实验六
试验六三轴试验

试验六三轴试验实验六:三轴试验⼀、基本原理三轴剪切试验是⽤来测定试件在某⼀固定周围压⼒下的抗剪强度,然后根据三个以上试件,在不同周围压⼒下测得的抗剪强度,利⽤莫尔-库仑破坏准则确定⼟的抗剪强度参数。
三轴剪切试验可分为不固结不排⽔试验(UU )、固结不排⽔试验(CU )以及固结排⽔剪试验(CD )。
1、不固结不排⽔试验:试件在周围压⼒和轴向压⼒下直⾄破坏的全过程中均不允许排⽔,⼟样从开始加载⾄试样剪坏,⼟中的含⽔率始终保持不变,可测得总抗剪强度指标U C 和U φ;2、固结不排⽔试验:试样先在周围压⼒下让⼟体排⽔固结,待固结稳定后,再在不排⽔条件下施加轴向压⼒直⾄破坏,可同时测定总抗剪强度指标CU C 和CU φ或有效抗剪强度指标C ′和φ′及孔隙⽔压⼒系数;3、固结排⽔剪试验:试样先在周围压⼒下排⽔固结,然后允许在充分排⽔的条件下增加轴向压⼒直⾄破坏,可测得总抗剪强度指标d C 和d φ。
⼆、试验⽬的1、了解三轴剪切试验的基本原理;2、掌握三轴剪切试验的基本操作⽅法;3、了解三轴剪切试验不同排⽔条件的控制⽅法和孔隙压⼒的测量原理;4、进⼀步巩固抗剪强度的基本理论。
三、试验设备1、三轴剪⼒仪(分为应⼒控制式和应变控制式两种)。
(1)三轴压⼒室:压⼒室是三轴仪的主要组成部分,它是由⼀个⾦属上盖、底座以及透明有机玻璃圆筒组成的密闭容器,压⼒室底座通常有3个⼩孔分别与围压系统以及体积变形和孔隙⽔压⼒量测系统相连。
(2)轴向加荷传动系统:采⽤电动机带动多级变速的齿轮箱,或者采⽤可控硅⽆级调速,根据⼟样性质及试验⽅法确定加荷速率,通过传动系统使⼟样压⼒室⾃下⽽上的移动,使试件承受轴向压⼒。
(3)轴向压⼒测量系统:通常的试验中,轴向压⼒由测⼒计(测⼒环或称应变圈等等)来反映⼟体的轴向荷重,测⼒计为线性和重复性较好的⾦属弹性体组成,测⼒计的受压变形由百分表测读。
轴向压⼒系统也可由荷重传感器来代替。
(4)周围压⼒稳压系统:采⽤调压阀控制,调压阀当控制到某⼀固定压⼒后,它将压⼒室的压⼒进⾏⾃动补偿⽽达到周围压⼒的稳定。
实验六——常见非金属离子的定性检验

02
硫酸根干扰: 硫酸根也会与 硝酸银反应生成沉淀,但加 入过量硝酸银后,硫酸银沉 淀会转化为氯化银沉淀。因 此,在滴定前需加入足量硝 酸银,确保硫酸根完全转化 为硫酸银。
03
颜色干扰: 如果待测溶液有 颜色,可能会影响滴定终点 的判断。可采用电位滴定法 ,通过测量电位变化确定滴 定终点,消除颜色干扰。
硫酸根离子(SO4²⁻) 的检验:通常使用钡离 子与其反应生成白色沉 淀硫酸钡(BaSO4)。 若产生不溶于酸的白色 沉淀,则说明存在硫酸 根离子。
氯离子(Cl⁻)的检验: 一般利用硝酸银溶液, 氯离子与之反应生成白 色沉淀氯化银(AgCl) 。若产生不溶于硝酸的 白色沉淀,则证明有氯 离子的存在。
磷酸根离子
是磷肥的主要成分,也广泛存 在于土壤和水体中。
检验原理和方法概述
化学反应法:利用特定的化学试剂与非金属离子 发生反应,通过观察反应现象(如颜色变化、沉 淀生成等)来判断离子种类。如银盐法可用于检 测氯离子的存在。
电化学法:通过测量离子在电场作用下的迁移行 为来判断离子种类。如电位滴定法、电导法等。
常见非金属离子的定 性检验
目录
• 引言 • 硫酸根离子的检验 • 氯离子的检验 • 硝酸根离子的检验 • 碳酸根离子和碳酸氢根离子的检验 • 结论
01
引言
定性检验的目的和意义
确定离子种类
通过定性检验,可以明确样品中 存在哪些非金属离子,为后续分
析和研究提供依据。
保障生产安全
在化工生产中,某些非金属离子可 能对设备和工艺产生不良影响,通 过定性检验可以及时发现问题,确 保生产安全。
光谱法:利用非金属离子在特定波长下的吸收或 发射光谱进行识别。如原子吸收光谱法、荧光光 谱法等。
植物学实验 第六章 植物叶的形态和结构

三、实验内容
(一)双子叶植物叶的结构
取三种生态型的叶,做徒手切片并制作水封片,在显微镜 下仔细观察。 (1)旱生植物夹竹桃叶横切面结构
三、实验内容
(一)双子叶植物叶的结构
取三种生态型的叶,做徒手切片并制作水封片,在显微镜 下仔细观察。 (1)旱生植物夹竹桃叶横切面结构
夹竹桃叶横切-示旱生植物叶结构
(一)双子叶植物叶的结构
取三种生态型的叶,做徒手切片并制作水封片,在显微镜 下仔细观察。 (3)水生植物睡莲浮水叶横切面结构
三、实验内容
(一)双子叶植物叶的结构
取三种生态型的叶,做徒手切片并制作水封片,在显微镜 下仔细观察。 (4)水生植物眼子菜沉水叶横切面结构
三、实验内容
(一)双子叶植物叶的结构
五、思考题
2.比较小麦叶和玉米叶的结构特点。
玉米的维管束
小麦的维管束
五、思考题
3.马尾松针叶的结构与其生长环境是如何相适应的?
1、松针中小,表皮细胞壁厚,角质层发达,表皮 下具多层厚壁细胞组成的下皮层,气孔内陷。 2、叶肉细胞的细胞壁内陷,形成许多褶壁,叶绿 体沿褶壁分布,使细胞扩大了光合面积。 3、在叶肉内方具明显内皮层,内皮层上有凯氏带。
五、思考题
2.比较小麦叶和玉米叶的结构特点。
玉米与小麦叶脉的详细结构:
玉米的维管束鞘只有一层薄壁细胞,细胞较大,内含 有比叶肉细胞个大、数多的叶绿体。其外紧密毗连着 一圈叶肉细胞,组成“花环型”的结构----四碳植物。
小麦维管束鞘是两层,外层细胞壁薄,个大,含叶绿 体较叶肉细胞少。内层细胞壁厚,细胞也小,几乎不 含叶绿体。因此小麦没有“花环”结构----三碳植物。
三、实验内容
(一)双子叶植物叶的结构
实验6 电位差计测电压

实验六 利用电位差计测量电压一、实验目的1. 理解并掌握电位差计的工作原理;2. 掌握用箱式电位差计测量电压的方法。
二、实验器材直流稳压电源、电阻箱一个、滑线变阻器一个、万用表一个、箱式直流电位差计一只,导线等。
三、实验原理如图所示,标准电压Es=1.0186V ,调节滑动变阻器1使开关打向左边Es 时I G =0。
此时,流经电阻和滑动变阻器2的电流为:10101.86s E I mA == 当开关打向右边Ux 时,调节滑动变阻器2使I G =0,此时回路1的器件和条件都没发现变化,其电流仍然为10mA ,此时滑动变阻器2的左端电压就等于Ux 的电压。
四 、实验步骤(1)电压的测量1、打开直流是位差计电源开关,将倍率开关K1由“断”放所需档位5上,将功能开关K3旋到“测量”,旋动调零电位器,使检流计初步指零;令电位差计预热5分钟;2、将检流计精细调0;将扳键推向“标准”,旋动工作电流调节旋钮“粗”,“微”,使检流计指0;3、按图2所示,接好电路图;4、用万用表测量100欧姆电阻两端电压;5、按万用表测量数据初步调节读盘数据,被测电阻两端电压按正确极性接在“未知”接线柱上,将扳键开关K2扳向“未知”;调节大小读数使检流计指零,则被测量值等于倍率与3个读盘之和的乘积。
图1 电位差计实验原理图2 电位差计测量电压(2)电位差计的灵敏度电位差计的灵敏度定义为:电位差计平衡后,单位被测电压的变化所引起的检流计指针偏转的变化。
若改变平衡时的补偿电压U的改变量为△U,引起检流计指针的偏转为△n,则灵敏度S为:S=△n/△U =五、实验报告万用表测量电压值为电位差计测量值为电位差计的灵敏度S=。
实验6 验证机械能守恒定律

实验六验证机械能守恒定律验证机械能守恒定律。
1.在只有重力做功的自由落体运动中,物体的重力势能和动能互相转化,但总的机械能保持不变。
若物体某时刻瞬时速度为v,下落高度为h,则重力势能的减少量为mgh,动能的增加量为12m v2,看它们在实验误差允许的范围内是否相等,若相等则验证了机械能守恒定律。
2.速度的测量:做匀变速直线运动的物体某段位移中间时刻的瞬时速度等于这段位移的平均速度。
计算打第n点速度的方法:测出第n点与相邻前后点间的距离x n和x n+1,由公式v n=x n+x n+12T计算,或测出第n-1点和第n+1点与起始点的距离h n-1和h n+1,由公式v n=h n+1-h n-12T算出,如图所示。
铁架台(含铁夹),打点计时器,学生电源,纸带,复写纸,导线,毫米刻度尺,重物(带纸带夹)。
1.安装置:如图所示,将检查、调整好的打点计时器竖直固定在铁架台上,接好电路。
2.打纸带:将纸带的一端用夹子固定在重物上,另一端穿过打点计时器的限位孔,用手提着纸带使重物静止在靠近打点计时器的地方。
先接通电源,后松开纸带,让重物带着纸带自由下落。
更换纸带重复做3~5次实验。
3.选纸带:分两种情况说明(1)用12m v2n=mgh n验证时,应选点迹清晰,且第1、2两点间距离接近2 mm的纸带。
若第1、2两点间的距离大于2 mm,则可能是由于先释放纸带后接通电源造成的。
这样,第1个点就不是运动的起始点了,这样的纸带不能选。
(2)用12m v2B-12m v2A=mgΔh验证时,处理纸带时不必从起始点开始计算重力势能的大小,这样,纸带上打出的起始点O后的第一个0.02 s内的位移是否接近2 mm,以及第一个点是否清晰也就无关紧要了,实验打出的任何一条纸带,只要后面的点迹清晰,都可以用来验证机械能守恒定律。
1.测量计算在起始点标上0,在以后各计数点依次标上1、2、3…,用刻度尺测出对应下落高度h1、h2、h3…。
免疫学实验实验六肥达试验

目录
• 实验简介 • 实验材料 • 实验步骤 • 实验结果分析 • 实验结论
01
实验简介
实验目的
掌握肥达试验的原理 及操作方法。
了解肥达试验在临床 诊断中的应用。
学习通过肥达试验检 测伤寒沙门氏菌的方 法。
实验原理
肥达试验是一种利用已知伤寒沙门氏菌的菌体抗原和鞭毛抗原,以及副伤寒沙门氏 菌的鞭毛抗原,通过凝集反应检测血清中相应抗体的方法。
01
02
03
实验器材
准备试管、吸管、显微镜 等实验器材,确保其清洁、 干燥、无菌。
试剂
配制好所需的抗原和抗体 溶液,确保其质量和浓度 符合实验要求。
样本
采集待检测的血清样本, 确保其无菌、无污染,并 妥善保存。
实验操作流程
摇匀
轻轻摇动试管,使血清、抗原 和抗体充分混合。
离心
将反应后的液体进行离心,分 离出沉淀物。
用于观察细菌形态和计数。
移液器
用于精确移取一定量的菌液和 血清。
试管和吸管
用于配制菌液和稀释血清。
培养皿和培养基
用于细菌培养和计数。
实验动物
小鼠
兔子
用于感染细菌后观察症状和收集血清 样本。
用于感染细菌后观察症状和收集血清 样本。
大鼠
用于感染细菌后观察症状和收集血清 样本。
03
实验步骤
实验前准备
当待测血清中含有相应抗体时,抗体与抗原发生特异性结合,形成可见的凝集反应。
通过凝集反应的结果,可以判断待测血清中是否含有相应的抗体,进而推断出患者 是否感染了伤寒沙门氏菌或副伤寒沙门氏菌。
实验意义
肥达试验对于伤寒的诊断具有重 要意义,尤其在伤寒的早期诊断 中具有较高的灵敏度和特异性。
实验6简单正弦交流电路的研究【精选】

实验原理(二)
三压法测φ原理 任意阻抗Z和R串联,如图a所示,则其相量如图b、
利用余弦定律可以计算串联后总阻抗角为φ
实验内容
1. 研究串联电路中,电压、电流大小与相位的关系, 阻抗随频率变化的关系。 按图接线,元件参数如下、C上
的电压,并进行计算,其中I=UR/R。注意,当改
测量流过各元件的电流(采用取样电阻法)数据 记录在下表中,改变元件时重调US=IV。
元件参数C=0.2μF,L=200mH,R=1KΩ,R0=10Ω (取样电阻) 信号源F=800Hz,Us=1V
思考题
当XL=XC=R 时 ①流过 R、L 、C 元件的电流相同吗? ②仅是R 、L 并联时其电流大小是否小于R 、 L 、 C 并连时的电流? ③ LC并联时的电流一定大于仅接 C时的电流吗? 以上三点根据测量数据画出向量加以说明。
电感元件:UL=jXLI ,式中XL=WL=2ΠfL 称为感抗 。 当 L为常数时, XL与频率 f成正比, f越大,XL 越 大,f 越小,。XL越小。理想电感的特征是电流I 滞 后于电压 90
电容元件:UC=-jXCI ,式中XC=1/WC=1/2ΠfC 称 为容抗。当 C为常数时,XC 与 f成反比, f越大, XC越小。. 电容元件的特点是电流I 的相位超前于电 压 90 。
实验报告要求
实验目的。 原理简述。 实验内容:实验步骤、实验电路、表格、数据等。 整理并计算实验数据,检查数据是否与理论值相
符,并加以解释分析。 画出电阻、电感、电容,RC 串联,RL 串联电流
电压的向量图。(共5个) 当频率升高时,阻抗lZ l 的变化趋势,cosφ 的变
化趋势,画出向量图加以说明。
实验六 迈克尔逊干涉仪的调整和使用

实验六 迈克尔逊干涉仪的调整和使用实验性质:综合性实验 教学目的和要求:1. 了解迈克尔逊干涉仪的原理并掌握调节方法;2. 观察等倾干涉条纹的特点;3. 测定He-Ne 激光的波长。
教学重点与难点:对迈克尔逊干涉仪的工作原理与等倾干涉概念的理解;本实验仪器的正确调节与使用以及正确记录有效数字。
一.检查学生的预习情况检查学生预习报告:内容是否完整,表格是否正确。
二.实验仪器和用具:迈克尔逊干涉仪,氦氖激光器、毛玻璃屏 三.讲解实验原理:(一)实验仪器介绍1. 迈克尔逊干涉仪的构造迈克尔逊干涉仪的构造如图33-1。
其主要由精密的机械传动系统和四片精细磨制的光学镜片组成。
1G 和2G 是两块几何形状、物理性能相同的平行平面玻璃。
其中1G 的第二面镀有半透明铬膜,称其为分光板,它可使入射光分成振幅(即光强)近似相等的一束透射光和一束反射光。
2G 起补偿光程作用,称其为补偿板。
1M 和2M 是两块表面镀铬加氧化硅保护膜的反射镜。
2M 是固定在仪器上的,称其为固定反射镜,1M 装在可由导轨前后移动的拖板上,称其为移动反射镜。
迈克尔逊干涉仪装置的特点是光源、反射镜、接收器(观察者)各处一方,分得很开,可以根据需要在光路中很方便的插入其它器件。
1M 和2M 镜架背后各有三个调节螺丝,可用来调节21M M 和的倾斜方位。
这三个调节螺丝在调整干涉仪前均应先均匀地拧几圈(因每次实验后为保证其不受应力影响而损坏反射镜都将调节螺丝拧松了),但不能过紧,以免减小调整范围。
同时也可通过调节水平拉簧螺丝与垂直拉簧螺丝使干涉图像作上下和左右移动。
而仪器水平还可通过调整底座上三个水平调节螺丝来达到。
图11 ——主尺2 ——反射镜调节螺丝3 ——移动反射镜1M4 ——分光板1G5 ——补偿板2G6 ——固定反射镜2M7 ——读数窗 8 ——水平拉簧螺钉 9 ——粗调手轮10——屏11——底座水平调节螺丝确定移动反射镜1M 的位置有三个读数装置:①主尺——在导轨的侧面,最小刻度为毫米,如图:②读数窗——可读到0.01mm,如图:③带刻度盘的微调手轮,可读到0.0001mm,估读到105 mm,如图:2.迈克尔逊干涉仪的光路迈克尔逊干涉仪的光路如图2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【实验要求】:
本次实验要求同学们完成实验内容第一题。实验报告书写要求包括:实 验题目、实验目的、实验内容、实验步骤、实验结果(实验数据、仿真波形 及对结果的分析)、实验过程中遇到的问题及解决方法、实验心得总结。
R Vi D2 V1 D5
VA
Vt D3
Vo
C1
RL
VB
D1
D4
图6-1
20V
10V (105.739m,4.7377)
实验六
【实验目的】:
直流稳压电源的设计与仿真
通过设计与仿真一个直流稳压电源,使同学们更加熟练掌握OrCAD Capture软件设计绘制电路原理图的方法,能够灵活应用OrCAD PSpice A/D软 件来仿真与分析各种模拟电路。
【实验内容】: 一、设计与仿真一个整流、滤波、稳压电路如图6-1所示。设输入正弦电压幅值为 20V,频率为50Hz,二极管用D1N4148,变压器用XFRM_NONLINEAR,稳压 管用D1N750,它的VZ=4.7V。当负载电流为20mA(RL=235Ω)时, 试分析: (1) C=2000uF ,正常稳压时(Vo=4.7V~4.8V),R=40Ω时,绘出输出 电压波形(Vi、VA、VB、Vo),如图6-2所示。 (2) C=2000uF ,正常稳压时(Vo=4.7V~4.8V),求R的取值范围,并 绘出输出电压波形(Vo)。 (3)R=40Ω,正常稳压时(Vo=4.7V~4.8V),求C的取值范围,并绘出 输出电压波形(Vo) 。
0V
-10V
-20V 0s V((Vt)
60ms V(Vo)
80ms
100ms Time
120ms
140ms
160ms
180ms
200ms
图6-2