突破难点(十六)三角函数式的化简与求值

合集下载

(完整版)三角函数化简求值证明技巧

(完整版)三角函数化简求值证明技巧

第三讲一、三角函数的化简、计算、证明的恒等变形的应用技巧1、网络2、三角函数变换的方法总结(1)变换函数名对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。

【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。

练习:已知sin(α+β)=,cos(α-β)=,求的值。

2)变换角的形式对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。

【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。

练习已知,求的值【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α+β)=提示:sin[(α+β)-β]=Asin (α+β)(3)以式代值利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。

这其中以“1”的变换为最常见且最灵活。

“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。

【例4】化简:(4)和积互化积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。

这往往用到倍、半角公式。

考点15 三角函数式的化简与求值(答案)

考点15 三角函数式的化简与求值(答案)

,故选 B.
3.【2017
届广西玉林市、贵港市高中毕业班质量检测】若
cos

3sin
=
0
,则
tan

4
=


−1
1
A. 2
B.-2
C. 2
D.2
【答案】A
【解析】由 cos
− 3sin
=
0
tan
,知
=
1 3
,则
tan
− 4
=
tan −1 1+ tan
=

1 2
,故选 A

4.【山西省孝义市 2017 届高三下学期高考考前质量检测三(5 月)】已有角 的顶点与坐标原点重合,
+ cos2
sin ”;(3)化正弦、余弦为正切,即 cos
=
tan

tan = sin
(4)化正切为正弦、余弦,即
cos ;( 5 ) 正 弦 、 余 弦 和 ( 差 ) 与 积 的 互 化 , 即
(sin cos )2 =1 2sin cos .
tan = 3
1− sin 2 =
【变式 1】【例题中的条件不改变,所求三角函数式改变】若
【解析】
16 8 ,选 D.
【方法技巧归纳】二倍角公式的正用、逆用、变形用是公式的种主要应用手段,特别是二倍角的余弦 公式,其变形公式在求值与化简中有广泛的应用,在综合使用两角和与差、二倍角公式化简求值时,要注 意以下几点:(1)熟练掌握公式的正用、逆用和变形使用;(2)擅于拆角、配角;(3)注意二倍角的相对性; (4)注意角的范围;(5)熟悉常用的方法和技巧,如切化弦、异名化同名、异角化同角等.

三角函数的化简与证明

三角函数的化简与证明

三角函数的化简与证明三角函数是数学中的重要概念之一,它在解析几何、物理学、工程学等领域中有广泛应用。

在使用三角函数时,我们经常面临的一个问题就是如何将复杂的三角函数化简为简单形式,或者证明两个三角函数之间的等式。

本文将探讨三角函数的化简和证明方法。

一、三角函数的化简1. 三角恒等式三角恒等式是三角函数化简的基础。

它是一种等式关系,使得两个或多个三角函数能够互相转化。

下面是一些常见的三角恒等式:- 余弦函数的平方加正弦函数的平方等于1:$cos^2θ + sin^2θ = 1$- 2倍角公式:$cos(2θ) = cos^2θ - sin^2θ$- 倍角公式:$sin(2θ) = 2sinθcosθ$- 三角和差公式等通过运用这些恒等式,我们可以将复杂的三角函数化简为简单的形式,便于计算和理解。

2. 其他化简方法除了三角恒等式,还有一些其他的化简方法。

例如,使用欧拉公式,将三角函数转化为复指数函数进行化简。

这个方法可以将三角函数的复杂计算转化为简单的指数函数计算,能够提高计算效率。

在实际问题中,我们还可以利用对称性、周期性等性质进行化简。

这需要根据具体问题进行分析和推导,找到合适的化简方法。

二、三角函数的证明1. 等式的证明证明三角函数之间的等式是数学中的重要问题。

通过证明三角函数之间的等式,可以建立它们之间的联系,拓宽我们对三角函数的理解。

在证明三角函数等式时,我们可以运用三角恒等式、代数运算、数学归纳法等方法。

具体的证明过程需要根据问题的要求和条件进行推导。

2. 不等式的证明除了等式的证明,我们还经常需要证明三角函数之间的不等式。

三角函数的不等式证明在数学分析和优化等领域中有广泛应用。

在证明三角函数不等式时,我们可以使用极限、导数、积分和数学归纳法等方法。

通过分析三角函数的性质和变化趋势,找到合适的不等式证明方法。

需要注意的是,在证明过程中,要严谨而准确地推导,避免出现漏洞和错误,确保证明的有效性和可靠性。

三角函数化简求值的技巧

三角函数化简求值的技巧

三角函数化简求值的技巧
一、三角函数的重要性质:
1、正弦函数sin x、余弦函数cos x、正切函数tanx和其逆函数的
关系:
sin x=1/cos x,cos x=1/sin x,tan x=1/cot x,cot x=1/tan x,cos x=1/csc x,csc x=1/cos x。

2、三角函数的基本性质:
sin2x+cos2x=1,sin2x=2sin(x/2)cos(x/2),cos2x=cos2(x/2)
-sin2(x/2),2sin xcos x=sin2x+cos2x=2sin2(x/2)=2cos2(x/2)。

3、三角函数的对称性:
sin(-x)=-sin x,cos(-x)=cos x,tan(-x)=-tan x,cot(-x)=-cot x,csc(-x)=-csc x。

二、用三角函数化简求值的常用方法:
1、用公式和定义:
用三角函数的基本公式来把表达式中的各个项拆分开明确每个项的意义,然后把各个项的值累加求值。

2、用对称性:
对变量进行绝对值化,然后利用三角函数的对称性变换变量或表达式,从而达到化简的目的。

3、用反函数求值:
把表达式中的三角函数换成其对应的反函数,然后利用反函数的性质进行化简,获得原函数的表达式。

四、利用三角函数化简求值的实例:
例1:求Sin(60°)
解:
1、用公式求值:
可以用公式sin 2x=2sin xcos x来求值。

g3.1049三角函数的化简、求值与证明doc

g3.1049三角函数的化简、求值与证明doc

g3.1049 三角函数的化简、求值与证明一、知识回顾1、三角函数式的化简:(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。

(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数2、三角函数的求值类型有三类:(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。

3、三角等式的证明:(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端的化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。

二、基本训练1、已知θ是第三象限角,且4459sin cos θθ+=,那么2sin θ等于 ( )AB、 C 、23 D 、23-2、函数22y sin x x =-+的最小正周期 ( )A 、2πB 、πC 、3πD 、4π3、tan 70cos10(3tan 201)-等于 () A 、1 B 、2 C 、-1 D 、-24、已知46sin (4)4m m mαα--=≠-,则实数m 的取值范围是______。

5、设10,sin cos 2απαα<<+=,则cos2α=_____。

三、例题分析例1、化简:42212cos 2cos 2.2tan()sin ()44x x x x ππ-+-+例2、设3177cos(),45124x x πππ+=<<,求2sin 22sin 1tan x x x +-的值。

三角函数化简求值的技巧

三角函数化简求值的技巧
三角函数化简与求值常用技巧
三角函数化简与求值常用技巧
三角函数在高考中通常以中低档题型出现,难度不大,但由 于三角公式的特殊性,解题中往往也涉及一些小的变换技 巧,如果处理得当,往往可以事半功倍,快速而准确地得到 正确结论.通常情况下,三角变换应从“角度、函数、常数、 次数、结构”等几方面着手解决.
一、三角变换,角为先锋 三角函数作为一种特殊函数,其“角”的特殊性不容忽视,因此我们在三角函数恒等变换 中,应该首先注意角的形式,从统一角的角度出发,往往能够达到事半功倍的效果.
【例 1】已 知α、 β为 锐角,cos α=
3 5
,tan (α−β)=−
1 3
,则
tan β=(
)
A、
1 3
B、 3
【变式演练】已知 sin
x-π
4
=3,则
sin
2x 的值为(
)
5
A.- 7 25
B. 7 25
C. 9 25
D.16 25
【解析】法一、sin 2x=cos(2x- π )=1-2sin2(x- π )=1-2×(3)2= 7 ,选 B.
2
4
5 25
法二、依题意得 2(sin x-cos x)=3,1(sin x-cos x)2= 9 ,1-sin 2x=18,sin 2x= 7 ,选
C、
9 13
D、
13 9
【例
1】已 知α、 β为 锐角,cos α=
3 5
,tan (α−β)=−
1 3
,则
tan β=(
)
A、
1 3
B、 3
C、
9 13
D、
13 9
【分析】依题意,可求得 tan α=

三角函数化简与求值,4种突破口,展现恒等变换常用技巧

三角函数化简与求值,4种突破口,展现恒等变换常用技巧

三角函数化简与求值,4种突破口,展现恒等变换常用技巧
利用三角公式进行化简与求值时要注意三看:一看角,即看式子里面各角之间的联系。

二看函数名称,即看是同名还是异名,是"弦"还是"切"。

三看式子的结构特征,即看式子是积与商的形式还是和与差的形式等。

从角入手,化复角为单角
从形入手,利用配方法,先对二次项配方
从名入手,化异名为同名
从幂入手,利用降幂公式先降次
选择不同的突破口,就有不同的解法,正可谓是"条条大路通罗马"!本题展现了三角函数恒丰变换中的几种常用技巧,是一个典型的范例!
更多高考数学知识,敬请关注头条号,数学教育!。

三角函数化简公式及方法

三角函数化简公式及方法

三角函数化简公式及方法三角函数化简就是对复杂的三角函数进行变形,从而变成简单的三角函数,接下来给大家分享三角函数化简常用的公式。

三角函数化简原则(1)看角的特点,充分利用角之间的关系,尽量向同角转化,利用已知角构建求特角;(2)看函数名的特点,向同名函数转化,弦切互相转化;(3)看式子的结构特点,从整体出发,正用、逆用、变形应用这些公式。

另外,根据式子的特点,还可以使用辅助角公式。

三角函数化简常用公式半角公式sin(A/2)=±√((1-cosA)/2)cos(A/2)=±√((1+cosA)/2)tan(A/2)=±√((1-cosA)/((1+cosA))三角函数和差化积公式sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)三角函数积化和差公式sinAsinB=-[cos(A+B)-cos(A-B)]/2cosAcosB=[cos(A+B)+cos(A-B)]/2sinAcosB=[sin(A+B)+sin(A-B)]/2cosAsinB=[sin(A+B)-sin(A-B)]/2三角函数降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))三角函数辅助角公式asinα+bcosα=(√a^2+b^2)sin(α+β),tanβ=b/a 三角函数化简方法(1)切割化弦;(2)降幂公式;(3)用三角公式转化出特殊角;(4)异角化同角;(5)异名化同名;(6)高次转低次;(7)辅助角公式;(8)分解因式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011突破难点(十六)三角函数式的化简与求值三角函数式的化简和求值是高考考查的重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍.●难点磁场 (★★★★★)已知2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________.●案例探究[例1]不查表求sin 220°+cos 280°+3cos20°cos80°的值.命题意图:本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高.属于★★★★级题目.知识依托:熟知三角公式并能灵活应用. 错解分析:公式不熟,计算易出错.技巧与方法:解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会.解法一:sin 220°+cos 280°+3sin 220°cos80° =21(1-cos40°)+21 (1+cos160°)+3sin20°cos80°=1-21cos40°+21cos160°+3sin20°cos(60°+20°)=1-21cos40°+21(cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20°-sin60°sin20°)=1-21cos40°-41cos40°-43sin40°+43sin40°-23sin 220°=1-43cos40°-43(1-cos40°)=41 解法二:设x =sin 220°+cos 280°+3sin20°cos80° y =cos 220°+sin 280°-3cos20°sin80°,则x +y =1+1-3sin60°=21,x -y =-cos40°+cos160°+3sin100° =-2sin100°sin60°+3sin100°=0∴x =y =41,即x =sin 220°+cos 280°+3sin20°cos80°=41.[例2]设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值.命题意图:本题主要考查最值问题、三角函数的有界性、计算能力以及较强的逻辑思维能力.属★★★★★级题目知识依托:二次函数在给定区间上的最值问题.错解分析:考生不易考查三角函数的有界性,对区间的分类易出错. 技巧与方法:利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座等.解:由y =2(cos x -2a )2-2242+-a a 及cos x ∈[-1,1]得:f (a )⎪⎪⎩⎪⎪⎨⎧≥-<<-----≤)2( 41)22( 122)2( 12a a a a aa∵f (a )=21,∴1-4a =21⇒a =81∉[2,+∞) 故-22a -2a -1=21,解得:a =-1,此时,y =2(cos x +21)2+21,当cos x =1时,即x =2k π,k ∈Z ,y max =5.[例3]已知函数f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x (1)求函数f (x )的最小正周期;(2)求f (x )的最小值及取得最小值时相应的x 的值; (3)若当x ∈[12π,127π]时,f (x )的反函数为f -1(x ),求f --1(1)的值. 命题意图:本题主要考查三角公式、周期、最值、反函数等知识,还考查计算变形能力,综合运用知识的能力,属★★★★★级题目.知识依托:熟知三角函数公式以及三角函数的性质、反函数等知识. 错解分析:在求f --1(1)的值时易走弯路. 技巧与方法:等价转化,逆向思维.解:(1)f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x =2cos x (sin x cos 3π+cos x sin 3π)-3sin 2x +sin x cos x=2sin x cos x +3cos2x =2sin(2x +3π)∴f (x )的最小正周期T =π(2)当2x +3π=2k π-2π,即x =k π-125π (k ∈Z )时,f (x )取得最小值-2.(3)令2sin(2x +3π)=1,又x ∈[27,2ππ],∴2x +3π∈[3π,23π],∴2x +3π=65π,则x =4π,故f --1(1)= 4π.●锦囊妙计本难点所涉及的问题以及解决的方法主要有:1.求值问题的基本类型:1°给角求值,2°给值求值,3°给式求值,4°求函数式的最值或值域,5°化简求值.2.技巧与方法:1°要寻求角与角关系的特殊性,化非特角为特殊角,熟练准确地应用公式. 2°注意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用. 3°对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,很难入手的问题,可利用分析法.4°求最值问题,常用配方法、换元法来解决.●歼灭难点训练 一、选择题1.(★★★★★)已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈(-2,2ππ),则tan 2βα+的值是( )A.21 B.-2 C.34D.21或-2二、填空题2.(★★★★)已知sin α=53,α∈(2π,π),tan(π-β)= 21,则tan(α-2β)=_________.3.(★★★★★)设α∈(43,4ππ),β∈(0,4π),cos(α-4π)=53,sin(43π+β)=135,则sin(α+β)=_________.三、解答题 4.不查表求值:.10cos 1)370tan 31(100sin 130sin 2︒+︒+︒+︒5.已知cos(4π+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值.6.(★★★★★)已知α-β=38π,且α≠k π(k ∈Z ).求)44(sin 42sin2csc )cos(12βπαααπ-----的最大值及最大值时的条件.7.(★★★★★)如右图,扇形OAB 的半径为1,中心角60°,四边形PQRS 是扇形的内接矩形,当其面积最大时,求点P 的位置,并求此最大面积.8.(★★★★★)已知cos α+sin β=3,sin α+cos β的取值范围是D ,x ∈D ,求函数y =10432log 21++x x 的最小值,并求取得最小值时x的值.参考答案 难点磁场解法一:∵2π<β<α<43π,∴0<α-β<4π.π<α+β<43π, ∴sin(α-β)=.54)(sin 1)cos(,135)(cos 122-=+--=+=--βαβαβα∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β).6556)53(1312)54(135-=-⨯+-⨯=解法二:∵sin(α-β)=135,cos(α+β)=-54,∴sin2α+sin2β=2sin(α+β)cos(α-β)=-6572sin2α-sin2β=2cos(α+β)sin(α-β)=-6540∴sin2α=6556)65406572(21-=--歼灭难点训练一、1.解析:∵a >1,tan α+tan β=-4a <0. tan α+tan β=3a +1>0,又α、β∈(-2π,2π)∴α、β∈(-2π,θ),则2βα+∈(-2π,0),又tan(α+β)=342tan 12tan2)tan(,34)13(14tan tan 1tan tan 2=β+α-β+α=β+α=+--=βα-β+α又a a ,整理得2tan 222tan 32-β+α+β+α=0.解得tan 2β+α=-2. 答案:B2.解析:∵sin α=53,α∈(2π,π),∴cos α=-54 则tan α=-43,又tan(π-β)=21可得tan β=-21,247)34()43(1)34(432tan tan 1tan tan )2tan(.34)21(1)21(2tan 1tan 22tan 222=-⨯-+---=β⋅α+β-α=β-α-=---⨯=β-β=β答案:247 3.解析:α∈(43,4ππ),α-4π∈(0, 2π),又cos(α-4π)=53. 6556)sin(.655613554)1312(53)43sin()4sin()43cos()4cos()]43()4cos[(]2)43()4sin[()sin(.1312)43cos(,135)43sin().,43(43).4,0(,54)4sin(=β+α=⨯+-⨯-=β+π⋅π-α+β+π⋅π-α-=β+π+π-α-=π-β+π+π-α=β+α∴-=β+π∴=β+πππ∈β+π∴π∈β=π-α∴即答案:6556三、4.答案:2752853)54(257)4cos()4sin(2sin sin cos cos )cos (sin sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 54)4sin(,2435,471217.257)4(2cos 2sin ,53)4cos(:.522=-⨯=++=-+=-+=-+-=+∴<+<∴<<=+-=∴=+x x x xx xx x x x x x x x x x x x x x x x x ππππππππππ又解 2)322sin(22)21()322sin(4.32243824,3822cos 2sin 42)2sin 2(sin 2)2sin 2121(42cos 2cos 22sin 2)22cos(142sin 1)cos 1(2sin )44(sin 42sin 2csc )cos(1:.62222-π-α-=--⨯π-α=∴π-α=π-α=β-α∴π=β-α-β-αβ+α=-β+α=β--αα⋅α=β-π--α-α+α=β-π-α-αα-π-=t t 令解 π≠αk (k ∈Z ),322322π-π≠π-α∴k (k ∈Z ) ∴当,22322π-π=π-αk 即34π+π=αk (k ∈Z )时,)322sin(π-α的最小值为-1.7.解:以OA 为x 轴.O 为原点,建立平面直角坐标系,并设P 的坐标为(cosθ,sin θ),则|PS |=sin θ.直线OB 的方程为y =3x ,直线PQ 的方程为y =sin θ.联立解之得Q (33sin θ;sin θ),所以|PQ |=cos θ-33sin θ. 于是S PQRS =sin θ(cos θ-33sin θ)=33(3sin θcos θ-sin 2θ)=33(23sin2θ-22cos 1θ-)=33(23sin2θ+21cos2θ-21)= 33sin(2θ+6π)-63.∵0<θ<3π,∴6π<2θ+6π<65π.∴21<sin(2θ+6π)≤1.∴sin(2θ+6π)=1时,PQRS 面积最大,且最大面积是63,此时,θ=6π,点P 为的中点,P (21,23). 8.解:设u =sin α+cos β.则u 2+(3)2=(sin α+cos β)2+(cos α+sin β)2=2+2sin(α+β)≤4.∴u 2≤1,-1≤u ≤1.即D =[-1,1],设t =32+x ,∵-1≤x ≤1,∴1≤t ≤5.x =232-t ..21,232,2,258log 2log 82log ,0log .82,2,42.8224142142104325.05.05.0min 5.0max 2-==+==-==∴>=====≤+=+=++=∴x x t y M M y M t t t tt t t x x M 此时时时是减函数在时即当且仅当。

相关文档
最新文档