[实训]用Excel进行假设检验

合集下载

实验7.用EXCEL进行参数估计和假设检验

实验7.用EXCEL进行参数估计和假设检验

南昌航空大学学生实验报告实验课程名称:统计学专业经济学班级学号08091130 姓名邓文龙成绩实验地点实验性质:演示性 验证性综合性设计性实验项目名称实验七用EXCEL进行参数估计和假设检验指导教师李晓辉一、实验目的用EXCEL进行参数估计和假设检验二、实验内容及步骤(包括实验案例及基本操作步骤)(1)、用EXCEL进行参数估计1、某饭店在7星期内抽查49位顾客的消费额(元)如下:15 24 38 26 30 42 18 30 25 26 34 44 20 35 24 26 34 48 18 28 46 19 30 36 42 24 3245 36 21 47 26 28 31 42 45 36 24 28 27 32 36 47 53 22 24 3246 26求在概率90%的保证下,顾客平均消费额的估计区间。

第一步:把数据输入到A2:A50单元格。

第二步:在C2中输入公式“=COUNT(A2:A50)”,C3中输入“=A VERAGE(A2:A50)”,在C4中输入“STDEV(A2:A50)”,在C5中输入“=C4/SQRT(C2)”,在C6中输入0.90,在C7中输入“=C2-1”,在C8中输入“=TINV(1-C6,C7)”,在C9中输入“=C8*C5”,在C10中输入“=C3-C9”,在C11中输入“=C3+C9”。

在输入每一个公式回车后,便可得到上面的结果,从上面的结果我们可以知道,顾客平均消费额的置信下限为29.73536,置信上限为34.26464。

、用EXCEL进行区间估计(2)、用EXCEL进行假设检验某厂铸造车间为提高缸体的耐磨性而试制了一种镍合金铸件以取代一种铜合金铸件,现从两种铸件中各抽一个样本进行硬度测试(表示耐磨性的一种考核指标)其结果如下:合镍铸件(X)72.0 69.5 74.0 70.5 71.8 72合铜铸件(Y)69.8 70.0 72.0 68.5 73.0 70.0根据以往经验知硬度,,且,试在水平上比较镍合金铸件硬度有无显著提高。

实验三 用EXCEL进行参数估计和假设检验

实验三 用EXCEL进行参数估计和假设检验

实验三用EXCEL进行参数估计和假设检验一、用EXCEL进行区间估计数据:某百货公司6月份各天的销售额数据如下:(单位:万元)求在概率90%的保证下,顾客平均消费额的估计区间。

参数估计数据及结果:从上面的结果我们可以知道,该月平均销售额的置信下限为270。

23,置信上限为277.97。

二、用EXCEL进行假设检验例题1:假设有A、B两个品牌的电池,现分别从这两个品牌电池中随机抽取10只进行检测,获得下表数据。

它们的使用寿命方差相等为30,试问在0。

1的显著性水平下,可否认为两个品牌的平均使用寿命存在显著差异?据上,提出原假设:A、B两个品牌的电池使用寿命不存在显著差异,备择假设:A、B两个品牌的电池使用寿命存在显著差异。

进行Z检验—双样本平均差检验:得如下所示结果:此次检验属于双尾检验,P=01101282872 > 显著性水平0.1,所以在0。

1的显著性水平下不能拒绝原假设,即可以认为两个品牌的平均使用寿命不存在显著性差异。

例题2:用某种药物治疗9例再生障碍性贫血患者,治疗前后患者血红蛋白变化的数据如下表所示。

问在0。

05的显著性水平下,能否认为这种药物至少可以使血红蛋白数量增加15个单位?提出原假设:这种药物不能使患者血红蛋白至少增加15个单位;备择假设:这种药物可以使患者的血红蛋白至少增加15个单位。

由于总体平均差已知,选用t-检验:平均值的成对二样本分析:得结果如下:由于显著性水平为0.05大于P值0.00037558,因此要拒绝原假设,即可以认为这种药物至少能使血红蛋白数量增加15个单位。

例题3:某研究所试验出一批新品种,想知道新品种产量是否比老品种产量有显著提高,随机抽取新老品种产量各9个,数据如下(单位:千克).试问,在0.05的显著性水平下,可否认为新品种比老品种的产量有显著提高?据条件,提出原假设:新品种比老品种产量没有显著提高;备择假设:新品种比老品种产量显著提高。

得出t检验:双样本异方差分析结果如下:在显著性水平为0.05的单侧检验下,P值为0。

试验三用Excel进行假设检验

试验三用Excel进行假设检验
输入“15”。
8.在单元格B11中输入“ 分布的双侧分位数”,在单
元格C11中输入公式: ,回车后得到 的 t分布的双侧分位数
9

9.计算允许误差。在单元格B12中输入“允许误差”, 在单元格C12中输入公式:
,回车后得到的结果为717.6822943。
10.计算置信区间下限。在单元格B13中输入“置信下 限”,在单元格C13中输入置信区间下限公 式: ,回车后得到的结果为40399.19271。 11.计算置信区间上限。在单元格B14中输入“置信上
2
2 假设检验的基本步骤 (1)提出假设H0和HA (2)确定显著水平 (3)进行计算 (4)统计推断 (5)结论
3
假设检验和区间估计
• 1、一个正态总体均值的假设检验:方差 已知 • 例1 假设某批矿砂10个样品中的镍含量,经 测定为3.28,3.27,3.25,3.25,3.27,3.24, 3.26,3.24,3.24,3.25(单位:%)。设总 体服从正态分布,且方差为 ,问:在 下能否认 为这批矿砂的平均镍含量为 3.25 。 1 x x n
41250
38970 40187 43175 41010 39265 41872 42654 41287
40200
42550
41095
40680
43500
39775
40400
假设汽车轮胎的行驶里程服从正态分布,均值、方差未 知。试求总体均值 的置信度为0.95的置信区间。
7
1.在单元格A1中输入“样本数据”,在单元格B4中输
1宏的加载从桌面或开始程序里找到microsoftoffice打开excel2003软件从工具里找到加载宏选择分析工具库点击确定从工具栏里看到数据分析2单个样本平均数的假设测验单个样本平均数的假设测验将数据输入以行的格式将数据输入以行的格式将检测值输入另外将检测值输入另外一行与被检测值个数一致一行与被检测值个数一致从工具栏里选择从工具栏里选择数据分析选择数据分析选择tt检验检验双样本异方差检双样本异方差检得到结果

用Excel进行参数的假设检验

用Excel进行参数的假设检验

上机实习五用Excel进行参数的假设检验假设检验,就是先对总体的参数或分布形式提出假设,再利用样本数据信息来判断原假设是否合理,从而决定应接受还是拒绝原假设。

进行假设检验的一般步骤:(1)建立原假设H0和备择假设H1;(2)确定适当的检验统计量及其分布,并由给定样本值计算检验统计量的值;(3)根据显著性水平α,确定检验临界值和拒绝域;(4) 作出统计判断:由样本值确定概率P值,若P值≤α或者统计量的值落在拒绝域内,则拒绝原假设H0,接受备择假设H1,即差异有统计显著意义;若P值>α或者统计量的值不落在拒绝域内,,就接受原假设H0,即差异无统计显著意义。

我们将正态总体的参数检验的主要步骤和结果汇总于下表。

表5-1 正态总体参数的假设检验简表§5.1 单个正态总体的参数检验一、单个正态总体均值Z检验对于总体方差σ2已知时,进行单个正态总体均值的Z检验H0:μ=μ0,可利用Z检验统计量n X Z /0σμ-=来进行。

在Excel 中,可利用函数ZTEST 进行,其格式为ZTEST (array, a , sigma) 返回Z 检验的双侧概率P 值P{|Z|>z},n aX Z /σ-=其中 Array 为用来检验的数组或数据区域;a 为被检验的已知均值,即μ0;Sigma 为已知的总体标准差σ,如果省略,则使用样本标准差S 。

例如,要检验样本数据3, 6, 7, 8, 6, 5, 4, 2, 1, 9的总体均值是否等于4,如果已知其总体标准差为2,则只需计算ZTEST({3, 6, 7, 8, 6, 5, 4, 2, 1, 9}, 4,2),其概率值P=0.0409951<0.05,认为在显著性水平α=0.05下,总体均值与4有显著差异。

如果总体标准差未知,而用样本标准差S 替代时,计算ZTEST({3, 6, 7, 8, 6, 5, 4, 2, 1, 9}, 4),得到其概率值P =0.090574>0.05,认为在显著性水平α=0.05下,总体均值与4无显著差异。

Excel进行假设检验

Excel进行假设检验

使用Excel进行假设检验在假设检验中最常用的检验规则是计算检验统计量的实际值和临界值,通过实际值和临界值的对比得出检验结论;或者计算统计量实际值的p-值,通过p-值和显著性水平α的对比得出结论。

假设检验中使用的数据可以分为两种情况:一是经过统计汇总的数据,已经得到了样本均值和标准差(或者总方差已知);二是原始数据。

在前一种情况下需要解决的计算问题是计算统计量的临界值,或者根据统计量的实际值计算p-值;在后一种情况下则可以使用统计软件直接得出统计量的临界值和检验的p-值。

top↑检验统计量临界值的计算在已知样本的均值、标准差(或者总方差已知)时,可直接计算出检验统计量的值,然后使用Excel或其他软件计算统计量的临界值,通过实际值与临界值的对比得出检验结论。

用Excel计算统计量的临界值时需要特别注意两个方面的问题。

一是检验的类型:是双侧检验、左侧检验还是右侧检验?双侧检验和单侧检验计算临界值时对显著性水平处理方式不同,双侧检验要求每一侧的尾部面积为α/2,而单侧检验要求在拒绝域一侧的尾部面积为α。

二是在Excel中正态分布、t分布和F分布累积分布反函数中对概率参数的要求不同,注意分清楚这个参数与显著性水平的关系。

[例6.7] 某机器制造的产品厚度应为5厘米。

为了了解机器的性能是否良好,从产品中随机抽取10件,样本均值为5.3厘米,样本标准差为0.3厘米。

已知总体服从正态分布,试以0.05和0.01的显著性水平总体均值是否等于5厘米。

根据题意这里应该使用t统计量。

检验统计量等于。

在这个例子中应该使用双侧检验,95%的临界值在Excel中应该使用公式“=TINV(0.05,9)”计算,结果为2.2622。

99%的临界值为“=TINV(0.01,9)”等于3.2498。

因此,检验的结论是,在0.05显著性水平下拒绝零假设,在0.01的显著性水平不能拒绝零假设。

[例6.8] 一手机厂商声称其某种型号的手机在完全充电的情况下待机时间在150小时以上。

假设检验在Excel中的实现

假设检验在Excel中的实现

【统计学实验项目十四】假设检验在Excel 中的实现【实验目的】熟悉Excel 的基本操作,使用Excel 进行假设检验。

【实验环境】应用软件Excel2003,加载宏“数据分析”。

【实验准备】掌握假设检验的方法。

在EXCEL 中,假设检验工具主要有四个,如图14-1所示:图14-1 数据分析对话框平均值的成对二样本分析实际上指的是在总体方差已知的条件下两个样本均值之差的检验,准确的说应该是Z 检验,双样本等方差检验是总体方差未知,但假定其相等的条件下进行的t 检验,双样本异方差检验指的是总体方差未知,但假定其不等的条件下进行的t 检验,双样本平均差检验指的是配对样本的t 检验。

我们介绍一下Z 检验。

例:学校教务处在对统计学教学方法进行调研时,发现一种较传统教学方法更好的教学方法——分组教学法,现分别从统计一班(采用传统教学方法)和统计二班(采用分组教学方法)两个班中分别抽取六位同学进行测试,考核结果如下:二班成绩(X ) 82 79 84 80 81 82一班成绩(Y ) 79 80 83 78 83 80根据以往经验知硬度()211,~σμN X ,()222,~σμN Y ,且221==σσ,试在05.0=α水平上比较采用分组教学方法效果有无显著优势。

计算步骤如下:1.输入数据到工作表。

2.单击工具菜单,选择数据分析选项,弹出对话框后,在其中选择双样本平均差分析,弹出对话框如图14-2所示:图14-2 双样本平均差分析对话框3.按上图所示输入后,按确定按钮,得输出结果如图14-3所示:图14-3 双样本平均差分析结果在上面的结果中,我们可以根据P值进行判断,也可以根据统计量和临界值比较进行判断。

如本例采用的是单尾检验,其单尾P值为0.24,大于给定的显著性水平0.05,所以应该接受原假设,即分组教学方法没有明显优势;若用临界值判断,得出的结论是一样的,如本例Z值为0.721688,小于临界值1.644854,由于是右尾检验,所以也是接受原假设。

实验三用EXCEL进行参数估计和假设检验

实验三用EXCEL进行参数估计和假设检验

实验三用EXCEL进行参数估计和假设检验摘要:本实验使用EXCEL软件进行参数估计和假设检验。

参数估计是指通过样本数据推断总体参数的值,常用的参数估计方法有点估计和区间估计。

假设检验是用来检验一些统计假设是否为真,常用的假设检验方法有单样本t检验、双样本t检验等。

实验通过实际数据的计算和分析,演示了如何使用EXCEL进行参数估计和假设检验。

关键词:参数估计、假设检验、EXCEL一、引言参数估计和假设检验是统计学中常用的数据分析方法。

参数估计是指通过样本数据推断总体参数的值,主要用于描述统计量的位置和离散程度,常用的参数估计方法有点估计和区间估计。

假设检验则是用来检验一些统计假设是否为真,常用的假设检验方法有单样本t检验、双样本t检验等。

EXCEL是常用的电子表格软件,其强大的数据分析功能可以方便地进行参数估计和假设检验。

本实验将使用EXCEL软件进行参数估计和假设检验,通过实际数据的计算和分析,演示如何使用EXCEL进行参数估计和假设检验。

二、方法本实验所用到的数据地区100例成人男性的身高数据,我们将使用该数据进行参数估计和假设检验。

1.参数估计(1)点估计根据样本数据,可以通过计算样本平均数、样本方差等统计量来估计总体参数的值。

在EXCEL中,可以使用以下函数来进行点估计的计算:-平均数函数:AVERAGE-方差函数:VAR.S(2)区间估计区间估计是对总体参数进行估计的一种方法,可以通过计算置信区间来估计总体参数的值。

在EXCEL中,可以使用以下函数来进行区间估计的计算:-置信区间函数:CONFIDENCE.T2.假设检验假设检验是用来检验一些统计假设是否为真的方法,可以通过计算检验统计量的值和p值来进行假设检验的判断。

在EXCEL中,可以使用以下函数来进行假设检验的计算:-单样本t检验:T.TEST-双样本t检验:T.TEST三、结果与分析根据实际数据的计算和分析,我们得到如下结果:1.参数估计(1)点估计通过样本数据的计算,我们得到了身高的平均数为175.8cm,方差为42.24cm。

实验五 抽样分布于区间估计之用Excel进行假设检验

实验五 抽样分布于区间估计之用Excel进行假设检验

实验五抽样分布于区间估计之用EXCEL进行假设检验一、实验目的及要求熟练使用Excel进行参数的假设检验二、实验内容本章介绍的假设检验包括一个正态总体的参数检验和两个正态总体的参数检验。

对于一个正态总体参数的检验,可利用函数工具和自己输入公式的方法计算统计量,并进行检验。

1)一个正态总体的参数检验❶一个正态总体均值的假设检验:方差已知【例1】假设某批矿砂10个样品中的镍含量,经测定为3.28,3.27,3.25,3.25,3.27,3.24,3.26,3.24,3.24,3.25(单位:%)。

设总体服从正态分布,且方差为,问:在下能否认为这批矿砂的平均镍含量为3.25。

解根据题意,提出检验的原假设和备择假设是:;:这是一个双侧检验问题,具体步骤如下:步骤一:输入数据。

打开Excel工作簿,将样本观测值输入到A1:A10单元格中。

步骤二:假设检验。

1. 在B2中输入“=AVERAGE(A1:A10)”,回车后得到样本平均值3.255;2. 在B3中输入总体标准差0.01;3. 在B4中输入样本容量10;4. 在B5中输入显著性水平0.01;5. 在B6中输入“”,即输入“”,回车后得标准正态分布的的双侧分位数;“”,6.在B7中输入检验统计量的计算公式:回车后得统计量的值:。

步骤三:结果分析。

由于,未落入否定域内,所以接受原假设,即这批矿砂的平均镍含量为3.25 %。

❷一个正态总体均值的假设检验:方差未知【例2】某一引擎生产商声称其生产的引擎的平均速度每小时高于公里。

现将生产的20台引擎装入汽车内进行速度测试,得到行驶速度(单位:公里/小时)如下:250 236 245 261 256258 242 262 249 251254 250 247 245 256256 258 254 262 263试问:样本数据在显著性水平为0.025时是否支持引擎生产商的说法。

解根据题意,提出检验的原假设和备择假设是:;:这是一个右侧检验问题,具体步骤如下:步骤一:输入数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[实训四]假设检验
一、简介:
假设检验是统计推断中的重要内容。

以下例子利用Excel的正态分布函数NORMSDIST判断函数IF等,构造一张能够实现在总体方差已知情况下进行总体均值假设检验的Excel工作表。

文档来自于网络搜索
二、操作步骤:
1 •构造工作表。

如图附-15所示,首先在各个单元格输入以下的内容,其中左边是变量名,右边是相应的计算公式。

文档来自于网络搜索
2.为表格右边的公式计算结果定义左边的变量名。

选定A3:B4,A6:B8,
A10:A11,A13:A15和A17:B19单元格,选择“插入”菜单的“名称”子菜单的“指定”选项,用鼠标点击“最左列”选项,然后点击“确定”按扭即可。

文档来自于网络搜索
图附-15
3•输入样本数据,以及总体标准差、总体均值假设、置信水平数据。

如图附-16 所示。

4.为样本数据命名。

选定C1:C11单元格,选择“插入”菜单的“名称”子菜单的“指定”选项,用鼠标点击“首行”选项,然后点击“确定”按扭,得到如图附-16中
所示的计算结果。

文档来自于网络搜索
图附-16
、结果说明:
如图附-16所示,该例子的检验结果不论是单侧还是双侧均为拒绝Ho假设。

所以,根据样本的计算结果,在5%的显著水平之下,拒绝总体均值为35的假设。

同时由单侧显著水平的计算结果还可以看出,在总体均值是35的假设之下,样本均值小于等于
31.4 的概率仅为0.020303562。

文档来自于网络搜索
四、双样本等均值假设检验
(一)简介:双样本等均值检验是在一定置信水平之下,在两个总体方差相等的假设
之下,检验两个总体均值的差值等于指定平均差的假设是否成立的检验。

我们可以直接使用在Excel数据分析中提供双样本等均值假设检验工具进行假设检验。

以下通过一例说明双样本等均值假设检验的操作步骤。

例子如下,某工厂为了比较两种装配方法的效率,分别组织了两组员工,每组9人,一组采用新的装配方法,另外一组采用旧的装配方法。

18个员工的设备装配时间图附-17中表格所示。

根据以下数据,是否有理由认为新的装配方法更节约时间?文档来自于网络搜索
选项,则弹出图附-18所示对话框。

文档来自于网络搜索
DIO L检鑿:双ff本等方差假设
取涓
帮助(a)
I
图附-18
图附-19
2.分别填写变量1的区域:$B$1:$B$10,变量2的区域:$D$1:$D$10,由于我们进行的是等均值的检验,填写假设平均差为0,由于数据的首行包括标志项选择标志选项,所以选择“标志”选项,再填写显著水平a为0.05,然后点击“确定”按扭。

则可以得到图附-19所示的结果。

文档来自于网络搜索
(三)结果分析:如图附-19中所示,表中分别给出了两组装配时间的平均值、方差和样本个数。

其中,合并方差是样本方差加权之后的平均值,Df是假设检验的自由度它等于样本总个数减2,统计量是两个样本差值减去假设平均差之后再除于标准误差的结果,“P(Tv=t)单尾”是单尾检验的显著水平,“t单尾临界”是单尾检验t的临界值,
“P(T<=t)双尾”是双尾检验的显著水平,“t双尾临界”是双尾检验t的临界值。

由下表的结果可以看出t统计量均小于两个临界值,所以,在5%显著水平下,不能拒绝两个总体均值相等的假设,即两种装配方法所耗时间没有显著的不同。

文档来自于网络搜索
Excel中还提供了以下类似的假设检验的数据分析工具,它们的名称和作用如下:
1.“ t-检验:双样本异方差假设”:此分析工具可以进行双样本student t-检验, 与双样本等方差假设检验不同,该检验是在两个数据集的方差不等的前提假设之下进行两总体均值差额的检验,故也称作异方差
t-检验。

可以使用t-检验来确定两
个样本均值实际上是否相等。

当进行分析的样本个数不同时,可使用此检验。

如果某一样本组在某次处理前后都进行了检验,则应使用“成对检验”。

文档来自于网络搜索2.“t-检验:成对双样本均值分析”:此分析工具可以进行成对双样本学生氏t- 检验,用来确定样本均值是否不等。

此t-检验并不假设两个总体的方差是相等的。

当样本中出现自然配对的观察值时,可以使用此成对检验,例如,对一个样本组进行了两次检验,抽取实验前的一次和实验后的一次。

文档来自于网络搜索
3.“z -检验:双样本均值分析”:此分析工具可以进行方差已知的双样本均值
z -检验。

此工具用于检验两个总体均值之间存在差异的假设。

例如,可以使用此检验
来确定两种汽车模型性能之间的差异情况。

文档来自于网络搜索。

相关文档
最新文档