第 三 章 晶 体 缺 陷
第3章晶体缺陷

• An interstitial defect is formed when an extra atom is inserted into the crystal structure at a normally unoccupied position. • Interstitial atoms, although much smaller than the atoms located at the lattice points, are still larger than the interstitial sites that they occupy, consequently, the surrounding crystal region is compressed and distorted.
பைடு நூலகம்
• • • • • • • • • •
离开平衡位置的原子有三个去处: 离开平衡位置的原子有三个去处: (1)形成Schottky空位(vacancy) (1)形成 形成Schottky空位 vacancy) 空位( (2)形成Frankely缺陷 (2)形成 形成Frankely缺陷 (3)跑到其它空位上使空位消失或移位。 (3)跑到其它空位上使空位消失或移位 跑到其它空位上使空位消失或移位。 点缺陷的类型: 点缺陷的类型: (1)空位 间隙原子(异类)( )(interstital (2)间隙原子(异类)(interstital atom) 自间隙原子(同类) self(3)自间隙原子(同类) (self- interstital atom ) 外来杂质原子: (4)外来杂质原子: 置换原子( atom) (5)置换原子(substitutional atom) :
Crystal Defects
3_《材料科学基础》第三章_晶体结构缺陷((上)

点缺陷(零维缺陷)--原子尺度的偏离.
按 缺
例:空位、间隙原子、杂质原子等
陷 线缺陷(一维缺陷)--原子行列的偏离.
的
例:位错等
几 何
面缺陷(二维缺陷)--表面、界面处原子排列混乱.
形
例:表面、晶界、堆积层错、镶嵌结构等
态 体缺陷(三维缺陷)--局部的三维空间偏离理想晶体的周期性
例:异相夹杂物、孔洞、亚结构等
1、 固溶体的分类
(1) 按杂质原子的位置分: 置换型固溶体—杂质原子进入晶格中正常结点位置而取代基
质中的原子。例MgO-CoO形成Mg1-xCoxO固溶体。 间隙型固溶体—杂质原子进入晶格中的间隙位置。
有时俩
(2)按杂质原子的固溶度x分: 无限(连续)固溶体—溶质和溶剂任意比例固溶(x=0~1)。
多相系统
均一单相系统
Compounds AmBn
原子间相互反应生成
均一单相系统
结构
各自有各自的结构
A structure
structure
+ B structure
结构与基质相同 A structure
结构既不同于A也不同于B New structure
化学计量 A/B
不定
固溶比例不定
m:n 整数比或接近整数比的一定范围内
四、固溶体Solid solution(杂质缺陷)
1、固溶体的分类 2、置换型固溶体 3、间隙型固溶体 4、形成固溶体后对晶体性质的影响 5、固溶体的研究方法
①固溶体:含有外来杂质原子的单一均匀的晶态固体。 例:MgO晶体中含有FeO杂质 → Mg1-xFexO
基质 溶剂 主晶相
杂质 溶质 掺杂剂
萤石CaF2(F-空位)
材料科学基础第三章晶体缺陷

够的能量而跳入空位,并占据这个平衡位置,这时在这个原 子的原来位置上,就形成一个空位。这一过程可以看作是空 位向邻近结点的迁移。
在运动过程中,当间隙原子与一个空位相遇时,它将落入
这个空位,而使两者都消失,这一过程称为复合,或湮没。
(a)原来位置;
(b)中间位置;
(c)迁移后位置
图 空位从位置A迁移到B
2 Ar a 3 N A 8.57 (3.294108 )3 6.0231023 x 1 2 Ar 2 92.91 7.1766103 106 7.1766103 7176 .6(个) 所以, 106 个Nb中有7176 .6个空位。
a NA
作业:
二.本章重点及难点 1、点缺陷的形成与平衡浓度 2、位错类型的判断及其特征、伯氏矢量的特征和物理意义 3、位错源、位错的增殖(F-R源、双交滑移机制等)和运动、 交割
4、关于位错的应力场可作为一般了解
5、晶界的特性(大、小角度晶界)、孪晶界、相界的类型
维纳斯“无臂” 之美更深入人心
处处留心皆学问
2.点缺陷的形成(本征缺陷的形成)
点缺陷形成最重要的环节是原子的振动 原子的热振动
(以一定的频率和振幅作振动)
原子被束缚在它的平衡位置上,但原子却在做着挣脱
束缚的努力
点缺陷形成的驱动力:温度、离子轰击、冷加工
在外界驱动力作用下,哪个原子能够挣脱束缚,脱离
平衡位置是不确定的,宏观上说这是一种几率分布
刃型位错的特点:
1).刃型位错有一个额外的半原子面。其实正、负之分只具 相对意义而无本质的区别。 2).刃型位错线可理解为晶体中已滑移区与未滑移区的边界 线。它不一定是直线,也可以是折线或曲线,但它必与滑移 方向相垂直,也垂直于滑移矢量。
《材料科学基础》 第03章 晶体缺陷

第三节 位错的基本概念
三、位错的运动
刃位错的攀移运动:刃型位错在垂直于滑移面方向上的运动。 刃位错发生攀移运动时相当于半原子面的伸长或缩短,通常把 半原子面缩短称为正攀移,反之为负攀移。 滑移时不涉及单个原子迁移,即扩散。刃型位错发生正攀 移将有原子多余,大部分是由于晶体中空位运动到位错线上的 结果,从而会造成空位的消失;而负攀移则需要外来原子,无 外来原子将在晶体中产生新的空位。空位的迁移速度随温度的 升高而加快,因此刃型位错的攀移一般发生在温度较高时;另 外,温度的变化将引起晶体的平衡空位浓度的变化,这种空位 的变化往往和刃位错的攀移相关。切应力对刃位错的攀移是无 效的,正应力的存在有助于攀移(压应力有助正攀移,拉应力 有助负攀移),但对攀移的总体作用甚小。
第一节 材料的实际晶体结构
二、晶体中的缺陷概论
晶体缺陷按范围分类:
1. 点缺陷 在三维空间各方向上尺寸都很小,在原 子尺寸大小的晶体缺陷。
2. 线缺陷 在三维空间的一个方向上的尺寸很大(晶 粒数量级),另外两个方向上的尺寸很小(原子尺 寸大小)的晶体缺陷。其具体形式就是晶体中的 位错Dislocation 。
说明:这是一个并不十分准确的定义方法。柏氏矢量的方向与位错线方向的定义有关,应该首 先定义位错线的方向,再依据位错线的方向来定柏氏回路的方向,再确定柏氏矢量的方 向。在专门的位错理论中还会纠正。
第三节 位错的基本概念
二、柏氏矢量
柏氏矢量与位错类型的关系:
刃型位错 柏氏矢量与位错线相互垂直。(依方向关系可 分正刃和负刃型位错) 螺型位错 柏氏矢量与位错线相互平行。(依方向关系可 分左螺和右螺型位错) 混合位错 柏氏矢量与位错线的夹角非0或90度。
过饱和空位 晶体中含点缺陷的数目明显超过平衡 值。如高温下停留平衡时晶体中存在一平衡空位, 快速冷却到一较低的温度,晶体中的空位来不及移 出晶体,就会造成晶体中的空位浓度超过这时的平 衡值。过饱和空位的存在是一非平衡状态,有恢复 到平衡态的热力学趋势,在动力学上要到达平衡态 还要一时间过程。
晶体中的缺陷

第三章晶体中的缺陷第一节概述一、缺陷的概念大多数固体是晶体,晶体正是以其特殊的构型被人们最早认识。
因此目前(至少在80年代以前>人们理解的“固体物理”主要是指晶体。
当然这也是因为客观上晶体的理论相对成熟。
在晶体理论发展中,空间点阵的概念非常重要。
空间点阵中,用几何上规则的点来描述晶体中的原子排列,并连成格子,这些点被称为格点,格子被称为点阵,这就是空间点阵的基本思想,它是对晶体原子排列的抽象。
空间点阵在晶体学理论的发展中起到了重要作用。
可以说,它是晶体学理论的基础。
现代的晶体理论基于晶体具有宏观平移对称性,并因此发展了空间点阵学说。
严格地说对称性是一种数学上的操作,它与“空间群”的概念相联系,对它的描述不属本课程内容。
但是,从另一个角度来理解晶体的平移对称性对我们今后的课程是有益的。
所谓平移对称性就是指对一空间点阵,任选一个最小基本单元,在空间三维方向进行平移,这个单元能够无一遗漏的完全复制所有空间格点。
考虑二维实例,如图3-1所示。
图3-1 平移对称性的示意图在上面的例子中,以一个基元在二维方向上平移完全能复制所有的点,无一遗漏。
这种情况,我们说具有平移对称性。
这样的晶体称为“理想晶体”或“完整晶体”。
图3-2 平移对称性的破坏如果我们对上述的格点进行稍微局部破坏,那么情况如何?请注意以下的复制过程,如图3-2所示。
从图中我们看出:因为局部地方格点的破坏导致平移操作无法完整地复制全部的二维点阵。
这样的晶体,我们就称之为含缺陷的晶体,对称性破坏的局部区域称为晶体缺陷。
晶体缺陷的产生与晶体的生长条件,晶体中原子的热运动以及对晶体的加工工艺等有关。
事实上,任何晶体即使在绝对零度都含有缺陷,自然界中理想晶体是不存在的。
既然存在着对称性的缺陷,平移操作不能复制全部格点,那么空间点阵的概念似乎不能用到含有缺陷的晶体中,亦即晶体理论的基石不再牢固。
幸运的是,缺陷的存在只是晶体中局部的破坏。
作为一种统计,一种近似,一种几何模型,我们仍然继承这种学说。
第3章 晶体缺陷1.

13
间隙原子:使其周围原子偏离平 衡位置,造成晶格胀大而产生晶 格畸变。
14
3、置换原子
那些占据原基体原子平衡位置的异类原子称为置换原子。 置换原子半径常与原基体原子不同,故会造成晶格畸变。
a)半径较小的置换原子
b)半径较大的置换原子
15
空位和间隙原子的形成与温度密切相关。 一般,随着温度的升高,空位或间隙原子的数目也
增多。
因此,点缺陷又称为热缺陷。 晶体中的点缺陷,并非都是由原子的热运动产生的。 冷变形加工、高能粒子(如α粒子、高速电子、中 子)轰击(辐照)等也可产生点缺陷。
16
4、热平衡缺陷:
热力学分析表明,在高于0K的任何温度下,晶体最
稳定的状态并不是完整晶体,而是含有一定浓度的
点缺陷状态,即在该浓度情况下,自由能最低。此
(3) 当温度升高时,在某个很窄的温度区间,会发生明显的结 构相变,因而它是一种亚稳相。
3
分类:非晶态合金、非晶态半导体材料、非晶态超 导体、非晶态高分子材料、非晶态玻璃。
第二章 作业
4
1、Ni的晶体结构为面心立方结构,其原子半径为
r=0.1243 nm,求Ni的晶格常数a和密度ρ ?
2 、 MgO 具有 NaCl 型结构, Mg2+ 的离子半径为
在某瞬间,有些原子能量大到 足以克服周围原子的束缚,就 可能脱离其原平衡位置而迁移 到别处。结果,在原位置上出 现空结点,称为空位。
离开平衡位置的原子可有两个去处:
12
ቤተ መጻሕፍቲ ባይዱ
(1)迁移到晶体表面,在原位置只形成空位,不形成间隙 原子,此空位称为肖特基缺陷(Schottky defect)(图a);
材料科学基础第三章 晶体缺陷

贵州师范大学
化学与材料科学学院
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
二、点缺陷的产生 1. 平衡点缺陷及其浓度 虽然点缺陷的存在使晶体的内能增高,但 同时也使熵增加,从而使晶体的能量下降。因 此,点缺陷是晶体中热力学平衡的缺陷。 等温等容条件下,点缺陷使晶体的亥姆霍 A U T S 兹自由能变化为:
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
三、点缺陷与材料行为 1. 点缺陷的运动 1)空位的运动
2)间隙原子的运动 3)空位片的形成
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
第三章 晶体缺陷
CRYSTAL DEFECTS
点缺陷 位错的基本概念 位错的弹性性质 作用在位错线上的力 实际晶体结构中的位错 晶体中的界面
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
一、点缺陷的类型
点缺陷的类型: (a) Schottky 空位; (b) Frenkel 缺陷; (c) 异类间隙原子; (d) 小置换原子; (e) 大置换原子
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
第3章 晶体缺陷 笔记及课后习题详解 (已整理 袁圆 2014.8.6)

第3章晶体缺陷3.1 复习笔记一、点缺陷1.点缺陷的定义点缺陷是在结点上或邻近的微观区域内偏离晶体结构正常排列的一种缺陷。
2.点缺陷的特征尺寸范围约为一个或几个原子尺度,故称零维缺陷,包括空位、间隙原子、杂质或溶质原子。
3.点缺陷的形成晶体中,位于点阵结点上的原子以其平衡位置为中心作热振动,当某一原子具有足够大的振动能而使振幅增大到一定限度时,就可能克服周围原子对它的制约作用,跳离其原来的位置,使点阵中形成空结点,称为空位。
离开平衡位置的原子有三个去处:(1)迁移到晶体表面或内表面的正常结点位置上,而使晶体内部留下空位,称为肖特基(Schottky)缺陷;(2)挤入点阵的间隙位置,而在晶体中同时形成数目相等的空位和间隙原子,则称为弗仑克尔(Frenkel)缺陷;(3)跑到其他空位中,使空位消失或使空位移位;(4)在一定条件下,晶体表面上的原子也可能跑到晶体内部的间隙位置形成间隙原子图3.1 晶体中的点缺陷(a)肖特基缺陷(b)弗伦克尔缺陷(c)间隙原子4.点缺陷的平衡浓度(1)点缺陷存在的影响①造成点阵畸变,使晶体的内能升高,降低了晶体的热力学稳定性;②由于增大了原子排列的混乱程度,并改变了其周围原子的振动频率,引起组态熵和振动熵的改变,使晶体熵值增大,增加了晶体的热力学稳定性。
晶体组态熵的增值:最小,即式中,Q f为空位形成能,单位为J/mol,R为气体常数,R=8.31J/(mol·K)。
(2)点缺陷浓度的几个特点对离子晶体而言,无论是Schottky缺陷还是Frenkel缺陷均是成对出现的事实;同时离子晶体的点缺陷形成能一般都相当大,故在平衡状态下存在的点缺陷浓度是极其微小的。
二、线缺陷1.位错的定义晶体中某一列或若干列原子有规律的错排。
2.线缺陷的特征在两个方向上尺寸很小,另外一个方向上延伸较长,也称一维缺陷。
3.位错(1)位错的分类①刃型位错:晶体的一部分相对于另一部分出现一个多余的半排原子面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 1668年(推测) 列文虎克(Anton van Leeuwenhoek)制做出放大倍数超过200倍的光 学显微镜。使人类能够研究肉眼无法看到的自然 世界及其结构。 6 1755年 斯米顿(John Smeaton)发明了现代 混凝土(水凝水泥)。成为当代的主导建筑材料。 7 公元前300年(推测) 南印度的金属业劳动者 发展了坩埚炼钢。生产出几百年后成为著名的 “大马士革”剑钢的“伍兹钢”,激发了数代工 匠、铁匠和冶金学家。
JOM主办此次活动的目的旨在弘扬材料科学在人 类历史发展进程中的影响力和庆祝TMS成立50周 年。“最伟大的材料事件”被定义为:一项人类 的观测或者介入,导致人类对材料行为的理解产 生标志性进展的关键或决定性事件,它开辟了材 料利用的新纪元,或者产生了由材料引发的社会 经济重大变化。首先,JOM 邀请众多材料领域的 杰出专业人士评述他们关于“最伟大的材料事件” 的观点。基于他们的评述,JOM 整理出一份超过 650个候选者的详细目录,然后进一步遴选出100 个正式的候选名单,并刊登于2006年11月份出版 的JOM上。近千名来自材料晶体的空位形成能ΔEf 金 属 Au 0.15 Ag 0.17 Cu 0.17 Pt 0.24 Al 0.12 W 0.56 Pb 0.08 Mg 0.14 Sn 0.08
形成能 (×10-19J )
空位和间隙原子的平衡浓度随温度的升高而急剧增加,呈指数关系。 例如,铜晶体中空位浓度随温度的变化为: 100 300 10-19 500 10-11 700 10-8.1 900 10-6.3 1000 10-5.7 1273 10-4
称为热缺陷。
热缺陷类型
•
按照离开平衡位置原子进入晶格内的不同位置,热缺陷以此分为 二类: 1. 弗伦克尔缺陷(Frenkel) 离开平衡位置的原子进入晶格的间隙位置,晶体中形成了弗伦克 尔缺陷。弗伦克尔缺陷的特点是空位和间隙原子同时出现,晶体 体积不发生变化,晶体不会因为出现空位而产生密度变化。 2. 肖特基缺陷(Schottky) 离开平衡位置的原子迁移至晶体表面的正常格点位置,而晶体内 仅留有空位,晶体中形成了肖特基缺陷。晶体表面增加了新的原 子层,晶体内部只有空位缺陷。肖特基缺陷的特点晶体体积膨胀, 密度下降。
点缺陷的移动
晶体中的空位和间隙原子不是固定不动的, 而是处于不断的运动变化之中。由于原子 间能量的不均匀分布,当空位周围的原子 因热振动而获得足够的能量,就有可能迁 移到该空位。
点缺陷的运动
点缺陷的运动方式: (1) 空位运动。 (2) 间隙原子迁移。 (3) 空位和间隙原子相遇,两缺陷同时消失。 (4) 逸出晶体到表面,或移到晶界,点缺陷 消失。
热缺陷的定义
当晶体的温度高于绝对零度时,晶格内原子吸收 能量,在其平衡位置附近热振动。温度越高,热
振动幅度加大,原子的平均动能随之增加。热振
动的原子在某一瞬间可以获得较大的能量,挣脱 周围质点的作用,离开平衡位置,进入到晶格内 的其它位置,而在原来的平衡格点位置上留下空 位。这种由于晶体内部质点热运动而形成的缺陷
点缺陷
1926年Frankel为了解释离子晶体导电的实 验事实,提出了离子晶体的点缺陷理论。 1942年F. Seitz和H. B. Huntington为了阐明 扩散机制,发表了他们对立方金属晶体中 缺陷的一些基本性质。 二十世纪50-60年代,由于原子能反应堆技 术的进展,高能粒子对固体晶体的辐照损 伤效应引起了人们的高度重视,又推动了 晶体中点缺陷的深入研究。
通常晶体缺陷对对材料的很多物理化学过程以及性质起重要作用,在这 些过程中常 常扮演主要角色,而晶体的规则性只退居为舞台的背景。 晶体缺陷在材料组织控制(如扩散、相变)和性能控制(如材料强化) 中具有重要作用。就好象维纳斯“无臂”之美更深入人心 晶体缺陷赋 予材料丰富内容。
三、晶体中的缺陷概论
晶体缺陷按范围分类:
位 错
概述 位错(dislocation)是一种线缺陷,它是晶 体中某处一列或若干列原子发生了有规律 错排现象;错排区是细长的管状畸变区,长 度可达几百至几万个原子间距,宽仅几个原 子间距 位错理论是上个世纪材料科学最杰出的成 就之一
美国《金属杂志》评选出材料科学与工程领域历史上十个 “最伟大事件” 2006年9月,美国《金属杂志》(Journal of Metals, JOM)发起了评选材料科学与工程历史上“最伟大的材 料事件”(Greatest Materials Moments)活动。JOM 由美国矿物、金属与材料学会(The Minerals, Metals & Materials Society, TMS)主办。TMS是一个涉及材料科 学与工程所有领域的专业国际组织,总部设在美国,涵盖 的学科方向从矿物工艺、基本金属制造到材料的基础研究 和深入应用。TMS的会员来自世界6大洲70多个国家的冶 金学与材料工程师、科学家、研究人员、教育家、管理人 员和学生。
二十世纪70年代由于点缺陷及其与位错的交互作 用对半导体的性能有着很大影响,引起人们对半 导体点缺陷性质的注意,并采用核磁共振等近代 物理实验技术对点缺陷周围的状态(尤其是电子 结构和能态)进行了深入的研究。 当前,随着大规模集成电路和各项信息技术、太 阳能电池的飞速发展,对点缺陷的研究更为迫切。 采用高分辨率电子显微分析技术,可以直接看到 点缺陷的相位衍射图像,使晶体点缺陷的理论和 实验更加完善。
晶体缺陷:即使在每个晶粒的内部,也并不完全象 晶体学中论述的(理想晶体)那样,原子完全呈现 周期性的规则重复的排列。把实际晶体中原子排 列与理想晶体的差别称为晶体缺陷。晶体中的缺 陷的数量相当大,但因原子的数量很多,在晶体 中占有的比例还是很少,材料总体具有晶体的相 关性能特点,而缺陷的数量将给材料的性能带来 巨大的影响。(crystal defect; crystalline imperfection)。
点缺陷类型1
点缺陷类型2
空位等点缺陷与线缺陷、面缺陷的区别之 一在于后者是热力学不稳定的缺陷,而点 缺陷可以在热力学平衡的晶体中存在,是 热力学稳定的缺陷。在一定温度下,晶体 中有一定的平衡数量的空位和间隙原子, 其数量可近似地分别计算出来。
*讨论 1、影响点缺陷浓度的主要因素是U、T,因此: 温度愈高,点缺陷的浓度愈大; 点缺陷形成能愈小,点缺陷的浓度愈高。 而exp是一个大致确定的数,在1~100之间变化。 2、U对点缺陷的影响成指数关系,故U的微小变化,可 引起点缺陷浓度很大的变化。因此,晶体中几种点缺陷同 时存在的可能性较小,往往是形成能最低的点缺陷占着主 要形式。 3、温度升高空位浓度增大,因此可以把晶体加热到高 温,再用激冷的方法,把空位“冻结”在晶体内,得到不 平衡的淬火空位,以改变晶体的性能。
点缺陷的运动 (迁移、复合-浓度降低;聚集-浓度升高-塌陷)
点缺陷对材料性能的影响
原因:无论那种点缺陷的存在,都会使其附近的原子稍微偏
离原结点位置才能平衡,即造成小区域的晶格畸变。
效果 1) 提高材料的电阻 定向流动的电子在点缺陷处受到非
平衡力(陷阱),增加了阻力,加速运动提高局部温度 (发热)。 2) 加快原子的扩散迁移 空位可作为原子运动的周转站。 3) 形成其他晶体缺陷 过饱和的空位(淬火、辐照和塑 变)可集中形成内部的空洞,集中一片的塌陷形成位 错。 4) 改变材料的力学性能 空位移动到位错处可造成刃位 错的攀移,间隙原子和异类原子的存在会增加位错的 运动阻力。会使强度提高,塑性下降、
1. 点缺陷 在三维空间各方向上尺寸都很小,在原子尺寸大 小的晶体缺陷。晶体中的空位、间隙原子、杂质原子等 是点缺陷。 2. 线缺陷 在三维空间的一个方向上的尺寸很大(晶粒数量 级),另外两个方向上的尺寸很小(原子尺寸大小)的晶体 缺陷。其具体形式就是晶体中的位错Dislocation
3. 面缺陷 在三维空间的两个方向上的尺寸很大(晶粒数量 级),另外一个方向上的尺寸很小(原子尺寸大小)的晶体 缺陷。晶体中的晶界、相界、晶体表面、堆垛层错等是 面缺陷。
这意味着,靠晶格结点上的原子借热振动 的帮助跳入间隙位置,从而形成等量空位 和间隙原子的方式来产生平衡空位的可能 性是很小的。空位的产生主要靠结点上的 原子跳往晶体表面、晶界及位错处。换句 话讲,晶体表面、晶界和位错起着空位源 泉的作用。当然,它们同时也充当着空位 的尾闾,即它们也是空位消亡的地方。
在同一温度下,间隙原子平衡浓度远低于 平衡空位浓度。以上述的铜为例,在 1273K时,空位的平衡浓度约为10-4,而间 隙原子仅约为10-14,其浓度比接近1010。 这说明,在通常情况下,晶体中间隙原子 数目甚少,相对于空位可予忽略不计(但 在高能粒子辐照后,产生大量的弗兰克尔 缺陷,间隙原子数目增高,不能忽视)。 所以,一般晶体中主要点缺陷是空位。
要计算空位和间隙原子的平衡浓度,首先应知道 空位和间隙原子的形成能(即在晶体中形成一个 空位或一个间隙原子所需要的能量)。空位的存 在,使周围原子失去一个近邻原子而影响原子间 作用力的平衡,因而,周围的原子都要向空位方 向稍微作些调整,造成了点阵的局部弹性畸变。 同样,在间隙原子所在处的点阵也会发生弹性畸 变。显然,在这两种情况下,空位引起的畸变较 小。在金属晶体中,由于间隙原子的形成能(为空 位的3~4倍),例如铜的空位形成能约为 0.17×10-19J,而其间隙原子形成能约为 0.48×10-19J。
2007年2月26日-3月1日,TMS在美国弗洛 里达州的奥兰多举行了2007年年会,共有 来自68个国家的4200多名材料科学和工程 专业人员参加了此次会议。会上揭晓了 JOM 评选的10项“最伟大的材料事件”, 它们分别为:
1 1864年 门捷列夫(Dmitri Mendeleev)设计出元素周 期表。成为材料科学家和工程师普遍使用的参考工具。 2 公元前3500年(推测) 埃及人首次熔炼铁(或许是作 为铜精炼的一种副产品),微量的铁主要用于装饰或礼仪。 揭开了将成为世界主导冶金材料的第一个制备秘密。 3 1948年 巴丁(J. Bardeen)、布拉顿(W. H. Brattain) 和肖克利(W. Shockley)发明晶体管。成为所有现代电 子学的基石和微芯片与计算机技术的基础。 4 公元前2200年(推测) 伊朗西北部人发明了玻璃。成 为第二种伟大的非金属工程材料(继陶瓷之后)。