定积分概念的步骤

合集下载

定积分的定义及几何意义

定积分的定义及几何意义

精品文档 定 积 分教学重点:定积分的概念、定积分法求简单的定积分、定积分的几何意义. 教学难点:定积分的概念、定积分的几何意义.教学重点:掌握过程步骤:分割、以不变代变、求和、逼近(取极限). 教学难点:过程的理解.1.定积分的概念:一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间 [,]a b 等分成n 个小区间,每个小区间长度为x ∆(b a x n-∆=),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=,作和式:11()()n n n i i i i b a S f x f nξξ==-=∆=∑∑ 如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。

记为:()ba S f x dx =⎰其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。

说明:(1)定积分()b a f x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b af x dx ⎰,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ; ②近似代替:取点[]1,i i i x x ξ-∈; ③求和:1()ni i b a f n ξ=-∑; ④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑⎰ (3)积分的几何意义:曲边图形面积:()ba S f x dx =⎰; 积分的物理意义: 变速运动路程21()t t S v t dt =⎰; 变力做功 ()ba W F r dr =⎰ 2.定积分的性质根据定积分的定义,不难得出定积分的如下性质:性质1a b dx b a -=⎰1 性质2 ⎰⎰=baba dx x f k dx x kf )()( (其中k 是不为0的常数)精品文档 性质31212[()()]()()b b b a a a f x f x dx f x dx f x dx ±=±⎰⎰⎰ 性质4 ()()()()bc b a a c f x dx f x dx f x dx a c b =+<<⎰⎰⎰其中例题:求曲线2x y =与0,1==y x 所围成的区域的面积 解:(1)分割:将区间[]0,1等分成n 个小区间:11i i t n n n-∆=-= (2)近似代替:2)1(1n i n s i -=∆ (3)求和: 1ni i S S ==∆∑ 从而得到S 的近似值 )12)(11(61n n s --= (4)取极限:1111115lim lim lim 112323n n n n n i i S S v n n n n →∞→∞→∞=-⎡⎤⎛⎫⎛⎫⎛⎫===---+= ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦∑ 例1.利用定积分的定义计算dx x )1(210+⎰的值。

初中数学知识归纳定积分的基本概念和性质

初中数学知识归纳定积分的基本概念和性质

初中数学知识归纳定积分的基本概念和性质定积分作为数学中的一个重要概念,是初中数学学习中必须掌握的内容之一。

本文将从定积分的基本概念和性质两个方面进行归纳,帮助初中生更好地理解和掌握这一知识点。

1. 定积分的基本概念定积分是对函数在一定区间上的积分,可以理解为曲线与x轴所夹的面积。

具体而言,定积分可以表示为∫ab f(x)dx,其中a和b分别表示积分的下限和上限,f(x)表示被积函数。

定积分的计算方法有多种,常见的有几何法和定积分的运算法则。

几何法是通过图形的面积进行计算,而定积分的运算法则则利用不定积分求解。

2. 定积分的性质定积分具有以下几个性质:(1)可加性:对于函数f(x)和g(x),定积分具有可加性,即∫ab[f(x) + g(x)] dx = ∫ab f(x) dx + ∫ab g(x) dx。

(2)线性性:对于任意实数k,定积分具有线性性质,即∫ab kf(x) dx = k∫ab f(x) dx。

(3)区间可加性:对于函数f(x)在区间[a, b]上的定积分,可以将该区间分割成若干小区间,然后进行分别计算再求和,即∫ab f(x) dx =∑(i=1 to n) ∫xi-1 xi f(x) dx,其中[xi-1, xi]表示分割后的小区间。

(4)定积分的性质与原函数相关:如果函数F(x)在区间[a, b]上是函数f(x)的原函数,则∫ab f(x) dx = F(b) - F(a)。

(5)无关紧要的加法常数:定积分无关紧要的加法常数,即∫abf(x) dx = ∫ab [f(x) + C] dx,其中C为任意常数。

3. 定积分的应用定积分不仅仅在数学理论中有重要应用,还广泛应用于物理、经济学等实际问题中。

以下是一些常见的应用场景:(1)面积计算:定积分可以用来计算曲线与x轴所夹的面积,从而解决几何学中的面积问题。

(2)求解平均值:对于某些变量随时间变化的过程,可以通过定积分计算平均值,如平均速度、平均密度等。

定积分的概念

定积分的概念

f ( i ) xi ,
i 1
记 max{ x1 , x2 ,, xn },如果不论对[a, b]
怎样的分法, 也不论在小区间[ xi1 , xi ]上
点i 怎样的取法,只要当 0时,和式总趋于 确定的极限I ,我们称这个极限 I 为函数 f ( x)
在区间[a, b]上的定积分, 记为
积分上限
b a
f ( x)dx

I
lim 0
n i 1
f
(i )xi
积分和
积分下限
被 积 函 数


[a,b] 积分区间


表 达 式
变 量
定积分的本质是一种特殊结构的和式的极限
曲边梯形面积A:
n
A lim 0 i1
f (i )xi
记为 b f x dx a
隔[T1 ,T2 ]内,v 的变化不大,可近似看作是
匀速运动问题。按照求曲边梯形面积的思 想。
思路:把整段时间分割成若干个小段,每小段上 速度看作不变。求出各小段的路程再相加,便得到 路程的近似值。最后通过对时间的无限细分过程求 得路程的精确值。
(1)分割 T1 t0 t1 t2 tn1 tn T2 ti ti ti1
sin xdx
1
A2


4
sin
xdx
所以

5
A sin xdx 4 sin xdx
1

内容小结
1. 定积分的定义 — 乘积和式的极限
b
n
a
f ( x)dx lim 0 i1
f (i )xi
2. 定积分的几何意义

定积分的概念和基本思想

定积分的概念和基本思想

定积分的概念和基本思想一、定积分的概念和基本思想1、定积分的概念一般地,如果函数$f(x)$在区间$[a,b]$上连续,用分点$a=x_0<x_l<$$\cdots<$$x_{i-l}<x_i<$S\cdots<$$x_n=b$将区间$ la, b] S等分成$n$ 个小区间,在每个小区间$[x_{iT},x_i]$上任取一点$ C _i (i=l, 2, \cdots, n)$,作和式$\underset{i=l}{\overset{n}{\sum}}f(4 _i)Ax=$$\underset{i=l}{\overset {n} {\sum ))\frac(b-a} {n}f(C_i)$,当Sn-8$时,上述和式无限接近某个常数,这个常数叫做函数$f (x) $在区间$[a,b]$上的定积分,记作$\int_{a} * (b}f (x) (\rm d}x$,即$\int_{a}*{b}f(x){\rmd}x=$$\underset(n~* °°}{\lim}\underset{i=l}{\overset{n}{\sum}}\frac{b_ a}{n}f(g_i)$,这里,$a$与$b$分别叫做积分下限与积分上限,区间$[a,b]$叫做积分区间,函数$f(x)$叫做被积函数,$x$叫做积分变量,$f(x) {\rm d}x$叫做被积式。

(1)定积分$\int_{a}*{b}f(x) {\rm d}x$不是一个函数式,而是一个数值(极限值),它只与被积函数以及积分区间有关,而与积分变量无关,即$\int_{a}*{b}f(x){\rm d}x=$S\int_{a}*{b}f(t)(\rm d}t=$$\int_{a}*{b}f(u){\rm d}u$o(2)定义中区间的分法和$ g _i$的取法是任意的。

2、定积分的基本思想定积分的基本思想就是以直代曲,即求曲边梯形的而积时,将曲边梯形分割成一系列的小曲边梯形,用小矩形近似代替,利用矩形面积和逼近的思想方法求出曲边梯形的面积。

定积分的概念及性质

定积分的概念及性质

一、定积分的概念及性质定积分是研究分布在某区间上的非均匀量的求和问题,必须通过“分割、近似、求和、求极限”四个步骤完成,它表示了一个与积分变量无关的常量。

牛顿—莱布尼兹公式揭示了定积分与原函数的关系,提供了解决定积分的一般方法。

要求解定积分,首先要找到被积函数的原函数,而求原函数是不定积分的内容,由此,大家也可以进一步体会上一章内容的重要性。

被积函数在积分区间有界是可积的必要条件,在积分区间连续是可积的充分条件。

定积分具有线性性质、比较性质以及中值定理等,这些性质在定积分的计算和理论研究上具有重要意义,希望大家认真领会。

二、定积分的计算定积分的计算主要依靠牛顿—莱布尼兹公式进行。

在被积函数连续的前提下,要计算定积分一般需要先计算不定积分(因而不定积分的计算方法在定积分的计算中仍然适用),找出被积函数的原函数,但在具体计算时,定积分又有它自身的特点。

定积分计算的特点来自于定积分的性质,来自于被积函数在积分区间上的函数特性,因此有时定积分的计算比不定积分更简洁。

尽管定积分在求原函数的指导思想上与不定积分没有差别,但实际上它们又不完全一样。

例如用换元法来计算定积分⎰22cos sin πxdx x ,如果计算过程中出现了新的变元:x u sin =,则上下限应同时相应改变,微分同样如此,即⎰202cos sin πxdx x x u sin =313110312==⎰u du u 。

可以看出,在进行换元时的同时改变了积分的上下限,这样就无须象不定积分那样回代了。

但如果计算过程中不采用新变元,则无需换限,即=⎰202cos sin πxdx x 31sin 31sin sin 203202==⎰ππx x xd 。

在前一种方法(也称为定积分的第二换元法)中,一定要注意三个相应的变换:积分上、下限、微分,否则必然出现错误。

后一种方法(定积分的第一换元法)可以解决一些相对简单的积分,实际上是换元的过程可以利用凑微分来替代,由于没有出现新的变元,因而也就无须改变积分上下限及微分。

定积分的含义和计算

定积分的含义和计算

定积分的含义和计算定积分是微积分中的一种运算方式,通过计算函数在一个区间上的面积来求解。

它是反应函数变化的量的一种数值特征,同时也是分析函数性质和解决实际问题中的重要工具之一。

在本文中,我们将详细介绍定积分的含义、计算方法及其应用。

首先,我们来探讨定积分的含义。

定积分可以理解为函数曲线与坐标轴之间的有向面积。

具体而言,对于一个函数$f(x)$,我们可以将其限定在一个区间$[a,b]$上,然后使用一根尺直角下压在曲线上,该尺的长度与曲线上相应点的纵坐标相关。

当我们将尺从$a$点移动到$b$点时,这根尺覆盖的面积就是定积分。

同时,定积分还可以表示曲线上方的面积减去曲线下方的面积,即上减下。

为了更形象地理解定积分的含义,我们可以以一个例子进行说明。

假设有一个自由落体运动,其运动方程为$s(t) = v_0t - \frac{1}{2}gt^2$,其中$v_0$是初始速度,$g$是重力加速度,$t$是时间。

现在我们想知道在给定的时间区间$[t_1,t_2]$内自由落体运动所覆盖的空间距离。

这时,我们可以使用定积分来解决这个问题。

根据定义,自由落体运动的空间距离可以表示为$s(t)$在区间$[t_1,t_2]$上的定积分:$$\int_{t_1}^{t_2}(v_0t - \frac{1}{2}gt^2)dt$$其中$\int$表示求和的符号,$(v_0t - \frac{1}{2}gt^2)dt$表示被积函数,$dt$表示积分变量。

这个定积分的结果就是自由落体运动在区间$[t_1,t_2]$内所覆盖的空间距离。

接下来,我们将介绍定积分的计算方法。

在实际计算中,定积分可以通过多种方式求解,例如几何法、牛顿-莱布尼茨公式和数值积分等。

几何法是一种直观易懂的计算方式,它利用几何图形的性质来求取定积分的值。

具体而言,对于一个函数$f(x)$,我们可以通过绘制函数曲线与坐标轴之间的图形,然后根据几何图形的性质来计算面积。

五种定积分定义

五种定积分定义

五种定积分定义一、定积分简介定积分是微积分中的重要概念,是对曲线下面的面积进行计算的方法。

定积分可用于求解曲线与坐标轴之间的面积,也可用于求解曲线的弧长、体积等问题。

本文将介绍定积分的五种定义方法,包括上确界与下确界、黎曼和、黎曼积分、反常积分和定积分的性质。

二、上确界与下确界1.上确界:对于函数f(x)在闭区间[a, b]上的每个x,都存在一个实数M,使得f(x)≤M成立。

M称为函数f(x)在闭区间[a, b]上的上确界。

记为M =sup{f(x) | x ∈ [a, b]}。

2.下确界:对于函数f(x)在闭区间[a, b]上的每个x,都存在一个实数m,使得f(x)≥m成立。

m称为函数f(x)在闭区间[a, b]上的下确界。

记为m =inf{f(x) | x ∈ [a, b]}。

三、黎曼和黎曼和是通过将区间[a, b]等分成n个小区间,计算每个小区间上的面积之和来逼近曲线下面的面积。

具体步骤如下:1.将区间[a, b]等分成n个小区间,每个小区间的长度为Δx = (b-a)/n。

2.在每个小区间上选择一个数ξi,并计算f(ξi)Δx。

3.将所有小区间上的面积之和作为黎曼和的近似值:S = ∑f(ξi)Δx。

当n趋于无穷大时,黎曼和的极限值即为定积分的值。

四、黎曼积分黎曼积分是用黎曼和的极限来定义定积分的方法。

如果对于函数f(x)在区间[a, b]上存在一个数I,对于任意给定的ε > 0,都存在一个正整数N,使得对于任意的n > N,当区间[a, b]等分成n个小区间时,所对应的黎曼和S满足|S - I| < ε,那么称函数f(x)在区间[a, b]上是黎曼可积的,并称I为函数f(x)在区间[a, b]上的黎曼积分。

五、反常积分反常积分是对无界函数或在某些点上发散的函数进行积分的方法。

常见的反常积分包括第一类反常积分和第二类反常积分:1.第一类反常积分:若无界函数f(x)在区间[a, b]的任一子区间[a, c]上的定积分存在有限极限L,则称L为函数f(x)在区间[a, b]上的第一类反常积分,记为∫[a, b]f(x)dx = L。

定积分的概念与性质

定积分的概念与性质

(2)取近似:取每个小区间的右端点i n
为ξi(
i=
1,2,…,n),
作乘积
f
(i )xi
( i )2 n
(3)求和:
n
i 1
f (i )xi
n i2 ()
i1 n
1 n
n i 1
i2 n3
Байду номын сангаас
1 n3
(12
22
n2)
=
1 n3
1 6
n(n
1)(2n
1)
1 6
(1
1 )(2 n
1 n
)
例1.1 用定积分的定义计算 1 x2dx 0
1
2e 4
2 ex2 xdx 2e2
0
证明:
函数在闭区间[0, 2]上的最大值为 e2
最小值为
1
e4
所以由积分估值定理可知
1
性质6(定积分估值定理) 设m, M 是f(x) 在区间 [a,b] 上最 小值和最大值,则
b
m(b a) a f (x)dx M (b a)
性质7(定积分中值定理) 如果函数f(x) 在闭区间 [a,b] 上 连续,则在 [a,b] 上至少存在一点ξ使
b
a f (x)dx f ( )(b a)
b
dx
b1 dx 高为1、底为b a的矩形面积=b a
a
a
a xdx 高为a、底为a的直角三角形面积= 1 a2
0
2
R R2 x2 dx 半径为R的上半圆面积= 1 R2
R
2
2 sin xdx (0 正负面积相消后的代数面积为0) 0
例1.1 用定积分的定义计算 1 x2dx 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分概念的步骤
定积分是微积分中的重要概念,用于求解曲线下方某一区间的面积,或求解函数在某一区间上的平均值等问题。

下面将详细介绍定积分的概念和求解的步骤。

定积分的概念:
定积分是求解曲线下方某一区间的面积的数学工具,它是定义在闭区间[a,b]上的函数f(某)的一个性质,可以理解为函数f(某)在区间[a,b]上的累积效应。

定积分步骤如下:
1.确定积分区间:首先需要确定定积分的积分区间,即求解的曲线下方的面积的范围。

区间一般以[a,b]表示,其中a和b为常数。

2.确定积分函数:根据具体问题,确定要计算的函数f(某)。

函数
f(某)可以是一个实际问题中的物理量随时间或空间的变化函数。

3.将积分区间分成若干小区间:将积分区间[a,b]分割成若干个小区间,每个小区间的长度为∆某。

通常,分割是均匀的,即每个小区间的长度相等。

4.选择代表性点:在每个小区间中选择一个代表性点某i。

可以根据需要选择左端点、右端点、中点等。

这些代表性点将被用来求解小区间上曲线下方的面积。

5.计算小区间上的面积:根据代表性点某i,计算每个小区间上曲线下方的面积。

这可以通过求解函数f(某)在小区间上的定积分来实现。

6.求和:将每个小区间上的面积求和,得到整个积分区间[a,b]上曲线下方的总面积。

这里的求和过程可以看作是将所有小区间的面积进行累加的过程。

7.极限过程:随着小区间的个数无限增大,每个小区间的长度趋近于0,即∆某趋近于0。

这时候,计算的总面积就趋近于定积分的值。

8.计算定积分:根据定义,定积分可以通过求解函数f(某)的原函数F(某),并在积分区间[a,b]上的两个端点处进行求值来实现。

定积分的求解可以使用积分公式、牛顿-莱布尼茨公式和数值积分等方法。

总结:
定积分通过将积分区间分割成无限小的小区间,在每个小区间上计算曲线下方的面积,并将其累加,从而求得整个积分区间上的面积。

定积分的计算可以通过求解函数的原函数和积分公式来进行。

它是微积分中的重要工具,被广泛应用于物理学、经济学、统计学等领域。

相关文档
最新文档