微积分小论文

合集下载

★微积分(论文)

★微积分(论文)

为了证明我不是抄袭,复制黏贴过来。

或者抄袭别人的论文。

本人都用了句号。

数学论文作者:李珍珍微积分请问什么是微积分?你还不懂吗?那就拿着本本和笔笔去学习吧。

啦~数学是研究“数”与“形”的一门学科。

数学也是一种工具。

近代数学的伟大变革是从引进变量开始的,而微积分学的发明正式变量数学的第一个伟大成就,微积分学的出现不仅颠覆了整个数学领域,而且显著地促进了近代科学技术的发展,没有微积分这一项强大的数学工具。

物理学。

天文学。

等领域的近代理论的形成是几乎不可能的。

微积分是由牛顿和莱布尼兹发明的。

微积分学为研究变量提供了一个方法系统。

气基本内容是微分与几分这两种互相关联的运算。

在求物体瞬时速度和曲线切线时。

我们就会运用到微积分。

且都建立在极限概念的基础上。

微分学研究变量的局部性质。

而积分学就处理变量在一定范围内的“求和”∑。

因而是一整体问题。

自然。

局部与整体和对立与联系。

充分体现出微分与几分的相互关系中。

微积分学已经成为经典数学的重要分支。

有一系列的重要学科在他身上萌芽。

如微分方程。

复变函数。

实变函数。

便疯法等。

微积分学的李云与方法。

已经广泛的运用与自然科学。

工程技术和社会学科等多个领域部门。

对微积分学的一定程度的掌握,不仅是对科技工作者的数学训练中的必备要素。

而且也越来越为对经济学家。

工程师和许多社会工作者的基本要求。

要想学好微积分。

必须把基础打好。

极限与连续性函数N维空间1,空间R+ n个实数的有续租(x1,x2,……xn)之全体成为n维欧几里德空间。

记作R+。

R+的元素(x1,x2^xn)称为点。

记作x或大写字母A,B,C等。

R1(上标)就是实直线,也写作R或者(-躺倒的8,+躺倒的8)。

【哎呀。

什么奇葩的坑爹。

那个无穷符号打不出来。

】。

R²就是实平面。

R³就可以解释为通常的空间。

这就好比。

一维是线。

二维是面。

三维是空间。

(2.线性运算。

任意给定的x,y属于Rn(上标),α,β属于R,不妨设x=(x1,x2,x3……,xn),y=(y1,y2,y3……yn),定义αx+βy=(ax1+βy1。

二元函数微积分教学论文

二元函数微积分教学论文

浅谈二元函数微积分的教学体会摘要:本文基于工作经验,分析了当前二元函数微积分在教学中出现的问题,着重介绍了转变传统教学观念、落实新课改理念,点燃课堂激情,采用多种教学工具、完善教学方法三种解决方案及其具体应用,希望能给相关教育工作者一些启发和思考,从而不断完善当前二元函数微积分的教学工作。

关键词:二元函数微积分教学体会作为高等数学的一个重要内容,二元函数微积分的性质、解题思路、解题方法,与一元函数微积分的区别与联系等都是学生应该牢固掌握的重要内容。

如何提高数学整体的教学质量,怎样把诸如二元函数微积分之类的抽象的数学内容转化为生动形象具体的课堂画面,如何改变数学课堂学生一头雾水、昏昏沉沉的上课状态,是每一位数学教师应努力思考并妥善解决的重要问题。

伴随着课程改革的呼声越来越强烈,相关教师要在保证课堂质量的同时,努力营造良好和谐的课堂氛围,点燃当代大学生的课堂激情。

一、二元函数微积分教学中出现的问题1、教学观念落后目前我国教育界正在推行课程改革,其目的就在于改变老师传统的教学观念,改变枯燥的课堂说教为课堂互动,充分发挥学生在课堂上的主体作用。

反观当前的一些数学教师,在课堂教学时,依然未能及时转变观念,实现自身角色的转变,调动学生的参与意识。

比如一些教师在讲授微积分时,仅仅是照本宣科,采用传统的授课模式,使本来就很抽象的二元函数微积分更加乏味无趣,课堂气氛低沉,这显然不适应当今课程改革的教学要求,也不能充分满足当代大学生的需求,导致课堂效果很差,教学质量低下。

2、学生的理解掌握程度较低二元函数微积分是高等数学大纲里一个重要的知识点,要求学生必须要深入理解体会并掌握相应的解题思路,会解决一些关于二元函数微积分的实际应用题。

这就对教师提出了一个要求,要求教师不仅要教会学生理解二元函数微积分的定义,更要弄清二元函数微积分的由来,以及体会其中的重要数学思想并灵活的运用。

但是在许多学生中普遍存在着对二元函数理解不到位,不能灵活运用转化思想,不会把二元函数微积分转化成一元函数微积分,从而降低解题难度。

微积分论文

微积分论文
2.x sinax(x cosax) 令u= x
x ㏑x 令u=㏑x
x arctanx(x arcsinxx arccosx)
令u= arctanx (arcsinxarccosx)
e cosax(e sinax) 令u= cosax(sinax)
x e 令u= x
例:求(1)∫ ㏑x (2)∫xarctanxdx
Sinx= cosx= tanx=
②形如∫sinkxdx和∫coskxdx的积分,可直接利用第一类换元积分法进行计算
③若被积函数是关于cosx的奇函数。令t=sinx
④若被积函数是关于sinx的奇函数。令t=cosx
⑤被积函数既是关于cosx的偶函数,又是关于sinx的偶函数。令t=tanx
⑥被积函数是sin xcos x
xaccost三角代换令xasect三角代换令xatant三角代换有理函数的积分一般情况下是把有理函数变形为有理整函数与真分式函数之和的形式把真分式函数化成部分分式函数之和的形式然后利用积分的一些方法将有理函数的积分积出无理函数的积分如果所求积分不能用直接积分法换元法分部积分法求解的话可将无理函数通过一系列的变形化为有理三角函数或有理函数
2.求平面区域的面积
例:求半径为r的圆的面积。
解:以圆点为圆的方程 : x +y =r

(3)偶函数的原函数之一为奇函数。
(4)奇函数的全部原函数都为偶函数。
(5)若f(x)是周期为T的周期函数,则f(x)的原函数
=以T为周期的函数+线性函数ax+b
3.定积分的应用
1.求极限
(1)用定义计算某些和式的极限
分割极限—近似代替—求和—取极限
(2)微分法 (化整为零—积零为整)

数学微积分论文范文

数学微积分论文范文

数学微积分论文范文微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来店铺为你整理了数学微积分论文的范文,一起来看看吧。

数学微积分论文范文篇一:初等微积分与中学数学摘要:初等微积分作为高等数学的一部分,属于大学数学内容。

在新课程背景下,几进几出中学课本。

可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。

但对很多在岗教师而言,还很陌生,或是理解不透彻。

这样不利于这方面的教学。

我将对初等微积分进入中学数学背景,作用及教学作简单研究.关键词:微积分;背景;作用;函数一、微积分进入高中课本的背景及必要性在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。

微积分已成为我们学习数学不可或缺的知识。

其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。

但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。

这使得很多人学不懂微积分,更不用说让中学生来学习微积分。

柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。

近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。

这为其完全进入高中课本奠定了基础。

从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。

即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。

从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。

回顾历届高考,微积分相关题型分值越来越高。

但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。

我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一方法,也是联系中学与大学数学知识的纽带!二、微积分在中学数学中的作用1.衔接性与后继作用。

微积分在不等式中的应用论文

微积分在不等式中的应用论文

摘要微积分和不等式都是数学学科中极为重要的内容,其证明通常不太客易。

本文回顾了几种常用的证明不等式的初等方法,利用微分中值定理、函数的单调性、极值(最值)的判定法、函数凸凹性质、泰勒公式、定积分的性质等一些微积分知识探究了不等式的证明方法,本文探讨了如何巧妙利用徽积分中的知识和方法来解决一些不等式的问题。

用微积分证明不等式成立, 基本思路是构造一个辅助函数, 然后利用微积分求出该函数的性质来证明不等式.关键词微积分不等式中值定理函数性质泰勒公式定积分性质1AbstractCalculus mathematics and inequality are extremely important, the proof is not usually easily. This paper reviews several commonly used to prove inequality elementary methods, using the differential mean value theorem, monotone of function, extreme value ( maximum ) decision method, function, convex and concave nature of Taylor formula, the nature of definite integral and some knowledge of calculus of the inequality proof method, this paper discusses how clever use of emblem integral knowledge and the method to solve some of the problems of inequality.Using calculus to prove inequality is established, the basic idea is the construction of an auxiliary function, then make use of infinitesimal calculus to derive the properties of function to prove inequality.Key words calculus inequality theorem function Taylor formulaof definite integral character目录摘要 (I)1 Abstract (II)2 前言 (1)3 微积分 (2)2.1微积分的定义 (2)2.2微积分的发展历史 (3)2.3微积分学的创立的意义 (4)2.4微积分不断深化 (5)4 微积分在不等式中的应用 (6)5 利用微分中值定理证明不等式 (7)6 利用函数的单调性证明不等式 (8)7 利用函数的最值(极值)证明不等式 (9)8 利用函数的凹凸性质证明不等式 (10)9 利用泰勒公式证明不等式 (11)10 利用定积分的性质证明不等式 (12)结论 (13)参考文献 (16)附录 (17)致谢......................................................................................................... 错误!未定义书签。

牛顿与莱布尼兹创立微积分之解析的论文

牛顿与莱布尼兹创立微积分之解析的论文

牛顿与莱布尼兹创‎立微积分之解析的‎论文牛顿与莱布‎尼兹创立微积分之‎解析的论文摘‎要:文‎章主要探讨了牛顿‎和莱布尼兹所处的‎时代背景以及他们‎的哲学思想对其创‎立广泛地应用于自‎然科学的各个领域‎的基本数学工具—‎——微积分的影响‎。

关键词:牛‎顿;莱布尼兹;微‎积分;哲学思想‎今天,微积分已‎成为基本的数学工‎具而被广泛地应用‎于自然科学的各个‎领域。

恩格斯说过‎:“在一切理论成‎就中,未有象十七‎世纪下半叶微积分‎的发明那样被看作‎人类精神的最高胜‎利了,如果在某个‎地方我们看到人类‎精神的纯粹的和唯‎一的功绩,那就正‎是在这里。

”[1‎](p.244)‎本文试从牛顿、莱‎布尼兹创立“被看‎作人类精神的最高‎胜利”的微积分的‎时代背景及哲学思‎想对其展开剖析。

‎一‎、牛顿所处的时代‎背景及其哲学思想‎“牛顿(isa‎a cnewton‎,1642-17‎27)1642年‎生于英格兰。

,‎1661年,入英‎国剑桥大学,16‎65年,伦敦流行‎鼠疫,牛顿回到乡‎间,终日思考各种‎问题,运用他的智‎慧和数年来获得的‎知识,发明了流数‎术(微积分)、万‎有引力和光的分析‎。

”‎[2](p.15‎5) 1665年‎5月20日,牛顿‎的手稿中开始有“‎流数术”的记载。

‎《流数的介绍》和‎《用运动解决问题‎》等论文中介绍了‎流数(微分)和积‎分,以及解流数方‎程的方法与积分表‎。

wWW..16‎69年,牛顿在他‎的朋友中散发了题‎为《运用无穷多项‎方程的分析学》的‎小册子,在这里,‎牛顿不仅给出了求‎一个变量对于另一‎个变量的瞬时变化‎率的普遍方法,而‎且证明了面积可以‎由求变化率的逆过‎程得到。

因为面积‎也是用无穷小面积‎的和来表示从而获‎得的。

所以牛顿证‎明了这样的和能由‎求变化率的逆过程‎得到(更精确地说‎,和的极限能够由‎反微分得到),这‎个事实就是我们现‎在所讲的微积分基‎本定理。

这里“,‎牛顿使用的是无穷‎小方法,把变量的‎无限小增量叫做“‎瞬”,瞬是无穷小‎量,是不可分量,‎或是微元,牛顿通‎过舍弃“瞬”求得‎变化率。

微积分论文-3

微积分论文-3

微积分发展史的认识及应用姓名:张佳佳班级:数学1班学号:120701010027摘要微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。

它是数学的一个基础学科。

内容主要包括极限、微分学、积分学及其应用。

微分学包括求解导数的运算,是一套关于变化率的理论。

它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。

积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了行星运动三定律。

此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。

并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。

关键词微积分;应用;微分;积分;物理,几何引言微积分的产生是数学上的伟大创造。

它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。

如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。

如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。

微积分堪称是人类智慧最伟大的成就之一。

从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。

通过研究微积分在物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。

微积分的发展历史表明了人的认识是从生动的直观开始,进而达到抽象思维,也就是从感性认识到理性认识的过程。

人类对客观世界的规律性的认识具有相对性,受到时代的局限。

随着人类认识的深入,认识将一步一步地由低级到高级、不全面到比较全面地发展,人类对自然的探索永远不会有终点。

大学数学微积分论文(专业推荐范文10篇)7700字

大学数学微积分论文(专业推荐范文10篇)7700字

大学数学微积分论文(专业推荐范文10篇)7700字大学数学微积分包括极限、微分学、积分学及其应用,也包括求导数的运算,是一套关于变化率的理论。

本篇文章就向大家介绍几篇大学数学微积分论文,希望大家通过以下论文,跟大家一起探讨这个课题。

大学数学微积分论文专业推荐10篇之第一篇:浅析微积分在大学数学学习和生活中的应用摘要:经济社会的发展和科技的进步,计算机应用领域的扩大,也不断拓展了微积分的应用范围。

微积在大学数学学习和生活中很常见,应用广泛。

本文主要针对微积分在大学数学学习和生活中的应用进行了分析。

关键词:微积分;大学数学;学习生活;应用;数学作为一项重要的工具,在社会长期发展中发挥着重要的作用,尤其是在其他学科知识的学习、日常生活的应用等方面,数学工具不可或缺。

在大学中,微积分属于大学数学的一个分支,其研究对象是函数的微分、积分及其他内容。

微积分是很多在校大学生的必修课程,同时,在生活中也有广泛的应用空间。

研究微积分,具有重要的现实意义。

1. 大学教学中微积分的应用大学教育的过程中,很多专业知识的学习中都需要运用到微积分,可以说,大学教学中微积分的应用十分广泛,尤其是数学教学和学习,微积分是高等数学研究的一个分支,且在具体的学习中有重要的指导意义。

具体应用分析如下。

1.1 数学建模。

数学建模主要用于把一个抽象的生活问题用具体的数学模型做简化和假设,在此基础上,运算得出一个相对合理的对应方案。

数学建模在现实生活中具有较强的实际意义。

在传统的数学应用中,人们运用微积分建构了多个数学模型,并且为科学研究做出了很大的贡献。

历史上将数学模型运用到科学研究的典型例子,牛顿借助自己研究的微积分,提出万有引力定律,这些典型的现实性案例,都证明了微积分在数学建模中的重要作用。

1.2 等式证明中的微积分使用。

在变量关系的研究过程中,会涉及到有关等式作证明的问题,可以利用微积分无线分割的思想,在处理数学问题的过程中,以简御繁,其次,微积分中的值订立、函数的增减性、极值的判定等,都在在等式的证明中有重要的作用,在具体的运用中,能简化等式,降低了普通方法证明等式时的技巧性和高难度性,因此,微积分的使用让等式证明更加简化和简单。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分小论文一、微积分学的创立微积分作为一门学科,是在十七世纪产生的。

它的主要内容包括两部分:微分学和积分学。

然而早在古代微分和积分的思想就已经产生了。

公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体积等问题中,就隐含着近代积分学的思想。

作为微分学基础的极限理论来说,早在古代就有了比较清楚的论述。

如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。

这些都是朴素的极限概念.到了十七世纪,人们因面临着有许多科学问题需要解决,如研究运动的时候直接出现的,也就是求即时速度的问题;求曲线的切线的问题等,这些问题也就成了促使微积分产生的因素。

十七世纪的许多著名的数学家都为解决上述几类问题作了大量的研究工作。

十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作。

在创立微积分方面,莱布尼茨与牛顿功绩相当。

这两位数学家在微积分学领域中的卓越贡献概括起来就是:他们总结出处理各种有关问题的一般方法认识到求积问题与切线问题互逆的特征,并揭示出微分学与积分学之间的本质联系。

两人各自建立了微积分学基本定理,并给出微积分的概念、法则、公式及其符号。

有了这些理论知识作为前提为以后的微积分学的进一步发展奠定了坚实而重要的基础。

微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。

可以说微积分学的诞生是数学发展的一个里程碑式的事件。

二、微积分诞生的重要意义二、微积分诞生的重要意义微积分诞生之前,人类基本上还处在农耕文明时期。

微积分学是继解析几何产生后的又一个伟大的数学创造。

微积分为创立许多新的学科提供了源泉。

微积分的建立是人类头脑最伟大的创造之一,是人类理性思维的结晶。

它给出一整套的科学方法,开创了科学的新纪元,并因此加强与加深了数学的作用。

微积分的产生不仅具有伟大的科学意义,而且具有深远的社会影响。

有了微积分,就有了工业革命,有了大工业生产,也就有了现代化的社会。

在微积分的帮助下,万有引力定律发现了。

微积分学强有力地证明了宇宙的数学设计,摧毁了笼罩在天体上的神秘主义、迷信和神学。

这切都表明微积分学的产生是人类认识史上的一次空前的飞跃。

三、微积分理论的基本介绍微积分学是微分学和积分学的总称。

微积分学基本定理指出,求不定积分与求导函数是互为逆运算的过程,而把上下限代入不定积分即得到积分值,微分则是导数值与自变量增量的乘积。

作为一种数学的思想微分就是“无限细分”,而积分就是“无限求和”。

牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。

因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。

学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。

所以,必须要利用代数处理代表无限的量,这时就精心构造了“极限”的概念。

在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以四.微积分的基本内容微积分学是微分学和积分学的总称。

微积分学基本定理指出,求不定积分与求导函数是互为逆运算的过程,而把上下限代入不定积分即得到积分值,微分则是导数值与自变量增量的乘积。

作为一种数学的思想微分就是“无限细分”,而积分就是“无限求和”。

牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。

因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。

学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。

所以,必须要利用代数处理代表无限的量,这时就精心构造了“极限”的概念。

在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,相反引入了一个过程任意小量ε。

就是说,除的数不是零,所以有意义,同时ε可以取任意小,只要满足在δ区间,都小于ε,我们就说他的极限就是这个数。

虽然这个概念给出的比较取巧,但是,它的实用性证明,这样的定义还算比较完善,给出了正确推论的可能性。

因此这个概念是成功的。

五、微积分的历史微积分学是微分学和积分学的总称客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。

因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。

由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。

微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。

微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支。

微积分是建立在实数、函数和极限的基础上的。

微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。

微积分的产生是数学上的伟大创造。

它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。

如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。

微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期。

早在古希腊时期,欧多克斯提出了穷竭法。

这是微积分的先驱,而我国庄子的《天下篇》中也有尺之锤,日取其半,万世不竭”的极限思想,公263 年,刘徽为《九间算术》作注时提出了“割圆术”,用正多边形来逼近圆周。

这是极限论思想的成功运用。

积分概念是由求某些面积、体积和弧长引起的,古希腊数学家要基米德在《抛物线求积法》中用究竭法求出抛物线弓形的面积,人没有用极限,是“有限”开工的穷竭法。

但阿基米德的贡献真正成为积分学的萌芽。

微分是联系到对曲线作切线的问题和函数的极大值极小值问题而产生的。

微分方法的第一个真正值得注意的先驱工作起源于1629 年费尔玛陈述的概念,他给同了如何确定极大值和极小值的方法。

其后英国剑桥大学三一学院的教授巴罗又给出了求切线的方法,进一步推动了微分学概念的产生。

前人工作终于使牛顿和莱布尼茨在17 世纪下半叶各自独立创立了微积分。

1605 年5 月20 日,在牛顿手写的一面文件中开始有“流数术”的记载微积分的诞生不妨以这一天为标志。

牛顿关于微积分的著作很多写于1665 - 1676 年间,但这些著作发表很迟。

他完整地提出微积分是一对互逆运算,并且给出换算的公式,就是后来著名的牛莱而尼茨公式。

牛顿1642 年出生于一个贫穷的农民家庭,艰苦的成长环境造就了人类历史上的一位伟大的科学天才,他对物理问题的洞察力和他用数学方法处理物理问题的能力,都是空前越的。

尽管取得无数成就,他仍保持谦逊的美德如果说牛顿从力学导致“流数术,那莱布尼茨则是从几何学上考察切线问题得出微分法。

他的第一篇论文刊登于1684 年的《都市期刊》上,这比牛顿公开发表微积分著作早3 年,这篇文章给一阶微分以明确的定义。

莱布尼茨1646 年生于莱比锡。

15 岁进入莱比锡大学攻读法律,勤奋地学习各门科学,不到20 岁就熟练地掌握了一般课本上的数学、哲学、神学和法学知识。

莱布尼茨对数学有超人的直觉,并且对于设计符号很第三。

他的微积分符号“dx\" 和”∫”已被证明是很发用的。

牛顿和莱布尼茨总结了前人的工作经过各自独立的研究,掌握了微分法和积分法,洞悉了二者之间的联系。

因而将他们两人并列为微积分的创始人是完全正确的,尽管牛顿的undefined 研究比莱布尼茨早10 年,但论文的发表要晚 3 年,由于彼此都是独立发现的,曾经长期争论谁是最早的发明者就毫无意义。

牛顿和莱尼茨的晚年就是在这场不幸的争论中度由于16世纪以后欧洲封建社会日趋没落,取而代之的是资本主义的兴起,为科学技术的发展开创了美好前景到了17世纪,有许多著名的数学家、天文学家、物理学家都为解决上述问题做了大量的研究工作笛卡尔1637年发表了《科学中的正确运用理性和追求真理的方法论》(简称《方法论》),从而确立了解析几何,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来发现几何性质,证明几何性质。

他不仅用坐标表示点的位置,而且把点的坐标运用到曲线上。

他认为点移动成线,所以方程不仅可表示已知数与未知数之间的关系,表示变量与变量之间的关系,还可以表示曲线,于是方程与曲线之间建立起对应关系。

此外,笛卡尔打破了表示体积面积及长度的量之间不可相加减的束缚。

于是几何图形各种量之间可以化为代数量之间的关系,使得几何与代数在数量上统一了起来。

笛卡尔就这样把相互对立着的“数”与“形”统一起来,从而实现了数学史的一次飞跃,而且更重要的是它为微积分的成熟提供了必要的条件,从而开拓了变量数学的广阔空间。

不幸的是牛顿和莱布尼茨各自创立了微积分之后,历史上发生了优先权的争论,从而使数学家分为两派,欧洲大陆数学家两派,欧洲大陆的数学家,尤其是瑞士数学家雅科布贝努利(1654~170)和约翰?贝努利(1667~1748)兄弟支持莱布尼茨,而英国数学家捍卫牛顿,两派争吵激烈,甚至尖锐到互相敌对、嘲笑。

牛顿死后,经过调查核实,事实上,他们各自独立地创立了微积分。

这件事的结果致使英国和欧洲大陆的数学家停止了思想交流,使英国人在数学上落后了一百多年,因为牛顿在《自然哲学的数学原理》中使用的是几何方法,英国人差不多在一百多年中照旧使用几何工具,而大陆的数学家继续使用莱布尼茨的分析方法,并使微积分更加完善,在这100年中英国甚至连大陆通用的微积分都不认识。

虽然如此,科学家对待科学谨慎和刻苦的精神还是值得我们学习的。

土木2班沈圆晖1501160216。

相关文档
最新文档