈摩擦以及复合等原因,使通道发出耀眼的强光这就是通常所见到的雷闪,又由于通道突然受热和冷却而形成的猛烈膨胀和压缩,以及在高压放电火花的作用下,使水喝空气分解,产生瓦斯爆炸。
8极化作用及其对物质性质的影响
极化作用及其对物质性质的影响一、分子的极化和分子间的力气体能凝结成液体,固体表面有吸附现象,毛细管内的液而会上升,粉末可压成片等,这些现象都证明分子与分子之间有引力存在。
通常把分子间力叫做范德华力。
分子间力的性质,一般是属于电学性质,分子间力的产生与分子的极化有关。
对于范德华力本质的认识是随着量子力学的出现而逐步深入的。
1. 分子的极化分子在外界电场的作用下发生结构上的变化称为极化。
在电场中,非极性分子中带正电荷的核被引向负电极,而电子云被引向正电极,使分子中正、负电荷重心发生相对位移,分子发生了变形。
非极性分子内正、负电荷重心原来是重合的,在电场的作用下发生了位移,从而产生了偶极,如图1所示。
这种在外电场的诱导下产生的偶极,叫做诱导偶极,当外界电场消失时,偶极也消失,分子恢复原状。
诱导偶极的极性大小决定于电场的强度和分子的变形性。
分子的变形性也称为极化度。
外界电场对极性分子的作用过程与对非极性分子的作用稍有不同。
极性分子本来就具有偶极,这种偶极称为固有偶极。
当它们受到外电场的作用时,分子的偶极会按照电场的方向定向,即它们的正极被引向负电极,分子的负极被引向正电极,这种作用称为取向作用。
同时,在电场作用下,极性分子也会变形而产生诱导偶极。
因此极性分子的极化是分子的取向和变形的总结果。
2. 分子间的力分子间的力一般包括三个部分。
2.1取向力(或定向力)取向力发生在极性分子和极性分子之间,当两个极性分子相互接近时,同极相斥,异极相吸;一个分子的带负电的一端和另一个分子带正电的一端接近,使极性分子按一定方向排列。
在已取向的极性分子间,由于静电引力而互相吸引,称为取向力。
两个极性分子的相互作用如图2所示。
当然由于分子的热运动,分子不会完全定向地排列成行。
图1外电场对分子极性的影响示意图取向力的本质是静电引力,可根据静电理论求出取向力的大小。
取向力与分子偶极矩的平方成正比,与热力学温度成反比,与分子间距离的七次方成反比。
(完整版)极化作用和变形性
极化作用和变形性桂耀荣离子极化指的是在离子化合物中,正、负离子的电子云分布在对方离子的电场作用下,发生变形的现象。
离子极化理论认为,当正离子和负离子相互结合形成离子晶体时,如果相互间无极化作用,则形成的化学键应是纯粹的离子键.事实上正、负离子之间将发生程度不同的相互极化作用,这种相互极化作用将导致电子云发生变形,即负离子的电子云向正离子方向移动,同时正离子的电子云向负离子方向移动,也就是说正、负离子的电子云发生了重叠。
相互极化作用越强,电子云重叠的程度也越大,则键的极性也越减弱。
从而使化学键从离子键过渡到共价键。
一种离子使导电离子极化而变形的作用称为该离子的“极化作用”。
被异号离子极化而发生离子电子云变形的性能称为该离子的“变形性”。
一般来说有阳离子极化作用占主要及阴离子变形占主要。
一、极化作用和变形性的规律以及相互极化和反极化作用1.阴离子的变形性(1)电子层结构相同的阴离子负电荷越大,变形性越大。
(2)电子层结构相同的阴离子的半径越大,变形性越大。
(3)复杂阴离子变形性通常不大,而且中心原子氧化数越高,变形性越小。
2.阳离子极化作用(1)离子正电荷越大,半径越小,极化作用越强.(2)就离子的外壳电子结构而论,离子极化作用依次为:8电子<9—17电子〈18电子和18+2电子这是因为有18电子电子层结构的离子,其最外层中的d电子对原子核有较小的屏蔽作用之故。
(3)对于外壳电子层结构相同的离子,电子层数越多,半径愈大,变形性越大。
3.相互极化(附加极化)虽然正离子和负离子都有极化作用和变形性两方面的性能,但负离子在正离子的极化作用下更易变形。
所以正离子主要表现为对负离子的极化作用,负离子主要表现为电子云的变形。
因此在讨论正、负离子间的相互极化时,往往着重的是正离子的极化作用及负离子的变形性。
但是当正离子的电子层构型为非稀有气体构型时,正离子也容易变形,此时要考虑正离子和负离子之间的相互极化作用。
12-6 分子间力和氢键 一、分子的极性和变形性P177 1、分子极.
⑵极性分子在电场中也会变形极化。
极性分子本身存在的偶极称为固有偶极。 极性分子固有偶极在电场作用下取向排列成异极 相邻的状态称为定向极化。 二、分子间力 1、分子间力的种类
11
⑴非极性分子间:
由于运动、电子与核发生相对位 移,正负电荷重心不重合——产生瞬时偶极
+
+
- +
- +
瞬时偶极异性相邻相互吸引 在大量分子集合体中,运动不停,瞬时偶极不断出 现,异极相邻始终存在,分子间始终存在持续不断的分 子间力。由瞬时偶极产生的分子间作用力称为色散力。 12
目录
19
• 作业: • 1、2、3、4、5、8、9、10、11、13、
15、17、19、22
20
表格:
分子大小 分子量 变形性 分子间力 F2 Cl2 小 小 小 小 m•p -218℃ -101℃ b•p -187℃ -34℃
Br2
I2
大
分子间
大
变形性 小
大
分子间力 小
大
-6℃
131℃ m•p -83.1℃
211.2 5.89
—— ——
254.9
16 7.33
α/(10-40 C.m2 . V-1 )
(2) 对物质熔点、沸点的影响: 表格: 结论:结构相似的同系列物质的分子量越大, 分子变形性越大,分子间力强,熔点 (m•p)、沸点(b•p)便越高。 思考:为什么表格中HF的熔、沸点均比 HCl、HBr、HI高? 原因:HF分子间除有三种分子间作用力 外,还有“氢键”作用。
17
三、氢键 1、氢键的形成和本质 (1) 形成 例:HF分子间氢键的形成。
F的外层电子构型为2s22p5,其未成对的2p电子与H 的1s电子形成共价键。因为F的电负性为4.0,远大 于H的电负性2.1,共用电子对强烈地偏向F一边,使 氢原子几乎变为“裸露”的氢核,即H几乎变为一个 半径极小的带正电荷的质点。而F带负电荷,且含有 孤对电子,这样,当两个HF分子靠近时,一个分子 中的氢核与另一个分子中负电荷集中的F上的孤对电 子必产生一种吸引力,从而形成氢键。
第7章 晶体结构7.3 离子极化
4 第7章 晶体结构
7.3 离子极化
离子的极化: 离子在电场作用下产生变形的现象。
7.3.1. 离子的极化作用和变形性
离子的极化作用:使异号离子极化变形的作用。
离子的变形性:被异号离子极化而发生电子云变形的性能。
正离子或负离子都有极化作用和变形性,但:
正离子极化作用大;负离子变形性大。
影响因素:离子的半径、电荷、电子构型。
1.正离子
(1)电荷多(少),极化能力强(弱),如
Si 4+>Al 3+>Mg 2+>Na +
(2)半径越小,极化能力越强,变形性越小:
极化能力:Li +>Na +>K +>Rb +>Cs +;变形性:Li +<Na +<K +<Rb +<Cs +
(3)电子层结构:极化作用和变形性的大小依次为:
8e < 9~17e < 18e 和(18+2)e
原因:d 电子对核屏蔽作用小;内层电子对d 电子屏蔽作用大。
2.负离子
(1) 负电荷越多,变形性越大。
如O 2->F -。
(2) 半径越大,变形性越大。
如F -<Cl -<Br -<I -。
(3) 复杂负离子的变形性不大,中心离子氧化数越高,变形性越小。
(内部原子间相互作用大,组成结构紧密、对称性高的原子团变形性小)
下列离子的变形性大小顺序为:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极化作用和变形性
桂耀荣
离子极化指的是在离子化合物中,正、负离子的电子云分布在对方离子的电场作用下,发生变形的现象。
离子极化理论认为,当正离子和负离子相互结合形成离子晶体时,如果相互间无极化作用,则形成的化学键应是纯粹的离子键。
事实上正、负离子之间将发生程度不同的相互极化作用,这种相互极化作用将导致电子云发生变形,即负离子的电子云向正离子方向移动,同时正离子的电子云向负离子方向移动,也就是说正、负离子的电子云发生了重叠。
相互极化作用越强,电子云重叠的程度也越大,则键的极性也越减弱。
从而使化学键从离子键过渡到共价键。
一种离子使导电离子极化而变形的作用称为该离子的“极化作用”。
被异号离子极化而发生离子电子云变形的性能称为该离子的“变形性”。
一般来说有阳离子极化作用占主要及阴离子变形占主要。
一、极化作用和变形性的规律以及相互极化和反极化作用
1.阴离子的变形性
(1)电子层结构相同的阴离子负电荷越大,变形性越大。
(2)电子层结构相同的阴离子的半径越大,变形性越大。
(3)复杂阴离子变形性通常不大,而且中心原子氧化数越高,变形性越小。
2.阳离子极化作用
(1)离子正电荷越大,半径越小,极化作用越强。
(2)就离子的外壳电子结构而论,离子极化作用依次为:
8电子<9—17电子<18电子和18+2电子
这是因为有18电子电子层结构的离子,其最外层中的d电子对原子核有较小的屏蔽作用之故。
(3)对于外壳电子层结构相同的离子,电子层数越多,半径愈大,变形性越大。
3.相互极化(附加极化)
虽然正离子和负离子都有极化作用和变形性两方面的性能,但负离子在正离子的极化作用下更易变形。
所以正离子主要表现为对负离子的极化作用,负离子主要表现为电子云的变形。
因此在讨论正、负离子间的相互极化时,往往着重的是正离子的极化作用及负离子的变形性。
但是当正离子的电子层构型为非稀有气体构型时,正离子也容易变形,此时要考虑正离子和负离子之间的相互极化作用。
正、负离子相互极化的结果,导致彼此的变形性增大,产生诱导偶极矩加大,从而进一步加强了它们的极化能力,这种加强的极化作用称为附加极化作用。
离子的外层电子构型对附加极化作用的大小有很重要的影响,一般是最外层含有d 电子的正离子容易变形而产生附加极化作用,而且所含d电子数越多,这种附加极化作用越大。
4.反极化作用
H+的反极化作用指氢离子对极性键的削弱作用。
反极化作用一般常见于含氧酸及含氧酸盐中。
二、离子极化对化合物的性质的影响
1.使化合物的熔点降低
由于离子极化,使化学键由离子键向共价键转变,化合物也相应由离子型向共价型过渡,其熔点、沸点也随共价成分的增多而降低。
2.使化合物的稳定性下降(分解温度降低)
随着离子极化作用的加强,负离子的电子云变形,强烈地向正离子靠近,有可能使正离子的价电子失而复得,又恢复成原子或单质,导致该化合物分解。
3.使化合物的颜色加深
离子极化作用使外层电子变形,价电子活动范围加大,与核结合松弛,有可能吸收部分可见光而使化合物的颜色变深。
4.使化合物的溶解度降低
离子晶体通常是可溶于水的。
水的介电常数很大(约等于80),它会削弱正、负离子之间的静电吸引,离子晶体进入水中后,正、负离子间的吸引力将减到约为原来的八十分之一,这样使正、负离子很容易受热运动的作用而互相分离。
由于离子极化,离子的电子云相互重叠,正、负离子靠近,离子键向共价键过渡的程度较大,即键的极性减小。
水不能像减弱离子间的静电作用那样减弱共价键的结合力,所以导致离子极化极化作用和变形性
桂耀荣
离子极化指的是在离子化合物中,正、负离子的电子云分布在对方离子的电场作用下,发生变形的现象。
离子极化理论认为,当正离子和负离子相互结合形成离子晶体时,如果相互间无极化作用,则形成的化学键应是纯粹的离子键。
事实上正、负离子之间将发生程度不同的相互极化作用,这种相互极化作用将导致电子云发生变形,即负离子的电子云向正离子方向移动,同时正离子的电子云向负离子方向移动,也就是说正、负离子的电子云发生了重叠。
相互极化作用越强,电子云重叠的程度也越大,则键的极性也越减弱。
从而使化学键从离子键过渡到共价键。
一种离子使导电离子极化而变形的作用称为该离子的“极化作用”。
被异号离子极化而发生离子电子云变形的性能称为该离子的“变形性”。
一般来说有阳离子极化作用占主要及阴离子变形占主要。
一、极化作用和变形性的规律以及相互极化和反极化作用
1.阴离子的变形性
(1)电子层结构相同的阴离子负电荷越大,变形性越大。
(2)电子层结构相同的阴离子的半径越大,变形性越大。
(3)复杂阴离子变形性通常不大,而且中心原子氧化数越高,变形性越小。
2.阳离子极化作用
(1)离子正电荷越大,半径越小,极化作用越强。
(2)就离子的外壳电子结构而论,离子极化作用依次为:
8电子<9—17电子<18电子和18+2电子
这是因为有18电子电子层结构的离子,其最外层中的d电子对原子核有较小的屏蔽作用之故。
(3)对于外壳电子层结构相同的离子,电子层数越多,半径愈大,变形性越大。
3.相互极化(附加极化)
虽然正离子和负离子都有极化作用和变形性两方面的性能,但负离子在正离子的极化作用下更易变形。
所以正离子主要表现为对负离子的极化作用,负离子主要表现为电子云的变形。
因此在讨论正、负离子间的相互极化时,往往着重的是正离子的极化作用及负离子的变形性。
但是当正离子的电子层构型为非稀有气体构型时,正离子也容易变形,此时要考虑正离子和负离子之间的相互极化作用。
正、负离子相互极化的结果,导致彼此的变形性增大,
产生诱导偶极矩加大,从而进一步加强了它们的极化能力,这种加强的极化作用称为附加极化作用。
离子的外层电子构型对附加极化作用的大小有很重要的影响,一般是最外层含有d 电子的正离子容易变形而产生附加极化作用,而且所含d电子数越多,这种附加极化作用越大。
4.反极化作用
H+的反极化作用指氢离子对极性键的削弱作用。
反极化作用一般常见于含氧酸及含氧酸盐中。
二、离子极化对化合物的性质的影响
1.使化合物的熔点降低
由于离子极化,使化学键由离子键向共价键转变,化合物也相应由离子型向共价型过渡,其熔点、沸点也随共价成分的增多而降低。
2.使化合物的稳定性下降(分解温度降低)
随着离子极化作用的加强,负离子的电子云变形,强烈地向正离子靠近,有可能使正离子的价电子失而复得,又恢复成原子或单质,导致该化合物分解。
3.使化合物的颜色加深
离子极化作用使外层电子变形,价电子活动范围加大,与核结合松弛,有可能吸收部分可见光而使化合物的颜色变深。
4.使化合物的溶解度降低
离子晶体通常是可溶于水的。
水的介电常数很大(约等于80),它会削弱正、负离子之间的静电吸引,离子晶体进入水中后,正、负离子间的吸引力将减到约为原来的八十分之一,这样使正、负离子很容易受热运动的作用而互相分离。
由于离子极化,离子的电子云相互重叠,正、负离子靠近,离子键向共价键过渡的程度较大,即键的极性减小。
水不能像减弱离子间的静电作用那样减弱共价键的结合力,所以导致离子极化作用较强的晶体难溶于水。
作用较强的晶体难溶于水。