第4章 数制与编码
计算机中的数制与编码

计算机中的数制与编码在计算机科学中,数制和编码是非常重要的概念。
数制是一种数学表示法,用于表示不同类型的数值。
而编码是将字符、符号或信息转化为特定形式的过程。
数制和编码在计算机中扮演着至关重要的角色,它们用于存储、传输和处理数字和数据。
数制(Number System)在计算机中,常见的数制有二进制、十进制、八进制和十六进制。
每种数制有其各自的特点和用途。
1. 二进制(Binary System):二进制是最常见和基础的数制,在计算机中广泛使用。
它只包含两个数字0和1,以2为基数。
计算机内部存储和处理的数据都是以二进制形式表示的。
每个二进制位称为一个bit(二进制位),每8位为一个字节(Byte)。
2. 十进制(Decimal System):十进制是我们日常生活中最常用的数制,以10为基数,包含0-9的数字。
在计算机中,通常使用十进制数制进行人机交互和显示。
3. 八进制(Octal System):八进制以8为基数,包含0-7的数字。
在计算机中,八进制表示法不太常用,但是在Unix操作系统中仍然使用八进制权限表示法。
4. 十六进制(Hexadecimal System):十六进制以16为基数,包含0-9的数字和A-F的字母。
在计算机中,十六进制数制常用于表示内存地址和字节编码。
十六进制数更加简洁和紧凑,便于人们阅读和理解。
编码(Coding)在计算机中,数据和字符需要以特定的方式进行编码,以便计算机可以正确存储和处理它们。
常见的编码方式包括ASCII码、Unicode、UTF-8和UTF-16等。
1.ASCII码:ASCII(American Standard Code for Information Interchange)是一种最早的字符编码标准,用于将字符映射为对应的数字编码。
ASCII码使用7位二进制数表示128个字符,包括英文字母、数字、标点符号和控制字符等。
2. Unicode:Unicode是一种字符编码标准,为世界上几乎所有的字符建立了唯一的数字表示。
数制与编码专题教案

数制与编码专题教案第一章:数制的基本概念1.1 教学目标让学生了解数制的概念和分类让学生掌握不同数制之间的转换方法让学生理解数制在计算机科学中的应用1.2 教学内容数制的定义和分类不同数制之间的转换方法(十进制与二进制、八进制、十六进制的转换)数制在计算机科学中的应用实例(二进制与计算机硬件)1.3 教学方法采用讲授法,讲解数制的定义和分类,以及不同数制之间的转换方法通过举例和练习,让学生掌握数制的转换技巧利用多媒体演示数制在计算机硬件中的应用实例1.4 教学评估课堂练习:让学生完成不同数制之间的转换练习题课后作业:布置相关的数制转换练习题,巩固所学知识第二章:二进制与计算机硬件2.1 教学目标让学生了解二进制的概念和特点让学生掌握二进制在计算机硬件中的应用让学生了解不同进制之间的优缺点比较2.2 教学内容二进制的概念和特点二进制在计算机硬件中的应用实例(如CPU的寄存器、内存地址等)不同进制之间的优缺点比较(如十进制、八进制、十六进制)2.3 教学方法采用讲授法,讲解二进制的概念和特点,以及其在计算机硬件中的应用通过举例和练习,让学生了解不同进制之间的优缺点比较利用多媒体演示二进制在计算机硬件中的应用实例2.4 教学评估课堂练习:让学生完成二进制与不同进制之间的转换练习题课后作业:布置相关的进制比较练习题,巩固所学知识第三章:字符编码3.1 教学目标让学生了解字符编码的概念和分类让学生掌握常见字符编码方案(如ASCII、Uni)让学生了解字符编码在计算机中的应用3.2 教学内容字符编码的概念和分类常见字符编码方案(ASCII、Uni)的介绍和使用方法字符编码在计算机中的应用实例(如文本文件的编码、网页内容的编码)3.3 教学方法采用讲授法,讲解字符编码的概念和分类,以及常见字符编码方案的使用方法通过举例和练习,让学生了解字符编码在计算机中的应用实例利用多媒体演示字符编码的转换过程3.4 教学评估课堂练习:让学生完成字符编码的转换练习题课后作业:布置相关的字符编码应用实例练习题,巩固所学知识第四章:数据压缩与编码4.1 教学目标让学生了解数据压缩与编码的概念和分类让学生掌握常见数据压缩编码算法(如Huffman编码、LZ77)让学生了解数据压缩与编码在计算机中的应用4.2 教学内容数据压缩与编码的概念和分类常见数据压缩编码算法(Huffman编码、LZ77)的介绍和使用方法数据压缩与编码在计算机中的应用实例(如文件压缩、图像压缩)4.3 教学方法采用讲授法,讲解数据压缩与编码的概念和分类,以及常见数据压缩编码算法的使用方法通过举例和练习,让学生了解数据压缩与编码在计算机中的应用实例利用多媒体演示数据压缩与编码的转换过程4.4 教学评估课堂练习:让学生完成数据压缩与编码的转换练习题课后作业:布置相关的数据压缩与编码应用实例练习题,巩固所学知识第五章:编码实践与应用5.1 教学目标让学生了解编码实践的意义和目的让学生掌握编码实践的方法和技巧让学生了解编码实践在实际应用中的重要性5.2 教学内容编码实践的意义和目的编码实践的方法和技巧(如编码规范、编码优化)编码实践在实际应用中的实例(如软件开发、数据通信)5.3 教学方法采用讲授法,讲解编码实践的意义和目的,以及编码实践的方法和技巧通过举例和练习,让学生了解编码实践在实际应用中的重要性利用多媒体演示编码实践的实例和应用5.4 教学评估第六章:编码错误与校验6.1 教学目标让学生了解编码过程中可能出现的错误类型让学生掌握常见校验码的原理和应用让学生理解校验码在保证数据传输正确性中的作用6.2 教学内容编码过程中可能出现的错误类型(比特错误、位错误、字符错误等)常见校验码(奇偶校验、循环冗余校验CRC、校验和)的原理和方法校验码在数据传输和存储中的应用实例6.3 教学方法采用讲授法,讲解编码过程中可能出现的错误类型和校验码的原理通过示例和练习,让学生学会和使用校验码利用多媒体演示校验码在数据传输中的应用过程6.4 教学评估课堂练习:让学生完成校验码的和使用练习题课后作业:布置相关的校验码应用实例练习题,巩固所学知识第七章:生物特征编码7.1 教学目标让学生了解生物特征编码的基本概念让学生掌握常见生物特征编码技术(如指纹识别、面部识别)让学生理解生物特征编码在身份验证和安防中的应用7.2 教学内容生物特征编码的基本概念和原理常见生物特征编码技术(指纹识别、面部识别、虹膜识别等)的工作原理和应用生物特征编码在身份验证和安防领域的应用实例7.3 教学方法采用讲授法,讲解生物特征编码的基本概念和常见编码技术通过示例和练习,让学生了解生物特征编码技术的工作原理和应用利用多媒体演示生物特征编码在身份验证和安防中的应用过程7.4 教学评估课堂练习:让学生完成生物特征编码技术的工作原理和应用练习题课后作业:布置相关的生物特征编码应用实例练习题,巩固所学知识第八章:编码与隐私保护8.1 教学目标让学生了解编码与隐私保护的关系让学生掌握常见编码技术在隐私保护中的应用(如加密算法)让学生理解编码技术在保障信息安全中的作用8.2 教学内容编码与隐私保护的关系和重要性常见编码技术(对称加密、非对称加密、哈希算法等)在隐私保护中的应用编码技术在信息安全领域的应用实例8.3 教学方法采用讲授法,讲解编码与隐私保护的关系和编码技术在隐私保护中的应用通过示例和练习,让学生学会使用编码技术来保护隐私利用多媒体演示编码技术在信息安全中的应用过程8.4 教学评估课堂练习:让学生完成编码技术在隐私保护和信息安全应用的练习题课后作业:布置相关的编码技术应用实例练习题,巩固所学知识第九章:编码发展趋势与未来9.1 教学目标让学生了解编码领域的发展趋势让学生掌握前沿编码技术(如辅助编码、量子编码)让学生理解编码技术在未来的发展和应用前景9.2 教学内容编码领域的发展趋势和未来挑战前沿编码技术(辅助编码、量子编码、边缘计算编码等)的原理和应用编码技术在未来的发展和应用前景的实例9.3 教学方法采用讲授法,讲解编码领域的发展趋势和前沿编码技术通过示例和讨论,让学生了解编码技术在未来的发展和应用前景利用多媒体演示前沿编码技术的应用过程和未来发展趋势9.4 教学评估课堂讨论:让学生参与讨论编码领域的发展趋势和未来前景课后作业:布置相关的编码技术发展趋势研究作业,巩固所学知识第十章:综合实践与案例分析10.1 教学目标让学生综合运用所学编码知识和技能让学生掌握实际项目中编码实践的方法和技巧让学生理解编码技术在解决实际问题中的作用10.2 教学内容综合实践的目的和要求实际项目中编码实践的方法和技巧编码技术在解决实际问题中的案例分析10.3 教学方法采用案例分析法,讲解实际项目中编码技术的应用和方法通过小组讨论和实际项目模拟,让学生综合运用所学知识进行编码实践利用多媒体演示实际项目中编码技术的应用过程10.4 教学评估小组项目:让学生分组完成重点和难点解析重点环节一:不同数制之间的转换方法需要重点关注的原因:数制转换是计算机科学中的基础,对于后续学习计算机硬件、字符编码等章节有重要影响。
计算机中的数制及其编码

一、计算机中的数制及其转换
2. 数制之间的转换
(4) 二、十六进制之间的转换
二进制十六进制: 以小数点为界,分别向左、向右四位一组分段,不足四位 补0(整部在前,小数部分在后),然后将每段换成对应的十 六进制数码。 十六进制二进制: 将每位十六进制数码换成对应的四位二进制数,然后去前 后无效的0。 例7 (10110101.10101011)2 =(1011 0101. 1010 1011)2 =(B5.AB)16 (56A.C4)16 =(0101 0110 1010. 1100 0100)2
一、计算机中的数制及其转换
2. 数制之间的转换
(2) 十进制数转换为非十进制数
例4 (123.45)10 =(? 2 123……..1 2 61…….1 2 30……0 2 15…...1 2 7…..1 2 3…..1 2 1….1 0 )2 低位
0
1
高位
除 到 商 为 0 时 停 止
1
1 0 0 1
一、计算机中的数制及其转换
2. 数制之间的转换
(1) 非十进制数转换为十进制数
例2:(345.67)8 = 3*82 + 4*81 + 5*80 + 6*8-1 + 7*8-2 = 192 + 32 + 5 + 0.75 + 0.109375 = (229.859375)10
例3: (2FA.D)16 = 2*162 + 15*161 + 10*160 + 13*16-1 = 512 + 240 + 10 + 0.8125 = (762.8125)10
+101.0001 1111.0001 10.1 ×100 000 000 +101 10100 101.0001 11001.0101 101 101 101
计算机中的数制与编码

计算机中的数制与编码
(2)定点小数 定点小数规定小数点的位置固定在符号位之后,但不占一个二进制位。那么,符号位的右边表示的是一 个纯小数。
定点小数的表示形式
例如,用8位二进制定点整数表示(-0.6875)10,应为: (-0.6875)10=(11011000)2
计算机中的数制与编码
2 浮点数
浮点数是指小数点的位置不固定的数。对于既有整数部分又有小数部分的数,一般用浮点数表示。 任意一个二进制数N都可以表示成如下形式:
微机原理与接口技术
计算机中的数制 与编码
计算机中的数制与编码
1.1 计算机中的数制
1 数制的概念
数制是人们按进位的原则进行计数的一种科学方法。在日常生活中,经常要用到数制,除了最常见的十进 制计数法,有时也采用别的进制来计数。
一种计数制所使用的数字符号的个数称为基数,某个固定位置上的计数单位称为位权。同一数字符号处 在不同位置上所代表的值是不同的,它所代表的实际值等于数字本身的值乘以所在位置上的位权。例如,十 进制数345中的数字3在百位上,表示位权为100,故此时的3表示的是300。又如,十进制数123.45用位权可以 表示为
整数部分:
小数部分:
所以,(69.625)10=(1000101.101)2。
计算机中的数制与编码
② 转换成八进制数
③ 转换成十六Βιβλιοθήκη 制数计算机中的数制与编码3 二进制数与八进制数、十六进制数之间的转换
二进制、八进制、十六进 制之间存在特殊的关系:1位 八进制数对应3位二进制数,1 位十六进制数对应4位二进制 数,因此转换比较容易。
(2)小数部分的转换。
• 小数部分的转换采用“乘基取整法”,方法 是:将十进制数的小数部分反复乘以基数R, 将每次乘积的小数部分作为被乘数,并取得 相应的整数部分,直到乘积的小数部分为0。 将每次得到的整数部分顺序排列在小数点后, 即为转换后的R进制小数。
数制与编码

8421BCD码和十进制的之间的转化
例:将十进制数768用8421BCD码表示。 十进制数 7 6 8 8421码 0111 0110 1000 (768)10=(0111 0110 1000)8421
注意:
1.编码是一种符号表示某个具体的实物,所以编码不能比较大小。 2.8421BCD码是使用最广泛的 一种编码,在用4位二进制数码来表示1位十制 数时,每1位二进制数的位权依次为23、22、21、20,即8421,所以称为8421码 8421码选取0000—1001前十种组合来表示十进制数,而后六种组合舍去不用,称 为伪码。
可将每个八进数用3位二进制数表示,然后按八进制的排序将这些3位二进
制数排列好,就可得到相应的二进制数。
例:将八进制数475转化为二进制数。
解: 八进制数 4
7
5
二进制数 100 111
101
所以(475)8=(100111101)8
二进制数换为十六进制数
可将二进制整数自右向左每4位分为一组,最后不足4位的,高位用零补
6、将下列的二进制转化为十进制
(1011)2
(11011)2
(110110)2
(110011110)2
7、将下列的十进制转化为二进制
(20) (38)
(100) (184)
8、完成下列二进制的运算
101+11
11111+101
110-11
1101-111
9、什么是二进制代码? 什么是8421编码?列出8421BCD码的真 值表?
二进制数换为八进制数
可将二进制整数自右向左每3位分为一组,最后不足3位的,高位用零补足,
再把每3位二进制数对应的八进制数写出即可。
数制与编码

(BA3.C)16
① 由16个不同的数码0、1、2、…、9、A、B、C、D、E、F和 一个小数点组成,其中A~F分别代表十进制数的例如:(BA3.C)16 =B×162+A×161+3×160+C×16-1 =11×162+10×161+3×160+12×16-1
2 47 2 23 2 11 25 22 21 0
余数 1 1 1 1 0 1
低位 高位
则:(47)10=(101111)2 。最后结果为:(47.325)10=(101111.0101)2
数制与编码
1.2 数制转换
2.二进制与十六进制之间的转换
十进制
二进制
十六进制
十进制
二进制
十六进制
0
0000
0
1
0001
1
2
0010
2
3
0011
3
4
0100
4
5
0101
5
6
0110
6
7
0111
7
8
1000
8
9
1001
9
10
1010
A
11
1011
B
12
1100
C
13
1101
D
14
1110
E
15
1111
F
二进制转换成十六进制数的方法是从小数点开始,分别向左、向右将二进制数按 每四位一组分组(不足四位的补0),然后写出每一组等值的十六进制数。
整数
高位
0.325×2=0.65
0
0.65×2=1.30
1
0.3×2=0.6
0
0.6×2=1.2
计算机中的数制与编码
计算机中的数制与编码一、数制1、什么是进位计数制数制也称计数制,是指用一组固定的符号和统一的规则来表示数值的方法。
按进位的原则进行计数的方法,称为进位计数制。
比如,在十进位计数制中,是按照“逢十进一”的原则进行计数的。
常用进位计数制:a、十位制(Decimal notation);b、二进制(Binary notation);c、八进制(Octal notation);d、十六进制数(Hexdecimal notation)2、进位计数制的基数与位权"基数"和"位权"是进位计数制的两个要素。
(1)基数:所谓基数,就是进位计数制的每位数上可能有的数码的个数。
例如,十进制数每位上的数码,有"0"、"1"、"3",…,"9"十个数码,所以基数为10。
(2)位权:所谓位权,是指一个数值的每一位上的数字的权值的大小。
例如十进制数4567从低位到高位的位权分别为100、101、102、103。
因为:4567=4x103+5x 102+6x 101 +7x100(3)数的位权表示:任何一种数制的数都可以表示成按位权展开的多项式之和。
比如:十进制数的435.05可表示为:435.05=4x102+3x 101+5x100+0x10-1 +5x 10-2位权表示法的特点是:每一项=某位上的数字X基数的若干幂次;而幂次的大小由该数字所在的位置决定。
3、二进制数计算机中为何采用二进制:二进制运算简单、电路简单可靠、逻辑性强(1)定义:按“逢二进一”的原则进行计数,称为二进制数,即每位上计满2 时向高位进一。
(2)特点:每个数的数位上只能是0,1两个数字;二进制数中最大数字是1,最小数字是0;基数为2;比如:10011010与00101011是两个二进制数。
(3)二进制数的位权表示:(1101.101)2=1x23+1x 22+0x 21+1x 20+1x2-1 +0x 2-2+1x2-3(4)二进制数的运算规则1 加法运算① 0+0=0 ③ 1+1=10② 0+1=1+0=12 乘法运算① 0×0=0 ③ 1×1=1② 0×1=1×0=04、八进位制数(1)定义:按“逢八进一”的原则进行计数,称为八进制数,即每位上计满8时向高位进一。
数制与编码
第1章数制与编码学习目标:本章主要介绍了计算机中关于数的表示方法、几种常用数制的转换、机器数的表示方法和常用编码等内容。
使学生通过对数的基础知识的学习,可以为后续单片机原理的学习打下基础。
知识点:1、二进制、十六进制、十进制表达形式及其相互转换;2、机器数中关于有符号数的原码、反码、补码的表达形式及其相互转换;3、ASCII码、BCD码的表达形式及其相互转换。
1.1 不同进位计数制及其转换1.1.1 进位计数制计算机其实就是一种由数字电路演变而来的能进行逻辑运算的机器,其处理的信息就是数字电路所提到的二进制数,而人们常使用的是十进制数,这样,为了能顺利地在人与计算机之间进行信息交换,一定要进行不同进制数之间的转换操作,因此我们有必要掌握数制及数制转换的原理。
进位计数制:按进位的原则进行计数的一种方法。
进位计数制有以下两个特点:(1)有一个固定的基数r,数的每一位只能取r个不同的数字,即所使用的数码为0,1,2,……,r-1。
(2)逢r进位,它的第i个数位对应于一个固定的值r i,r i称为该位的“权”。
小数点左侧各位的权是基数r的正次幂,依次为0,1,2,…,m次幂,小数点右侧各位的权是基数r的负次幂,依次为-1,-2,…,-n次幂。
1、十进制十进制的基数为10,它所使用的数码为0~9,共l0个数字。
十进制各位的权是以10为底的幂,即每个数所处的位置不同,它的值是不同的,每一位数是其右边相邻那位数的10倍。
例如,数555.55就是下列多项式的缩写:555.55D=5*102+5*101+5*100+5*10-1+5*10-2上式中的后缀D(Decimal)表示该数为十进制数,通常对十进制数可不加后缀。
2、二进制二进制的基数为2,它所使用的数码为0、1,共2个。
二进制各位的权是以2为底的幂,即…,22,21,20,2-1,2-2,…。
例如,二进制数1011.101相当于十进制数:1011.101B=1*23+0*22+1*21+1*20+1*2-1+0*2-2+1*2-3 =11.625二进制数的运算规则类似于十进制,加法为逢二进一,减法为借一为二。
104计算机应用基础数制与编码
练习:将十进制1234.56写成展开式形式
解: 1234.56= 1×103 + 2×102 + 3×101 + 4×100 + 5×10-1 + 6×10-2
二进制
特点: 权展开式:
用两个数码表示——0、1 遵循“逢二进一”的规则 计算机能直接识别
数制 十进制
二进制
数码 0、1、2、3、4、5、6、7、8 、9
0、1
八进制 0、1、2、3、4、5、6、7
十六进制 0、1、2、3、4、5、6、7、8 、9、A、B、C、D、E、F
基数 10
Decimal System,来源 于希腊文Decem,意为 十
表示形式
(123)BD inar1y2s3ystem(123)10
十六进制-按权展开
例:十六进制数(3C4)16按权展开式
解:(3C4)16= 3 162+12 161 +4 160
N进制转十进制
方法: 位权法:把各非十进制数按权展开求和
例1:将二进制数(1011.01)2转换成十进制数
(1011.01)2= 1 23 + 0 22 + 1 21 + 1 20 + 0 2-1 + 1 2-2
D=Hn-1 ·16n-1+ Hn-2 ·16n-2+ ···+ H0 ·160+ H-1 ·16-1 + ···+ H-m ·16-m
在表示同一量值时,十六进制数来的最短,如:将(110111001101)2写成(DCD)16,且与二 进制转换方便,因此十六进制数常用来在程序中表示二进制数或地址。
数制与编码资料PPT课件
二、十和十六进制数
三种计数制之间的对应表示
二进制
0000 0001 0010 0011 0100
十进制
0 1 2 3 4
十六进制
0 1 2 3 4
二、十和十六进制数
二进制 0101 0110 0111 1000 1001
二进制 十六进制 方法:从小数点开始,分别向左向右出 发,四位一组,不足四位补零,四位划 一位。 例: 1011010.00101B=5A.28H
二、十和十六进制数
十六进制 二进制 方法:一位划四位。 例: 5A.28H=1011010.00101B
二、十和十六进制数
十进制 十六进制 方法一:先将十进制转换为二进制,再 将二进制转换为十六进制。 例: 97D=110 0001B=61H
二、十和十六进制数
二进制 加法规则“逢二进一” 二进制的特点: 1)简单可行,容易实现。 因为二进制只有两个数码0、1,可以用 两种不同的稳定状态来表示,如有磁和 无磁,高电位与低电位。 2) 运算规则简单。以加法为例,二进制 加法仅有四条:即0+0=0;1+0=1;
二、十和十六进制数
0+1=1;1+1=10。 3) 适合逻辑运算。二进制中的0和1正好 分别表示逻辑代数中的假值(False)和真 值(True)。二进制代表逻辑值容易实现逻 辑运算。
数制的基本概念
76.2Q=7X81+6X80+2X8-1 256.12D=2X102+5X101+6X100
+1X10-1+2X10-2 A2B.FH=10X162+2X161+11X160
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二进制数N的按权展开式如下: N=Dm2m+Dm−12m−1+…+D121+D020+D− −1+D 2−2+…+D 2−k 2 (4-3) 1 −2 −k
4.1.3 八进制和十六进制
八进制数即“逢八进一”,表示数据 的基本符号有0~7八个。 N=Dm8m+Dm−18m−1+…+D181+D080+D−1 8−1+D−28−2+…+D−k8−k (4-4)
2.十六进制数转换为二进制数
转换方法:将十六进制数的每一位分 别表示成四位二进制数即可。
4.3 S7-200中的数据表示 4.3.1 逻辑数据和开关量的表示
在PLC中,开关量可以用一位二进制 数表示,1表示接通,0表示断开。
4.3.2 字符数据的表示
1.单个字符的编码 2.字符串的编码 3.汉字的编码
2.八进制数转换为二进制数
转换方法:将八进制数的每一位分别 表示成三位二进制数即可。
4.2.3 二进制与十六进制的互相转换
1.二进制数转换为十六进制数
转换方法:将二进制数从小数点开始,向左 (整数部分)或向右(小数部分)四位一组,将每 一组分别表示成一位十六进制数即可。如果小数 部分的最低位一组不足四位,应在其右侧补0, 补足四位后再转换。如果整数部分的最高位一组 不足四位,应在其左侧补0,补足四位后再转换。 否则会出现错误结果。
4.3.3 常数的表示
1.十六进制常数和二进制常数的表示 2.数值型数据的表示ቤተ መጻሕፍቲ ባይዱ
(1)整数的表示 (2)小数的表示
3.BCD码的表示
(1)压缩BCD码格式(Packed BCD Format) (2)非压缩BCD码格式(Unpacked BCD Format)
小
结
本章主要介绍了十进制数、二进制数、 八进制数和十六进制数及其互相转换,S7200 PLC中常用信息的编码。 通过本章学习,读者应能掌握二进制数 及二进制数与其他进制数的转换,熟悉S7200 PLC中各种信息的编码,为进一步学习 PLC的编程打下基础。
十六进制数即“逢十六进一”,表示数 据的基本符号有0~9、A~F十六个,其中A 代表10,B代表11,…,F代表15。 N=Dm16m+Dm−116m−1+…+D1161+D0160+D −1+D 16−2+…+D 16−k 16 (4-5) −1 −2 −k
4.2 不同进制数据的相互转换 4.2.1 十进制与其他进制的相互转换
第4章 数制与编码
4.1 计数制 4.1.1 十进制
十进制是日常生活中常用的一种进位 计数制。 十进制数用0~9十个数字来表示一个 数,其进位原则是“逢十进一”,它的基 是10。 我们将一个十进制数N表示为 N=DmDm−1…D1D0D−1D−2…D−k (4-1)
4.1.2 二进制
二进制编码是各种数字设备中使用最 多的码制。 它只用两个基本符号“0”和“1”,它 的基是2,进位的原则是“逢二进一”。
1.二进制、八进制、十六进制转换为十进制 转换方法:将二进制、八进制、十六进制 数按照式(4-3)、式(4-4)、式(4-5)形 式的按权展开式求和即是相应的十进制数。 2.十进制数转换为二进制、八进制、十六进 制
4.2.2 二进制与八进制的互相转换
1.二进制数转换为八进制数
转换方法:将二进制数从小数点开始,向左 (整数部分)或向右(小数部分)三位一组,将 每一组分别表示成一位八进制数即可。 如果小数部分的最低位一组不足三位,应在 其右侧补0,补足三位后再转换。 如果整数部分的最高位一组不足三位,应在 其左侧补0,补足三位后再转换。否则会出现错 误结果。