实验二 食品中氮含量的测定

合集下载

酱油中氨基酸态氮含量的测定

酱油中氨基酸态氮含量的测定
空白问题一般的酱油生产企业每天都要进行氨基酸态氮的检测因此也没必要每天都进行空白试验但是当蒸馏水或甲醛溶液换瓶后就一定要对空白重新试验在实践中发现每批的蒸馏水不同瓶的甲醛空白有时相差很大如果一直沿用一成不变的空白数据检测结果肯定会有很大的误差
酱油中氨基酸态氮含量的测定 目录—————————————————————1
PH=7.0 是溶液中游离氢离子与氢氧化钠标准溶液完全反应后的 PH 值,即 有效酸度 PH=8.2 是溶液中除有效酸度以外的物质与氢氧化钠标准溶液完全反应后的 PH 值,即总酸 PH=9.2 是溶液中氨基态氮中的羧基与氢氧化钠标准溶液完全反应后的 PH 值 本实验用的是 PH 为 8.2 和 9.2 数据。由于酱油还含有总酸度,即使不测定 总酸度,也有将总酸中和。用 PH=8.2 时氢氧化钠消耗的体积与 PH=9.2 时氢氧 化钠消耗的体积 的差计算出样品中氨基态氮含量。
5
PH 值
0.4647
4.1-4.4
空白测定 ????
0.20
0.39
【工作任务阶段小结】
实验中哪些地方需要进一步改进,简述你改进实验的思路? 空白问题 一般的酱油生产企业每天都要进行氨基酸态氮的检测,因此也没必要每天 都进行空白试验,但是,当蒸馏水或甲醛溶液换瓶后,就一定要对空白重新试 验,在实践中发现,每批的白数据,检测结果肯定会有很大的误差。
3
【仪器和试剂】
1.仪器 酸度计 PHS-3C 型、 磁力搅拌器 JB-1A、 碱式滴定管 (50ml) 、 容量瓶 (250ml) 2.试剂 0.04515mol/L 氢氧化钠标准溶液、 (1+1)甲醛溶液
【实验步骤】
氢氧化钠溶液的配制: 称取 0.5014g 氢氧化钠试剂溶解, 稀释后定容于 250ml

酱油中氨基酸态氮含量的测定

酱油中氨基酸态氮含量的测定

NaOH/mL 醛后消耗 NaOH/mL 醛后消耗 度/(mol/L)
NaOH/mL
NaOH/mL
3.31
7.82
0.21
1.38
0.05
2.结果计算 (V1 V2) c 0.014 100 V4 (V3 /V )
式中:ρ--样品中氨基酸态氮的含量,g/100mL; V1—测定用的样品稀释液加入甲醛后消耗氢氧化钠标准溶液的体积,mL; V2—试剂空白试验加入甲醛后消耗氢氧化钠标准溶液的体积,mL; V3—样品稀释液取用量,mL; V4—样品的体积,mL; V—样品稀释液的总体积,mL; c—NaOH标准溶液的浓度,mol/L; 0.014—1mL 1.000mol/L氢氧化钠标准溶液相当氮的克数。
(V1 V2 ) c 0.014 100
V4 (V3 /V )
(7.82 3.31) 0.05 0.014 100 5 (20 /100 )
=0.003157 x100 =0.3157 g/100ml
六、实验小结
• 本实验主要是要我们掌握电位滴定法的基本原理和操作要 点及进一步巩固电位滴定法的基本操作技能。在测定之前, 酸度计一定要进行校正,校正溶液的配制要准确。
测定步骤:样品采集与处理→样液制备→测定→ 数据处理。
三、仪Байду номын сангаас与试剂
仪器:酸度计、磁力搅拌器、100mL容量瓶、50mL碱 式滴定管、200mL的烧杯
试剂:36%甲醛溶液、0.050mol/L氢氧化钠标准溶 液、酱油、蒸馏水
四、测定步骤
1. 0.050 mol/L氢氧化钠标准溶液配制 准称2.00gNaoH 溶解 定容 1000mL容量瓶
一、目的与要求
1.了解食品中氨基酸态氮的来源、作用及测定方法 2. 领会和掌握双指示剂甲醛滴定法及电位滴定法 基本原理、操作要点。 3. 进一步巩固滴定分析和电位滴定法的基本操作 技能。

氮含量的测定实验报告

氮含量的测定实验报告

氮含量的测定实验报告氮含量的测定实验报告引言:氮是生命中不可或缺的元素,广泛存在于自然界中的有机物和无机物中。

测定氮含量的方法有很多,其中最常用的是凯氏法和尿素酶法。

本实验旨在通过凯氏法测定一种未知样品中的氮含量,并对实验结果进行分析和讨论。

实验步骤:1. 实验前准备:a. 将凯氏试剂配制好,包括硫酸、硫酸钠、硼酸和铁铵硫酸。

b. 预先称取一定量的未知样品。

c. 准备好所需的实验仪器和设备,包括烧杯、试管、分液漏斗等。

2. 样品预处理:a. 将称取好的未知样品放入烧杯中,加入一定量的硫酸。

b. 在通风橱中,加热烧杯,使样品中的有机物完全氧化。

c. 冷却样品,加入适量的硫酸钠溶液,以去除余下的氧化剂。

3. 氮含量测定:a. 将经过预处理的样品转移至试管中。

b. 依次加入硼酸和铁铵硫酸试剂,使样品中的氮与试剂发生反应生成含铁络合物。

c. 将试管放入水浴中加热,使反应充分进行。

d. 冷却样品,用蒸馏水洗涤试管,使试管内的溶液完全转移至烧杯中。

e. 加入亚硫酸钠溶液,使铁离子还原为亚铁离子。

f. 用甲基红指示剂滴定样品中的亚硝酸钠溶液,直至溶液颜色由红变黄。

g. 记录滴定所需的亚硝酸钠溶液的体积。

结果分析:根据实验测定的亚硝酸钠溶液的体积,可以计算出未知样品中氮的含量。

具体的计算公式如下:氮含量(%)=(滴定所需亚硝酸钠溶液体积× 0.014 × 100)/ 样品质量通过实验测定,我们得到了未知样品中氮的含量为X%。

根据这个结果,我们可以对样品进行进一步分析和判断。

比如,如果测定结果显示氮含量较高,可能说明样品中存在着过量的氮肥残留,对环境造成潜在的污染风险。

而如果氮含量较低,则可能暗示着样品中缺乏足够的氮源,对植物的生长发育产生不利影响。

结论:通过凯氏法测定,我们成功地测定了未知样品中的氮含量,并对实验结果进行了分析和讨论。

实验结果对于了解样品的氮营养状况以及可能存在的环境风险具有重要意义。

凯氏定氮法实验报告

凯氏定氮法实验报告

凯氏定氮法实验总结题目:蛋白质浓度测定(微量凯氏定氮法)姓名:穆拉地力·地力夏提学号:074031141一、【实验目的】1. 掌握凯氏定氮法测定蛋白质含量的原理和方法2. 学会使用凯氏定氮仪并学会用凯氏定氮仪测出小油馕中的蛋白质含量二、【实验原理】凯氏定氮法首先将含氮有机物与浓硫酸共热,经一系列的分解、碳化和氧化还原反应等复杂过程,最后有机氮转变为无机氮硫酸铵,这一过程称为有机物的消化。

为了加速和完全有机物质的分解,缩短消化时间,在消化时通常加入硫酸钾、硫酸铜、过氧化氢等试剂,加入硫酸钾可以提高消化液的沸点而加快有机物分解,硫酸铜起催化剂的作用。

使用时常加入少量过氧化氢作为氧化剂以加速有机物氧化。

消化完成后,将消化液转入凯氏定氮仪反应室,加入过量的浓氢氧化钠,将NH4+转变成NH3,通过蒸馏把NH3驱入过量的硼酸溶液接受瓶内,硼酸接受氨后,形成四硼酸铵,然后用标准盐酸滴定,直到硼酸溶液恢复原来的氢离子浓度。

滴定消耗的标准盐酸摩尔数即为NH3的摩尔数,通过计算即可得出总氮量。

在滴定过程中,滴定终点采用甲基红-次甲基蓝混合指示剂颜色变化来判定。

测定出的含氮量是样品的总氮量,其中包括有机氮和无机氮。

以甘氨酸为例,其反应式如下:NH2CH2COOH+3H2SO4 =2C02+3SO2+4H2O+NH3(1)2NH3 +H2SO4 = (NH4)2SO4 (2)(NH4)2SO4+2NaOH=2H2O+Na2SO4+2NH3 (3)反应(1),(2)在凯氏烧瓶内完成,反应(3)凯氏蒸馏烧瓶中进行(图1)。

蛋白质是一类复杂的含氮化合物,每种蛋白质都有其恒定的含氮量(约在14%~18%,平均为16%)。

凯氏定氮法测定出的含氮量,再乘以系数6.25,即为蛋白质含量。

三、【试验器材】1. 凯氏定氮仪2. 电炉3. 消化架4. 锥形瓶100ml(×5)5. 量筒10ml(×1)6. 滴定管(5ml,可读至0.02ml)7. 凯氏烧瓶(×2)8. 玻璃珠9. 吸耳球10.移液管(2ml,5ml,10ml×1)四、【实验试剂】1. 浓硫酸(A.R.)2. 硫酸钾-硫酸铜混合物:硫酸钾3份与硫酸铜1份混合研磨成粉末。

凯氏定氮法测定食品中氮含量

凯氏定氮法测定食品中氮含量

凯氏定氮法测定食品中氮含量摘要:凯氏定氮法首先将含氮有机物与浓硫酸共热,经一系列的分解、碳化和氧化还原反应等复杂过程,最后有机氮转变为无机氮硫酸铵,这一过程称为有机物的消化。

为了加速和完全有机物质的分解,缩短消化时间,在消化时通常加入硫酸钾、硫酸铜、氧化汞、过氧化氢等试剂,加入硫酸钾可以提高消化液的沸点而加快有机物分解,使用时常加入少量过氧化氢、次氯酸钾等作为氧化剂以加速有机物氧化。

消化完成后,将消化液转入凯氏定氮仪反应室,加入过量的浓氢氧化钠,将NH4+转变成NH3,通过蒸馏把NH3驱入过量的硼酸溶液接受瓶内,硼酸接受氨后,形成四硼酸铵,然后用标准盐酸滴定,直到硼酸溶液恢复原来的氢离子浓度。

滴定消耗的标准盐酸摩尔数即为NH3的摩尔数,通过计算即可得出总氮量。

在滴定过程中,滴定终点采用甲基红-次甲基蓝混合指示剂颜色变化来判定。

测定出的含氮量是样品的总氮量,其中包括有机氮和无机氮。

关键词:1.实验部分:1.1实验仪器及样品1.1.1 材料与试剂浓H2SO4、K2SO4、CuSO4·5H2O、NaOH、HCl、H3PO4、硼酸溶液(20g/L)30%氢氧化钠(分析纯)溶液;甲基红、乙醇、溴甲酚绿、定量滤纸等。

40 %NaOH 溶液:40 g NaOH 溶于100 mL水中;0.05 mol/LHCl标准液:4.2 mL HCl 溶于1000 mL 水中,碳酸钠法标定盐酸;2 % H3BO3溶液:H3BO3 2 mL 溶于100 mL 水中;硫酸钾-硫酸铜混合物:硫酸钾与硫酸铜以3:1 (W/W)配比混合研磨成粉末加速剂:K2SO4 150 g ,CuSO4·5H2O 10 g 仔细混匀研磨。

甲基红—溴甲酚绿混合指示剂:甲基红溶于乙醇配成0.1 % 乙醇溶液,溴甲酚绿溶于乙醇配成0.5 % 乙醇溶液,两种溶液等体积混合,阴凉处保存(保存期三个月以内)。

混合指示剂:0.1%甲烯蓝乙醇溶液50ml与0.1%甲基红乙醇溶液200ml 混合配成(贮于棕色瓶备用,这种指示剂酸性时为紫色,碱性时为绿色,变色范围窄且灵敏)硼酸-指示剂混合液: 2%硼酸溶液100ml,滴加混合指示剂贮备液,摇匀后溶液呈现紫红色即可(约加1ml左右混合指示剂)。

凯氏定氮法 标准

凯氏定氮法 标准

凯氏定氮法标准全文共四篇示例,供读者参考第一篇示例:凯氏定氮法是一种广泛应用于化学分析中的定量测定方法之一,主要用于测定样品中的氮含量。

凯氏定氮法具有精密度高、准确度好、操作简便等优点,因而在各种实验室中被广泛使用,成为化学分析领域中不可或缺的一种技术手段。

凯氏定氮法的原理是将待测样品中的氮转化为氨,然后将氨与一定量的盐酸反应生成氯化铵,最后利用碱液中的氯化钯催化氯化铵生成氨铁离子,并通过比色法测定氧化铁的含量或滴定法测定氢氧化铁的浓度,从而计算出样品中的氮含量。

凯氏定氮法的操作步骤包括样品准备、试剂配制、试验操作、数据处理等环节。

首先是样品的提取和制备,将待测样品研磨成粉末状或将溶液过滤提取。

其次是配制各种试剂,包括氧化剂、还原剂、盐酸、铁试剂等。

然后是按照一定的比例将样品溶液与试剂混合反应,生成氨气和氯化铵。

最后通过比色法或滴定法测定生成的氨铁离子,计算样品中的氮含量。

在实际操作中,为了提高分析的准确性和可靠性,需要注意几个关键环节。

首先是样品的称量和提取要精确,避免因为操作不当而引入误差。

其次是试剂的配制要准确,遵循操作规程,不得随意更改配制浓度或比例。

最后是在试验操作过程中要注意操作流程,避免外界干扰因素的影响,保证实验的结果准确可靠。

凯氏定氮法广泛应用于生物、环境、食品等领域的氮含量测定中。

在生物领域,凯氏定氮法被用于分析肥料中的氮含量,以指导农业生产。

在环境领域,凯氏定氮法被用于测定水体、土壤中的氮含量,以监测环境污染物的变化。

在食品领域,凯氏定氮法被用于检测食品中的蛋白质含量,保证食品质量和安全。

凯氏定氮法是一种可靠的氮含量测定方法,具有精密度高、准确度好、操作简便等优点。

在化学分析中扮演着重要角色,为各个领域的研究提供了有效的技术手段。

希望通过本文的介绍,读者对凯氏定氮法有了更深入的了解,能够在实验操作中更加熟练和自信。

第二篇示例:凯氏定氮法是一种用于测定样品中氮含量的经典方法,也被称为氮元素定量法。

酱油中氨基酸态氮含量的测定

酱油中氨基酸态氮含量的测定

酱油中氨基酸态氮含量的测定1. 引言酱油是中国传统的调味品之一,具有香味浓郁、色泽红亮等特点。

酱油中的氨基酸态氮含量是评价其质量的重要指标之一,因为氨基酸态氮是提供食品中蛋白质含量的主要指标之一。

本文将介绍如何测定酱油中的氨基酸态氮含量。

2. 实验原理酱油中的氨基酸态氮含量可以通过测定总氮含量和非蛋白质态氮含量来间接计算得到。

具体步骤如下:1.样品预处理:将待测样品与适量的硫代硫酸钠混合,加热破乳,并用水稀释至适宜体积。

2.总氮测定:采用Kjeldahl法对样品进行总氮测定。

首先,在蒸馏装置中加入硫化钠和碳酸钠作为催化剂,然后将样品加入消解管中与硫酸混合,进行消解。

接着,将消解液进行蒸馏,收集蒸馏液,并用硫酸钠溶液进行中和。

最后,用硫酸铵标准溶液滴定反应过程中形成的硫酸铵。

3.非蛋白质态氮测定:采用巴比特法对样品进行非蛋白质态氮测定。

首先,将样品与巴比特试剂(含有碱性氧化剂和碱性还原剂)混合,在加热条件下进行消解。

然后,用硫酸钠溶液对反应产物进行中和,并用硝酸钠标准溶液滴定反应过程中生成的亚硝酸盐。

4.氨基酸态氮计算:通过总氮含量和非蛋白质态氮含量的测定结果,可以计算出酱油中的氨基酸态氮含量。

3. 实验步骤1.样品制备:取适量待测样品,加入适量的硫代硫酸钠,并在加热条件下破乳。

然后用水稀释至适宜体积。

2.总氮测定:按照Kjeldahl法的步骤进行总氮测定。

3.非蛋白质态氮测定:按照巴比特法的步骤进行非蛋白质态氮测定。

4.计算结果:根据总氮含量和非蛋白质态氮含量的测定结果,计算出酱油中的氨基酸态氮含量。

4. 结果与讨论通过实验测定,得到了酱油中的总氮含量和非蛋白质态氮含量。

根据这些数据,可以计算出酱油中的氨基酸态氮含量。

通过对多个样品进行测试,并比较其结果,可以评估不同品牌或批次的酱油在氨基酸态氮含量上的差异。

5. 结论本实验介绍了一种测定酱油中氨基酸态氮含量的方法。

通过对样品进行总氮和非蛋白质态氮的测定,并计算出其差值,可以得到酱油中的氨基酸态氮含量。

氮含量测定

氮含量测定

第二章实验部分2.1 实验原料磷酸(85%wt):分析纯;上海晶纯实业有限公司;三聚氰胺:工业级;湖北宜化化工有限公司;七水氯化镧:分析纯;上海晶纯实业有限公司;氯化铝:分析纯;上海晶纯实业有限公司;氯化锌:分析纯;上海晶纯实业有限公司;MPP:自制,广东华南精细化工研究院;LDPE1:1F7B,中国石油化工股份有限公司;LDPE2:608,中国石油化工股份有限公司;Melapur200:DSM;超支化成炭剂:自制,广东华南精细化工研究院磷酸酯胺盐:自制,广东华南精细化工研究院3-羟基苯基磷酰丙酸(CEPPA):工业级,青岛东科化工有限公司;高纯铝粉:分析纯,上海晶纯实业有限公司;37%盐酸:化学纯,上海晶纯实业有限公司;2.2 实验仪器6511 型电动搅拌器:上海标本模具厂;500ml磨口三颈烧瓶;温度计;恒压滴液漏斗;X6精密熔点测定仪:北京第三光学仪器厂;马弗炉:沈阳市节能电炉厂;热重分析仪:TGA-50,日本岛津公司;红外光谱仪:Nicolet 360,美国尼高立公司;酸度计:BUSS单螺杆挤出机:AG. Basle. Switzerland;注塑机:CPC-1,震雄集团;锥形量热仪:ASTM M1354,英国FTT公司;氧指数仪:PDF-60,承德精密试验机有限公司;X射线光电子能谱仪:ESCALAB 250,美国Thermo electron公司电子万能试验机:WDT-D,承德精密试验机有限公司核磁共振仪:Bruker WM 300MHz或Unity 200MHz核磁共振仪2.3 性能测试与表征2.3.1 热重(TG)在氮气气氛下,取大约10mg的样品放置于坩埚中,以10℃/min的速率从室温加热到800℃,研究材料随温度升高的质量变化情况;2.3.2红外光谱(FTIR)采用美国NICOLET-360型红外光谱仪测试对样品进行化学组分分析,将样品与溴化钾混合,压片。

2.3.3水溶性称取1.0g试样于200ml烧杯中,加入100ml蒸馏水,放在磁力加热搅拌器上恒温(25℃)加热,并不断搅拌30min,取下烧杯静置24h。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二食品中氮含量的测定
一、实验目的
1. 学习凯氏定氮法测定蛋白质的原理。

2. 掌握凯氏定氮法的操作技术,包括样品的消化处理、蒸馏、滴定及蛋白质含量计算等。

二、实验原理
蛋白质是含氮的化合物,食品与浓硫酸和催化剂共同加热消化,使蛋白质分解,产生的氨与硫酸结合生成硫酸铵,留在消化液中,然后加碱蒸馏使氨游离,用硼酸吸收后,再用盐酸标准溶液滴定,根据酸的消耗量来乘以蛋白质换算系数,即得蛋白质含量。

因为食品中除蛋白质外,还含有其它含氮物质,所以此蛋白质称为粗蛋白。

三、仪器与试剂
(一)试剂
硫酸铜(CuSO4·5H20)、硫酸钾、硫酸(密度为1.8419g/L)、硼酸溶液(20g/L)、氢氧化钠溶液(400g/L)、0.01mol/L盐酸标准滴定溶液、混合指示试剂(0.1%甲基红乙溶液液1份,与0.1%溴甲酚绿乙醇溶液5份临用时混合)、大米。

(二)仪器微量定氮蒸馏装置:如图3- 所示。

四、实验步骤
1. 样品消化
称取黄豆粉约0.3 g (±0.001 g ),移入干燥的100 mL 凯氏烧瓶中,加入0.2 g 硫酸铜和6 g 硫酸钾,稍摇匀后瓶口放一小漏斗,加入20 mL 浓硫酸,将瓶以450角斜支于有小孔的石棉网上,使用万用电炉,在通风橱中加热消化,开始时用低温加热,待内容物全部炭化,泡沫停止后,再升高温度保持微沸,消化至液体呈蓝绿色澄清透明后,继续加热0.5 h ,取下放冷,小心加20 mL 水,放冷后,无损地转移到100 mL 容量瓶中,加水定容至刻度,混匀备用,即为消化液。

试剂空白实验:取与样品消化相同的硫酸铜、硫酸钾、浓硫酸,按以上同样方法进行消化,冷却,加水定容至100 mL ,得试剂空白消化液。

2. 碱化蒸馏
量取硼酸试剂20.00 mL 于三角瓶中,使冷凝管的下端插入硼酸液面下,准确吸取10.00 mL 样品消化液进入反应室,并以50 mL 蒸馏水洗涤进样口流入反应室,棒状玻塞塞紧。

使10 mL 氢氧化钠溶液用玻璃漏斗注入反应室。

通入蒸汽蒸腾15 min 后,移动接收瓶,液面离开凝管下端,再蒸馏2min 。

然后用少量水冲洗冷凝管下端外部,取下三角瓶,准备滴定。

同时吸取10.00 mL 试剂空白消化液按上法蒸馏操作。

4. 样品滴定
以0.1 mol/L 盐酸标准溶液用自动电位滴定仪滴定样品和空白试样至pH 为5.0-5.2(国标中使用的甲基红-亚甲基蓝指示液的变色范围)。

5、数据记录
五、结果计算
10010100
0140.0)(21⨯⨯⨯⨯⨯-=F m c V V X
式中 X ——样品蛋白质含量(g/100g );
V 1——样品滴定消耗盐酸标准溶液体积(mL );
V 2——空白滴定消耗盐酸标准溶液体积(mL );
c ——盐酸标准滴定溶液浓度(mol/L );
0.0140 ——1.0mL 盐酸]/000.1)([L mol HCl c 标准滴定溶液相当的氮的质量(g ); m ——样品的质量(g );
F ——氮换算为蛋白质的系数,一般食物为6.25;乳制品为6.38;面粉为5.70;
高梁为6.24;花生为5.46;米为5.95;大豆及其制品为5.71;肉与肉制品为
6.25;大麦、小米、燕麦、裸麦为5.83;芝麻、向日葵5.30。

计算结果保留三位有效数字。

六、注意事项及说明
1. 本法也适用于半固体试样以及液体样品检测。

半固体试样一般取样范围为
2.00 g~5.00 g ;液体样品取样10.0 mL ~ 25.0 mL (约相当氮30 mg ~ 40 mg )。

若检测液体样品,结果以g / 100 mL 表示。

2. 消化时,若样品含糖高或含脂及较多时,注意控制加热温度,以免大量泡沫喷出凯氏烧瓶,造成样品损失。

可加入少量辛醇或液体石蜡,或硅消泡剂减少泡沫产生。

3. 消化时应注意旋转凯氏烧瓶,将附在瓶壁上的碳粒冲下,对样品彻底消化。

若样品不易消化至澄清透明,可将凯氏烧瓶中溶液冷却,加入数滴过氧化氢后,再继续加热消化至完全。

4. 硼酸吸收液的温度不应超过40℃,否则氨吸收减弱,造成检测结果偏低。

可把接收瓶置于冷水浴中。

5. 在重复性条件下获得两次独立测定结果的绝对差值不得超过算术平均值的10%.
七、思考题
1. 预习凯氏定氮法测定蛋白质的原理及操作。

2. 蒸馏时为什么要加入氢氧化钠溶液?加入量对测定结果有何影响?
3. 在蒸汽发生瓶水中、加甲基红指示剂数滴及数毫升硫酸的作用是什么?若在蒸馏过程中才发现蒸汽发生瓶中的水变为黄色,马上补加硫酸行吗?
4. 实验操作过程中,影响测定准确性的因素有哪些?。

相关文档
最新文档