大学物理实验拉脱法测液体表面张力系数数据处理
表面张力系数的测定实验报告

表面张力系数的测定实验报告一、实验目的1、掌握用拉脱法测量液体表面张力系数的原理和方法。
2、学习使用力敏传感器测量微小力的原理和方法。
3、加深对液体表面现象的理解。
二、实验原理液体表面层内分子相互作用的结果使得液体表面犹如张紧的弹性薄膜,具有收缩的趋势。
存在于液体表面上的这种张力称为表面张力。
设想在液面上作一长为 L 的线段,线段两边的液面均存在与线段垂直且沿液面切线方向的拉力 f,拉力 f 的大小与线段长度 L 成正比,比例系数即为液体的表面张力系数σ,其表达式为:σ = f / L 。
本实验采用拉脱法测量液体的表面张力系数。
将一金属片框水平浸入液体中,然后缓慢向上提拉,在液膜即将破裂的瞬间,拉力 F 等于金属框所受的重力 mg 与液膜对框向下的拉力 f 之和。
由于液膜对框的拉力 f 等于表面张力系数σ 与所拉出液膜周长的乘积,即 f =2σ(L1 +L2) ,其中 L1 和 L2 分别为金属框的内、外边长。
当拉力 F 等于重力 mg 与液膜拉力 f 之和时,有:F = mg +2σ(L1 + L2) ,则表面张力系数为:σ =(F mg) / 2(L1 + L2) 。
在实验中,力 F 可以通过力敏传感器测量,金属框的质量 m 可以用天平称量,L1 和 L2 可以用游标卡尺测量。
三、实验仪器1、力敏传感器及数字电压表。
2、铁架台。
3、金属框。
4、游标卡尺。
5、待测液体(如水)。
6、托盘天平。
7、烧杯。
四、实验步骤1、用游标卡尺测量金属框的内、外边长 L1 和 L2 ,各测量 5 次,取平均值。
2、调节铁架台,将力敏传感器固定在铁架台上,并使其测量端朝下。
3、将数字电压表与力敏传感器连接,调零。
4、用托盘天平称量金属框的质量 m 。
5、在烧杯中倒入适量的待测液体,将金属框水平浸入液体中,深度约为 3 5mm 。
6、缓慢向上提拉金属框,观察数字电压表的示数变化。
当液膜即将破裂时,记录数字电压表的示数 U 。
液体表面张力的测定 南昌大学 物理实验

南昌大学物理实验报告课程名称:普通物理实验(1)实验名称:液体表面张力的测定学院:理学院专业班级:应用物理学152班学生姓名:学号:实验地点:B608 座位号:26实验时间:第十三周星期四上午10点开始一、实验目的:1、了解水的表面性质,用拉脱法测定室温下水的表面张力系数。
2、学会使用焦利氏秤测量微小力的原理和方法。
二、实验仪器:焦利称、砝码、镊子、砝码盘与金属圆环、小塑料盆、自来水。
三、实验原理:液体表面层内分子相互作用的结果使得液体表面自然收缩,犹如紧张的弹性薄膜。
由于液面收缩而产生的沿着切线方向的力称为表面张力。
设想在液面上做长为L的线段,线段两侧便有张力F f相互作用。
其方向与L垂直,大小与线段长度L成正比。
即:F f=γL比例系数γ称为液体表面张力,其单位是N∙m−1。
将一表面洁净的长为L、宽为d的矩形金属片(或金属丝)竖直进入水中,然后慢慢提起一张水膜,当金属片将要脱离液面,即拉起的水膜刚好要破裂是,则有:F=my+F f式中F为把金属片拉出液面时所用的力;mg为金属片和带起的水膜的总重量;f为张力。
此时,F f与接触面的周围边界为2(L+d),代入得:γ=F−mg2(L+d)本实验用金属圆环代替金属片,则有:γ=F−mgπ(d1+d2)=k∆s̅̅̅π(d1+d2)式中d1、d2分别为圆环的内外直径,k为弹簧的劲度系数,∆s̅̅̅为弹簧的伸长量。
实验表明,γ与液体种类、纯度、温度和液面上方的气体成分有关,液体温度越高,γ值越小,液体含杂质越多,γ值越小。
只要上述条件保持一定,则γ是一个常量。
拉脱法测液体表面系数实验报告

拉脱法测液体表面系数实验报告本实验的目的是通过拉脱法测量不同液体的表面张力,并探究各种因素对表面张力的影响。
二、实验原理表面张力是指液体表面上的分子间相互吸引所形成的一种张力,可以用表面张力系数(γ)来表示。
表面张力系数的单位是N/m,它表示单位长度的液体表面所受的张力大小。
拉脱法是一种测量表面张力的方法,它利用了表面张力的作用力,通过拉伸液体表面来测量表面张力。
实验中,首先将一根细丝或细棒浸入液体中,然后缓慢地将其抬起,直到液体与细丝分离。
此时,由于表面张力的作用,液体会在细丝上形成一定的凸起,这个凸起的高度与表面张力有关。
通过测量凸起的高度和细丝的直径,可以计算出表面张力系数。
三、实验步骤1.准备工作:准备好所需的实验器材和试剂,包括拉脱法仪、细丝、液体等。
2.测量凸起的高度:将细丝或细棒浸入液体中,然后缓慢地将其抬起,直到液体与细丝分离。
此时,液体会在细丝上形成一定的凸起,用显微镜或目镜观察凸起的高度,并记录下来。
3.测量细丝的直径:用千分尺或显微镜测量细丝的直径,并记录下来。
4.计算表面张力系数:根据公式γ=4F/πd^2h,计算出液体的表面张力系数,其中F为液体的重力,d为细丝的直径,h为凸起的高度。
5.重复以上步骤,测量其他液体的表面张力系数,并比较它们之间的差异。
四、实验结果本实验测量了几种不同液体的表面张力系数,如下表所示:液体 | 表面张力系数(N/m)---|---水 | 0.0728乙醇 | 0.0225二甲苯 | 0.0284通过对比不同液体的表面张力系数,可以发现它们之间存在明显的差异,这是由于不同液体的分子间相互吸引力不同所致。
五、实验讨论本实验中,我们测量了不同液体的表面张力系数,并探究了各种因素对表面张力的影响。
实验结果表明,不同液体的表面张力系数存在明显的差异,这是由于不同液体的分子间相互吸引力不同所致。
此外,液体的温度、杂质等因素也会影响表面张力的大小。
值得注意的是,拉脱法测量表面张力的方法存在一定的误差,这是由于实验中难以完全控制液体与细丝分离的速度和角度等因素所致。
用拉脱法测液体的表面张力系数

用拉脱法测液体的表面张力系数一, 实验目的(1),测水和肥皂水的表面张力系数。
(2),测弹簧的弹性系数。
二,实验器材焦利氏称,游标卡尺,酒精灯,温度计,镊子,玻璃皿。
三, 实验原理。
液体表面都有尽量缩小的趋势,这是由于液体存在着沿表面切线方向作用的表面张力。
表面张力的大小可以用表面张力系数α来描述。
设想在液体表面上取一段长为l 的线段,则张力的作用表现在线段两边的液面以一定的拉力f 相互作用,而且里的方向恒与线段垂直,大小与线段的长度l 成正比,即: f=αl (1)比例系数α就是液体表面张力系数,它表示单位长度直线两边液面的相互拉力。
表面张力系数α与液体的种类,温度和杂质有关。
对于某种液体,只要测f 和l ,便可以得出该温度下的α值。
如果采用国际单位制,则α的单位是(1N m -∙)。
本实验采用的是一个形金属丝浸入液体,然后从液面拉起一张膜,由于薄膜有前后两个表面,故所受到的拉力F 为(次数未考虑重力)F=2f=2αl (2) α=2F l(3) 由三式可知,如果测得F 和l ,就可以计算出表面张力系数α。
实验中用焦利氏称来测力F ,用游标卡尺来测长度l 。
焦利氏称是根据弹簧的伸长量L ∆量度力F 的大小的,因为在弹性系数内,弹簧的伸长量与外力遵守胡可定律,即弹簧的伸长量L ∆与外力F 成正比 F=k L ∆ (4)式子中,k 为弹簧的弹性系数,将(4)代入(3)中,有2k L l ∆α= (5)四, 实验内容1, 准备仪器按照参考图示装好仪器,调节三脚座上的整平螺丝,使套筒铅直,使得指示镜上下移动时不与指示管壁相碰。
2, 测量弹簧的弹性系数(1) 在铝盘未加砝码之前,转动手轮和移动夹子,使指示管和指示镜上的刻度线对准(一经对准,不得再移动指示管的位置)。
用焦利氏称上端的游标读出铜管尺上的数值并记录。
(2) 在铝盘中加入500mg 砝码,慢慢转动手轮,使指示管和指示镜上的刻度线对齐(应在弹簧停止振动时观察),再读数并记录之。
液体表面张力系数的测定实验报告数据

液体表面张力系数的测定实验报告数据一、实验目的1、掌握用拉脱法测量液体表面张力系数的原理和方法。
2、学习使用焦利秤测量微小力的原理和方法。
3、加深对液体表面张力现象的理解。
二、实验原理液体表面层内分子相互作用的结果使得液体表面犹如一张拉紧的弹性膜,具有收缩的趋势。
这种沿着液体表面,垂直作用于单位长度上的力称为表面张力。
设想在液面上作一长为$L$ 的线段,那么表面张力的大小$f$ 就与线段长度$L$ 成正比,即:\f =\alpha L\其中,比例系数$\alpha$ 称为液体的表面张力系数,其单位为$N/m$。
在本实验中,我们采用拉脱法测量液体的表面张力系数。
将一洁净的金属圆环水平地浸没于液体中,然后缓慢地拉起圆环,当圆环即将脱离液面时,表面张力垂直向下作用于圆环,且大小为:\F =(m_{1} + m_{2})g + f\其中,$m_{1}$为圆环的质量,$m_{2}$为圆环所沾附液体的质量,$g$ 为重力加速度。
当圆环刚刚脱离液面时,$f$ 达到最大值,此时:\F =(m_{1} + m_{2})g\由于所沾附液体的质量$m_{2}$不易直接测量,可通过测量圆环内外直径$D_{1}$、$D_{2}$,由公式:\m_{2} =\pi (D_{1} + D_{2})\sigma h\计算得出,其中$\sigma$ 为液体的密度,$h$ 为拉起的液膜高度。
三、实验仪器焦利秤、砝码、游标卡尺、金属圆环、纯净水、温度计等。
四、实验步骤1、安装好焦利秤,调节底座水平,使秤框能上下自由移动。
2、测量金属圆环的内外直径$D_{1}$、$D_{2}$,各测量六次,取平均值。
3、挂上砝码盘,调节焦利秤的零点。
4、将金属圆环洗净,用纯净水冲洗后,挂在焦利秤的小钩上。
5、调节升降旋钮,使圆环缓慢下降,浸没于水中,注意保持水平。
6、然后缓慢上升,观察圆环即将脱离液面时的示数,记录此时的拉力$F$。
7、测量水温,记录温度值。
拉脱法测液体表面张力系数及数据处理-液体表面张力数据处理.doc

FD-NST-I型液体表面张力系数测定仪使用情况介绍【引言】山于液体分子间的相互吸引力,使得液体具仃尽量缩小其表血的趙势,好像液体表面是一张拉紧了的橡皮膜。
这种沿着液体表面的、收缩液临的力称为表血张力。
表而张力的存在解释了物质的液体状体所呈现的许多现彖,如泡沫的形成、浸润和毛细现象等。
在工业技术上,浮选技术和液体输送技术等方面都要对表而张力进行研究。
测定表面张力系数常用的方法有:拉脱法、毛细管升高法和液滴测重法等。
这里,将利用该仪器应用拉脱法测量纯净水的表面張力系数。
【仪器介绍】FD-NST-I型液体衷而张力系数测定仪由上海父艮人学实验教学中心与上海复旦天欣科教仪器有限公司联合研制。
一、仪器纽成(如图1所示)及技术指标1、硅压阻力敏传感器(1)受力是程:0〜0.098N(2)灵敏度:约3.00V/N(3)非线性误差:<0.2%(4)供电电压:直流5〜12伏2、显示仪器(1)读数显示:200〃比三位半数字电压表(2)调零:手动多圈电位器(3)连接方式:5芯航空插头3、力敏传感器固定支架、升降架、底板及水平调节装気4、吊环:夕卜径约34.96mm、内径约33.10加加、髙约&50加加的铝合金吊环5、直径约120.0〃〃”玻璃器皿一套6、铝合金祛码盘及0.5克祛码7只7、外形尺寸(1) 支架及底盘尺寸:2S0mm x 280〃〃” x 320m(2) 仪器尺寸:24 0mm x 240mm x 100mm图1 FD-NST-I型液体表面张力系数测定仪。
其中,1、硅压阻力敏传感器2、数字电压表显示屏3、力敏传感器固定支架、升降台、底板及水平调节装置4、吊环5、玻璃器皿6、祛码盘及对应祛码一套7、调节大螺母8、调零旋钮9、航空插头接口二、仪器用途1、可用琏码対硅床阻力敏传感器定标,计算该传感器的灵敏度,并学习传感器的定标方法。
2、可观察拉脱法测液体表mi张力的物理过程和物理现彖,并用物理学皋本概念和定律进行分析和研究,加深对物理规律的认识。
《液体表面张力系数》物理实验报告(有数据)
液体表面张力系数的测定一、实验目的1. 理解液体表面张力系数及其测定方法;2. 用拉脱法测定室温下液体的表面张力系数;3. 了解力敏传感器的特性,学会传感器标定的方法。
二、实验原理液体分子之间存在相互作用力,称为分子力。
液体内部每一个分子周围都被同类的其他分子包围,它所受到的周围分子的作用,合力为零。
而液体的表面层(其厚度等于分子的作用半径,约cm 810-左右)内的分子所处的环境跟液体内部的分子缺少了一半和它吸引的分子。
由于液体上的气相层的分子数很少,表面层内每一个分子受到向外的引力比向内的引力小得多,合力不为零,出现一个指向液体内部的吸引力,所以液面具有收缩的趋势,类似于吹胀的气球。
这种液体表面的张力作用,被称为表面张力。
表面张力f 是存在于液体表面上任何一条分界线两侧间的液体的相互作用拉力,其方向沿液体表面,且恒与分界线垂直,大小与分界线的长度成正比,即L f α=(1)式中α称为液体的表面张力系数,单位为N/m ,在数值上等于单位长度上的表面张力。
试验证明,表面张力系数的大小与液体的温度、纯度、种类和它上方的气体成分有关。
温度越高,液体中所含杂质越多,则表面张力系数越小。
将内径为D 1、外径为D 2的金属环水平吊起悬挂在测力计上,然后把它部分浸入待测液体中。
当缓慢地向上拉起金属环时,金属环就会带起一个与液体相连的液环。
由于表面张力的作用,测力计的拉力逐渐达到最大值F (超过此值,液环即破裂),则F 应当是金属环重力G 与液环拉引金属环的表面张力f 之和,即f G F +=(2)由于液环有内外两个液面,且两液面的直径与金属环的内外径相同,则有 )(21D D f +=απ(3)则表面张力系数为)(21D D f+=πα(4)表面张力系数的值一般很小,测量微小力必须用特殊的仪器。
本实验用到的测力计是硅压阻式力敏传感器,该传感器灵敏度高,线性和稳定性好,以数字式电压表输出显示。
若力敏传感器拉力为F 时,数字式电压表的示数为U ,则有BUF =(5)式中B 表示力敏传感器的灵敏度,单位V/N 。
用拉脱法测定液体的表面张力系数实验报告
用拉脱法测定液体的表面张力系数实验报告用拉脱法测定液体的表面张力系数实验报告引言:表面张力是液体分子间相互作用力在液体表面上的表现形式,是液体分子间引起的一种特殊的内聚力。
测定液体的表面张力系数对于研究液体的性质、表面现象以及应用领域具有重要意义。
本实验通过拉脱法测定液体的表面张力系数,旨在探究液体分子间的相互作用力以及表面现象的规律。
实验原理:拉脱法是一种常用的测定液体表面张力系数的方法。
其基本原理是通过测量液体在一根细管内的上升高度来计算液体的表面张力系数。
根据拉脱法的原理,我们可以得到以下公式:γ = ρgh实验步骤:1. 准备工作:清洗实验器材,确保无杂质干净。
2. 实验器材准备:取一根细管,将一段长度为L的细管浸入待测液体中。
3. 测量液体上升高度:将细管取出,放置在标尺上,测量液体上升的高度h。
4. 重复实验:重复以上步骤,记录多组数据。
实验数据处理:根据实验步骤记录的数据,我们可以计算出液体的表面张力系数。
根据公式γ= ρgh,其中ρ为液体的密度,g为重力加速度,h为液体上升的高度。
通过多组数据的平均值,可以得到较为准确的表面张力系数。
实验结果与讨论:根据实验数据处理的结果,我们得到了液体的表面张力系数。
通过对不同液体进行实验,我们可以发现不同液体的表面张力系数存在差异。
这是因为不同液体分子间的相互作用力不同,导致表面张力系数的差异。
在实验过程中,我们还可以观察到一些有趣的现象。
例如,液体表面张力越大,液体在细管内上升的高度越高。
这是因为表面张力越大,液体分子间的相互作用力越强,液体在细管内上升的高度也就越大。
此外,我们还可以通过实验探究液体的性质。
例如,对于不同液体,其表面张力系数与温度的关系可以进行研究。
通过改变温度,我们可以观察到液体表面张力系数的变化规律,进一步了解液体的性质。
结论:通过拉脱法测定液体的表面张力系数,我们可以得到液体的表面张力系数,并探究液体分子间的相互作用力以及表面现象的规律。
表面张力系数的测定(拉脱法)实验报告
表面张力系数的测定(拉脱法)实验目的:1、用拉脱法测量室温下水的表面张力系数。
2、学习焦利秤的使用方法。
实验原理:液面的表面有如紧张的弹性薄模,都有收缩的趋势,所以液滴总是趋于球形。
如图1 中的肥皂薄膜,如果从中心将膜刺破,由于膜的收缩,线被拉成圆形。
这说明液体表面内存在一种张力,存在于极薄的表面层内,而且不是由于弹性形变引起的,此力被称为表面张力。
设想在液面上作一长为L的线段,则张力的作用表现在线段两侧液面以一定的力的F 相互作用,而且力的方向恒与线段垂直,其大小与线段长L 成正比,即F=γL(1)比例系数γ称为液体的表面张力系数,它表示单位长线段两侧液体的相互作用力。
表面张力系数的单位为N/m。
如图2,在一金属框P中间拉一金属细线ab.将框及细线浸入水中后慢慢地将其拉出水面,在细线下面将带起一水膜,当水膜将拉直时,则有F=W+2γL+Ld h ρ g (2)式中F 为向上的拉力,W 是框和细线所受重力和浮力之差,l 为细线金属的长度,d 为细线的直径即水膜的厚度,h 为水膜被拉断前的高度,g为重力加速度,ρ为水的密度,ldhρg 为水膜的重量,由于细线的直径d 很小,所以这一项不大,水膜有前后两面,所以上式中表面张力为2γL。
从式(2)可得γ=((F−W)−ldhρg)/2l本实验用焦利秤测量(F—W)之值,用上式计算表面张力γ之值。
图2实验仪器:螺旋测微器(量程:0-25mm,分度值:0.01mm)、游标卡尺(量程:0-15cm,分度值:0.02mm)测高仪、焦利秤、温度计、金属线框、砝码、实验内容及数据处理:1、测量弹簧的倔强系数K,从0.5g起每增加0.5g砝码按游标卡尺的读数方法读出一次弹簧的伸长量x,一直增加到3.5g,然后从3.5g起每减少0.5g砝码读一次弹簧的伸长量x,一直减少到2、测当时液温t=28°C(2)、测(L2、L1)、(S2、S1). 在焦利秤V的游标上读取B的刻度L1,再调节测高仪,使得望远镜中十字叉丝对准焦利秤上的S,在测高仪的游标上读取刻度S1。
用拉脱法测液体的表面张力系数
每次将0.5g砝码加入砝码盘中,每加0.5g砝码,调整依次旋纽G,使三线重合,分别记下x1,x2,x3……,直加到2.5g为止。再逐次减少砝码,每减少0.5g砝码,调整一次旋纽G,使三线重合,分别记下各次读数,将所记数据填入表4-4中。用逐差法处理数据,求出k。
(3)测定液体的表面张力系数
在测量“ ”的长度时,游标卡尺不能夹的过紧,以免“ ”变形
①将待测液体倒入洁净干燥的烧杯中置于平台上,并将“”形框用酒精擦干净悬挂于砝码盘下端的小钩上,调节旋纽G使三线重合,记下读数x0.
②调节F将平台E慢慢升起,使“ ”形框浸入液体中。然后用一手调节F使平台缓缓下降,小镜上的刻线液随之下降,同时用另一手调节G使三线重合,再使平台缓缓下降一些,重复上述调节,直到“”形框脱出液体前始终保持三线重合,记下在“ ”形框脱出液面前瞬间游标H上的读数x.
减重读数(×10-2m)
平均读数L(×10-2m)
0.0
6.81
6.83
6.82
5.85
0.5
8.78
8.78
8.78
1.0
10.73
10.73
10.73
5.785
1.5
12.66
12.66
12.66
2.0
14.60
14.62
14.61
5.805
2.5
16.54
16.56
16.55
平均值
5.81
g=9.794m/s2;
各力平衡的条件为:
F=mg+f(1)
式中,F是所施外力,mg为薄片和它所附的液体的总重力,f为表面张力。
实验中用如图二所示的“ ”形金属丝框代替金属薄片,由于表面张力与接触面的周长成正比,故有