LabVIEW_顺序结构
10年Labview编程经验

当我开始在键盘上敲打出这句话的时候,我已经使用LabVIEW 7 年了。
7 年的时间,就算天赋平平也可以积攒下一箩筐可供参考的经验了。
所以我打算利用今后的闲暇时间写一些这方面的东西,既可以同大家交流,也是作为自己这七年工作的总结。
还是在上大学的时候,有一次老师让编写一段软件,用来模拟一个控制系统:给它一个激励信号,然后显示出它的输出信号。
那时我就想过,可以把每一个简单的传递函数都做成一个个小方块,使用的时候可以选择需要的函数模块,用线把它们连起来,这样就可以方便地搭建出各种复杂系统。
后来,我第一次看到别人给我演示的LabVIEW编程,就是把一些小方块用线连起来,完成了一段程序。
我当时就感觉到,这和我曾经有过的想法多么相似啊。
一种亲切感油然而生,从此我对LabVIEW的喜爱就一直胜过其他的编程语言。
LabVIEW 的第一个版本发布于1986年,是在Macintosh 机上实现的,后来才移植到了PC机上,并且LabVIEW 从未放弃过对跨平台的支持。
这也给LabVIEW 带来了一些麻烦。
最明显的就是LabVIEW开发环境的界面风格。
它总是与一般的Windows 应用程序有些格格不入:面板是深灰色的,按键钮是看起来别别扭扭的3D 模样。
还有一些可能不太容易发现:比如对于整数的存储,LabVIEW即便是运行在x86系统上,采用的也是高地址位存高位数据(big-ending)。
这与我们习惯了的x86 CPU使用的格式正相反,这往往给编写存取二进制文件带来了不多不少的麻烦。
我接触过的最早的LabVIEW版本是4.0版,发布包是一个装有十几张三寸软盘的大盒子。
安装的时候要按顺序把软盘一个一个塞到计算机里。
尽管当时LabVIEW的界面不是很好看,但我还是非常喜欢它。
真方便呐!比如说要画一个开关,用LabVIEW 一拖就行了。
如果要自己动手用C 语言设计一个好看的开关,,那得费多少时间啊!我尤其喜欢它通过连线来编程的方式,尽管很多熟悉了文本编程语言的人刚开始时会对这种图形化编程方式非常不适应。
03-labview数组、簇与、曲线图与结构体

function “Tick Count (ms)”
函数 “Tick Count (ms)”的功能:输出毫 秒计数器的当前值 2^32-1(ms)=1193.04647083…小时
Sequence Structures
In the Execution Control subpalette of Functions palette Executes diagrams sequentially Right-click to add new frame
子框架名称(case selector label)
Case Structure
True The value is valid. Square Root
输入通道(input tunnel)
输出通道(output tunnel)
Case Structure
对于流入selector terminal的所有可能值,均要 有相应的处理子框架 当某个子框架建立了输入通道后,也即给所有 的子框架建立了一个输入通道,其它的子框架 均可从该输入通道中获得数据。 给某个子框架建立了输出通道后,也即对所有 的子框架建立了一个输出通道,必须要在其它 的全部子框架中对输出通道进行赋值
Bundle By Name
Cluster Functions
Unbundle
Unbundle By Name
Unbundled cluster in the diagram
Error Cluster
Conditional Terminal
Loops
While Loops
Have Iteration Terminal Always Run at least Once Run According to Conditional Terminal
LabVIEW软件介绍及编程实例

功能模板
测量子模板:包括数据采集硬件的驱动程序, NI 测量子模板:包括数据采集硬件的驱动程序,以及信 号调理所需的各种功能模块。 号调理所需的各种功能模块。 波形子模板:包含了对各种波形的控制。 波形子模板:包含了对各种波形的控制。 分析子模板:包括信号发生、时域及频域分析功能模块。 分析子模板:包括信号发生、时域及频域分析功能模块。 仪器控制子模板:包括GPIB(488 488.2)、串行、VXI仪 GPIB(488、 仪器控制子模板:包括GPIB(488、488.2)、串行、VXI仪 器控制的程序和函数,以及VISA的操作功能函数。 VISA的操作功能函数 器控制的程序和函数,以及VISA的操作功能函数。 应用程序控制子模块:包括动态调用VI VI、 应用程序控制子模块:包括动态调用VI、标准可执行程序 的功能函数。 的功能函数。 图形与声音子模块:包括3 OpenGL、 图形与声音子模块:包括3D、OpenGL、声音播放等功能 模块。 模块。 通讯子模板:包括TCP DDE、ActiveX和OLE等功能的处理 TCP、 通讯子模板:包括TCP、DDE、ActiveX和OLE等功能的处理 模块。 模块。 文档生成子模板:生成文档。 文档生成子模板:生成文档。 底层接口子模块:包括调用动态连接库和CIN CIN节点等功能 底层接口子模块:包括调用动态连接库和CIN节点等功能 的处理模块。 的处理模块。 选择…VI子程序”子模板:包括一个对话框, VI子程序 “ 选择 VI 子程序” 子模板 :包括一个对话框, 可以选 择一个VI程序作为子程序( VI程序作为子程序 VI)插入当前程序中。 择一个VI程序作为子程序(SUB VI)插入当前程序中。 装饰子模板:用于给前面板进行装饰的各种图形对象。 装饰子模板:用于给前面板进行装饰的各种图形对象。 用户自定义的子VI模板:用户自定义的控制和显示。 用户自定义的子VI模板:用户自定义的控制和显示。 VI模板
LabVIEW虚拟仪器技术第4章-程序结构

基本程序结构
在各编程语言中,基本的程序结构有三种: 顺序结构、条件结构和循环结构。
LabVIEW中,除了具有上述三种程序结构外, 还提供了用于事件处理的事件结构。
此外,还有局部变量,属性节点和调用节点 等功能,为增加程序编写的灵活性提供了保障。
文本语言接口
在LabVIEW的图形化编程环境中,利用上述 程序结构可以解决很多非常复杂的问题。
范例
条件结构的输出隧道。
条件结构的输出方式
条件结构的输出有两种方式:
1.在条件分支内部输出数据
2.通过数据输出隧道,在条件结构外部输出数据
在分支内部输出数据更符合常规编程语言的编 程方式,但是从LabVIEW数据流的观点来看,并 不是最佳选择。
程序求输入数值的平方根,计算之前先判断 输入是否大于等于0。判断为真,结果由显示控件 输出,判断结果为假时,条件为真的分支不执行。
点击右键,在快捷菜单中我们可以添加或删 除每一帧。我们也可以通过拖曳的方式来改变每 一帧的大小。
顺序结构在执行时,会按照帧的顺序,从左 到右,依次执行每一帧。每一帧都有一个帧序号, 最小的帧序号为0,然后是1、2、3依次递增。
平铺式顺序结构因为代码是平铺的,因此代 码更直观,可读性较高。但是它的缺点是占用空 间较大。
针对于此,可以通过调用快捷菜单中的“替 换为层叠式顺序”功能,将平铺式的顺序结构转 换成层叠式的,以使VI看起来更为紧凑。
4.1.2 层叠式顺序结构
从本质上看,层叠式顺序结构和平铺式顺序 结构的功能完全相同,且二者可以相互转换。
层叠式顺序结构的创建
层叠式顺序结构外形类似于条件结构。它包 括一个或多个顺序执行的子程序框图或帧。
在很多情况下,程序员会需要多段代码按照预 先设定的顺序执行,这就需要顺序结构来帮忙了。
LabVIEW编程中的数据结构与算法优化技巧

LabVIEW编程中的数据结构与算法优化技巧在LabVIEW编程中,数据结构和算法的选择与优化对于程序的性能和可维护性至关重要。
本文将介绍在LabVIEW编程中常用的数据结构和算法优化技巧,帮助开发人员提高程序的效率和可靠性。
一、数据结构的选择在LabVIEW编程中,选择合适的数据结构是实现功能的关键。
以下是几种常见的数据结构及其适用场景:1. 数组(Array):用于存储同类型的数据,并且数据的大小是固定的。
数组适用于需要按顺序访问和操作数据的场景,例如存储一组测量数据或图像像素。
2. 队列(Queue):用于实现先进先出(FIFO)的数据存储和访问方式。
队列适用于需要按顺序处理数据的场景,例如数据采集和处理时的数据缓存。
3. 栈(Stack):用于实现后进先出(LIFO)的数据存储和访问方式。
栈适用于需要按相反顺序处理数据的场景,例如函数调用的递归操作。
4. 链表(Linked List):用于存储具有动态长度的数据。
链表适用于频繁插入和删除数据的场景,例如数据缓存和排序等算法。
5. 图(Graph):用于表示多个实体之间的关系,并且这些关系保存在边中。
图适用于复杂网络分析和路径搜索等算法。
在选择数据结构时,需要考虑数据的特性、访问方式和操作需求,以及程序的性能要求等因素,综合评估后选择最合适的数据结构。
二、算法的优化除了选择合适的数据结构之外,优化算法也是提高LabVIEW程序性能的重要手段。
下面是几个常见的算法优化技巧:1. 减少循环次数:循环是LabVIEW程序中常用的操作,但过多的循环会增加程序的执行时间。
在编写程序时,应尽量减少循环次数,例如通过向量化操作或者使用矩阵运算来代替循环运算。
2. 缓存数据:对于需要频繁访问的数据,可以将其存储在缓存中,以减少对内存的访问次数。
例如使用Shift Register或者Local Variable来保存中间计算结果,避免重复计算。
3. 并行计算:LabVIEW支持并行计算,在多核处理器上可以充分利用硬件资源,提高程序的执行效率。
labview中for循环在顺序结构中用法

labview中for循环在顺序结构中用法1. 引言1.1 介绍labview中for循环在顺序结构中的用法在LabVIEW中,for循环是一种非常常见的结构,它可以在顺序结构中被灵活应用。
顺序结构是LabVIEW中的一种基本结构,它按照从上到下的顺序执行代码,一次执行一条线路上的程序。
在顺序结构中使用for循环可以帮助我们简化程序,节省时间和精力。
for循环能够重复执行特定的操作,直到达到设定的条件。
这使得我们能够简化代码、提高代码的可读性和可维护性。
在实际项目中,经常会出现需要重复执行相同操作的情况,此时for循环就派上用场了。
LabVIEW为我们提供了方便的工具来添加for循环至顺序结构中。
通过简单拖拽的方式,我们就可以将for循环放置在需要的位置。
而设置for循环的循环次数也是非常简单的,只需在循环结构中输入结束条件即可。
在for循环中执行特定操作也非常容易。
我们可以在for循环中添加需要重复执行的代码块,这样就可以实现对特定操作的循环执行。
通过合理的设计和设置,我们可以充分利用for循环在顺序结构中的优势,提高程序的效率和可维护性。
2. 正文2.1 什么是循环结构循环结构是编程语言中一种重要的控制结构,允许程序在满足特定条件下重复执行一段代码块。
在计算机程序中,循环结构可以大大简化重复性工作的编写,提高代码的效率和可维护性。
在labview中,for循环是一种常见的循环结构,它允许用户指定循环次数并在每次迭代中执行特定的操作。
通常情况下,for循环适用于已知循环次数的情况,比如要对一组数据进行处理或执行固定次数的任务。
循环结构的实现通常包括三个要素:循环变量、循环终止条件和循环体。
循环变量用于追踪循环的当前状态,循环终止条件确定循环何时结束,循环体则包含需要重复执行的代码块。
在labview中使用for循环可以简化重复性工作的编写,提高程序的可读性和可维护性。
通过合理的设计和控制循环变量和循环终止条件,可以确保程序的正确运行并有效地处理大量数据。
Labview执行结构:详细说明

执行结构:详细说明While循环与文本编程语言中的Do循环或Repeat-Until循环类似,必须满足特定条件之后,While循环才会执行其内的程序代码,如图1所示。
图1. LabVIEW中的While循环;具备While循环功能的流程图;还有While循环功能的伪码范例While 循环位于Structures面板上。
从面板上选择While Loop之后,针对所要重复的代码区块,可用鼠标拖拽出矩形并将之圈住。
放开鼠标之后,即会有While循环圈住用户所选的区块。
只要将对象拖拽至While循环中,即可将其新增至While循环中。
只要条件接线端接收特定的布尔值之后,While循环随即执行代码也可通过While 循环的条件接线端来处理基本错误。
若将错误簇连接至条件接线端,则只有Status参数的真或假值传送至接线端。
同样,Stop if True和Continue if True快捷菜单项目,将分别变更为Stop if Error和Continuewhile Error。
计数接线端属于输出端点,其中包含已完成的循环次数。
While循环的循环计数均从零开始。
注意: While循环将至少执行一次。
无限循环无限循环为常见的程序错误,即无法停止的循环。
若条件接线端 i为True时停止,而用户又在While循环外部放置布尔控件接线端。
一旦循环开始,控件值即成为FALSE,就会形成无限循环。
图2.While循环之外的布尔控件因为在循环开始之前,仅读取该值一次,所以改变控件的值并无法停止无限循环。
若要通过控件停止While循环,则必须在循环中配置控件接线端。
若要停止无限循环,则按下工具栏上的Abort Execution按钮,即可终止该VI。
在图3中的While 循环将不断执行,直到随机数函数的输出大于或等于10.00,且Enable控件为TRUE时才会停止。
当且仅当“与”函数的两个输入都为真时,函数的返回值才为真。
labview控制程序流程——labview事件结构

labview控制程序流程——labview事件结构1 事件结构及它的图形化表示法事件被用来通知用户有异步活动发生。
图形化语言的事件响应包括:用户界面事件、外部I/O 事件和程序其它部分的事件。
对事件的处理程序也被称为:事件驱动程序。
事件驱动程序可以分为若干个分支,每个分支处理不同的事件响应。
所以对事件的响应结果也可以控制程序的流程。
事件驱动机制来自于可视化的操系统,可视化操作系统对用户事件提供了简洁、有效的响应方式,最常见的事件来自于鼠标和键盘。
虚拟仪器借助于操作系统的事件处理机制实现了图形化语言的事件响应能力。
在没有引入事件结构之前,LabVIEW 是借助于轮询的方式来查询用户操作,由于轮询的方式会占用一定的CPU 资源,甚至可能遗漏事件,所以这种处理方式并非理想。
事件结构的出现避免了对CPU 资源的占用,同时也避免了事件的遗漏。
事件结构在函数选板》编程》结构子选板中可以找到,并可以将其直接拖拽到程序框图中,图形化表示的事件结构,参见下图。
图 1 图形化的事件结构与Case 结构和循环结构类似,事件结构也包含了一个主框架,这个框架内将用来放置事件处理的事件驱动程序代码。
如果事件处理任务众多,会有众多事件分支存在,在结构上类似Case 的多帧结构(选择器标签)。
当在程序框图上拖放一个事件结构时,我们只能看到上图所示的一帧已经预先注册的超时事件(Timeout),超时事件分支。
它具有定时延迟的基本功能(不包括While 循环),参见下图。
图 2 具有定时延迟的基本功能当然也可以采用另一种表示方法,参见下图。
图 3 利用事件结构内部节点获得中止时间通过这个例子也好理解内部节点中时间的含义(是事件响应的停止时间)。
超时事件超时事件是一种特殊的事件,当然也可以看成是默认的事件分支。
如果存在其它事件源时,超时事件完全可以被忽略或取消。
看下面一个例子。
图 4 仅有的两个事件之一超时事。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、局部变量和全局变量
局部变量和全局变量是 LabVIEW用来传递数据的工具。 LabVIEW 编程是一种数据流编程,它是通过连线来传 递数据的。但是如果一个程序太复杂的话,有时连线会很 困难甚至无法连接,这时就需要用变量进行数据传递。
另外,也会经常遇到这样一种情况,对程序中一个控件 对象,希望既能写入数据,又能读出数据,这在数据流编 程中是无法实现的,这也需要用局部变量或全局变量代替 该控件来实现。
数据流的概念源于电子表格的数据处理思路。例如,在电子表 格中你可以指定一个公式与某些单元格建立数据关联,当这些单 元格的所有数据都有效时,公式才会给出最终的计算结果。当任 一单元的数据发生变化时,将会按公式重新进行计算。
起必数着据数须流据牢机传记制递:更和L适图ab合形V图化IE形程W化序采编运用程行语的控言制数,的据在双流图重运形作行化用机编。制程而是语且依言数赖中据,数流它机 制据具有来并驱发动性的,。可这以是使初程学序者并要行执认行真,注大意大的提问高题运,行忽效略率这。个
四、顺序结构
LabVIEW_数据流运行机制
传统的编程语言,程序运行是基于程序编码的顺序,是指令驱 动的代码流。LabVIEW 的运行机制是基于数据流的。也就是说: 当程序中的可执行元素(节点)在收到所有必须的输入数据时才 开始执行。当该元素内的所有代码执行完成后,数据才流出该执 行元素并流向其他元素。
基本操作: ➢添加空白帧:右击相应边框,通过快捷菜单添加、插 入空白帧或合并帧。
②.层叠式:按上下顺序层叠排列
减量按钮: 向前翻页
选择器标签: 以序号的形式标 示各子框页的基 本信息。
增量按钮: 向后翻页
基本特性: ➢顺序可变性:层叠式结构各框图由各自的序号进行区别,按照 从小到大的顺序执行。顺序(号)可通过右击边框的【本帧设 置为】进行调整改变。 ➢传输特性:由于该结构各帧是向下层叠不可见的,因此各帧之 间的数据必须借助局部变量进行传输。
现黄色小方框,这就是顺序局部变量,用来在层叠顺序结构中各 帧之间传递数据。
放置时间计数器到顺序结构内记录程序运行时的初始时间,并 与顺序局部变量相连,此时黄色框内将会出现一个指向顺序结构 外部的箭头用以向外传递数据。时间计数器位于:函数→编程→ 定时→时间计数器。
⑷.选取第 1 帧,实现等于给定值的 匹配运算程序如图:
⑸.选取第 2 帧,同样放置一个时间计 数器用于返回当前时间,将它减去顺 序局部变量传递过来的第 0 帧初始时 间即可得到花费的时间,如图:
⑹.运行结果:
注意:Labview 编程的主要特点是数据流形式,这便于VI 大量的按照并行方式运行,优化了程序的计算性能。而 顺序结构却趋向于中断数据流编程,禁止程序的并行操 作,顺序结构还掩盖了部分代码,所以用户在编程时应 尽量不用或少用顺序结构。
1. 功能和作用
顺序结构将按照既定的顺序依次执行,它可以包含 多个代码子框图,这些子框图看起来就像是多帧电影 一样,所以把每个子框图称为一帧。
顺序结构分为平铺式和层叠式两种,二者表现形式 不同,但其基本功能则完全相同。
2.所在位置
函数→编程→右顺序依次排列
在实际应用中,经常用人为的 数据从依第从一个关系W来hil确e 循定环程结序构先中后的 执 行布的尔顺开序关,上连在了前一面根簇线的到章第节二个中, 我W们hi就le 提循到环过结构E的rr边or框簇上可,以可控以 制 程看序到执,行第的二个先后Wh顺ile序循,环但结并构不中是 每没一有个一控个件对象都需有要E这r个ro数r簇据的,只输入 和是输起出到端顺口序执,行这程时序还的有目另的一。种方 法能实现顺序执行的功能。如图
右击左边 框,向前插 入一帧
右击内边框, 可向后插入一 帧或合并帧
右击右边 框,向后添 加一帧
基本特性: ➢顺序不变性:平铺式结构各框架之间的顺序不能改变,但 可以先变换成层叠式再还原成平铺式进行改变。 ➢传输特性:由于该结构各帧都是平铺可见的,因此各帧之 间的数据可以直接传输,无须借助局部变量进行。
一种方法是:在程序框图中直接添加,如图: 如此创建的变量属于裸变量,必须在 右击图标的快捷菜单中,与前面板相 应控件进行关联方可有效。
另一种方法是:在右 击控件对象的快捷菜 单中执行 “创建— 局 部变量”,如图
局部变量的应用
该例的目的在于使用局部变量向它联系的前面板上的 电流控件写数据,也可以从电流控件读取数据。程序框 图如图所示:
基本操作: ➢添加空白帧:右击边框,可通过快捷菜单向前、向后添加帧。 ➢添加局部变量:右击边框,【添加顺序局部变量】,所添加的 变量为蓝色箭头标记 数据源、 传入端。
LabVIEW
应用举例:产生随机数直到等于给定数时显示所需时间与执行次数 采用平铺式顺序结构
通过数据通道传递数据
LabVIEW
采用层叠式:
⑴.新建 VI,在前面板上放置数值输入控 件“给定数据”和两个数值显示控件 “执行次数”,“所需时间”。
⑵.在程序框图上放置一个层叠式顺序结 构,在右击结构框图边框的快捷菜单中 执行两次“在后面添加帧”,创建 帧 1 和帧2。
⑶.选取第 0 帧,记录程序运行初始时间。 右击结构框图边框 — “添加顺序局部变量”,将在下边框出
问题将会给程序设计带来麻烦乃至灾难。
为什么要引入顺序结构?
数据流编程机制为用户带来了方便,但同时也在 某些方面存在不足。比如,程序框图中如果两个节 点同时满足执行条件,则会同时执行。但在实际问 题中往往需要二者按一定先后顺序执行的话,则数 据流编程将不能满足要求。为此 LabVIEW 引入了 顺序结构,强行规定程序的执行顺序。
局部变量主要用于本VI内不同位置之间的数据传递,而 全局变量主要是针对不同VI程序之间的数据通信。
1.局部变量
谈到局部变量,其实在介绍顺序结构时就已经接触过了,当时 是添加顺序局部变量来传递程序初始时间,以便计算程序所执行 的时间。目的是在不同选择分支中都能够对指示器进行赋值。
建立局部变量:建立局部变量的方法有两种。