第八讲_动态几何与函数问题
中考数学专题8_动态几何和函数问题(附含答案解析)

中考数学专题8 动态几何与函数问题【例1】如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E.(1)将直线l 向右平移,设平移距离CD 为t (t≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积.(2)当24t <<时,求S 关于t 的函数解析式.【解】(1)由图(2)知,M 点的坐标是(2,8) ∴由此判断:24AB OA ==,; ∵N 点的横坐标是4,NQ 是平行于x 轴的射线,∴4CO = ∴直角梯形OABC 的面积为:()()112441222AB OC OA +⋅=+⨯=..... (3分) (2)当24t <<时,阴影部分的面积=直角梯形OABC 的面积-ODE ∆的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系)∴1122S OD OE =-⋅∵142OD OD t OE ==-, ∴()24OE t =- .∴()()()21122441242S t t t =-⨯-⋅-=--284S t t =-+-.【例2】已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;(2)记O E F E C F S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.【解析】(1)证明:设11()E x y ,,22()F x y ,,AOE △与FOB △的面积分别为1S ,2S ,由题意得11k y x =,22k y x =.1111122S x y k ∴==,2221122S x y k ==.12S S ∴=,即AOE △与FOB △的面积相等. (2)由题意知:E F ,两点坐标分别为33kE ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, 1111432234ECF S EC CF k k ⎛⎫⎛⎫∴==-- ⎪⎪⎝⎭⎝⎭△, 11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S ∴=---=---=--△△△△△△矩形11112212243234OEF ECF ECF S S S k S k k k ⎛⎫⎛⎫∴=-=--=--⨯-- ⎪⎪⎝⎭⎝⎭△△△2112S k k ∴=-+.当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值. (3)解:设存在这样的点F ,将CEF △沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-,90EMN FMB FMB MFB ∠+∠=∠+∠=,EMN MFB ∴∠=∠. 又90ENM MBF ∠=∠=,ENM MBF ∴△∽△.EN EM MB MF ∴=,11414312311331412k k MB k k⎛⎫-- ⎪⎝⎭∴==⎛⎫-- ⎪⎝⎭, 94MB ∴=.D图1222MB BF MF +=,222913444k k ⎛⎫⎛⎫⎛⎫∴+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得218k =. 21432k BF ∴==. ∴存在符合条件的点F ,它的坐标为21432⎛⎫⎪⎝⎭,.【例3】如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,BC =16,DC =12,AD =21。
中考数学专题8-动态几何和函数问题

中考数学专题8 动态几何与函数问题1 、如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E . (1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积.(2)当24t <<时,求S 关于t 的函数解析式.2、已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.3、如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,BC =16,DC =12,AD =21。
动点P 从点D 出发,沿射线DA 的方向以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P ,Q 分别从点D ,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动。
设运动的时间为t (秒)。
(1)设△BPQ 的面积为S ,求S 与t 之间的函数关系式;(2)当t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形?(3)是否存在时刻t ,使得PQ ⊥BD ?若存在,求出t 的值;若不存在,请说明理由。
中考数学专题动态几何与函数问题共23页文档

1
0
、
倚
南
窗
以
寄
傲
,
审
容
膝
之
易
安
。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
谢谢!
中考数学专题动态几何与函数
氛
,
天
高
风
景
澈
。
7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8
、
吁
嗟
身
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
中考数学专题动态几何与函数问题

龙文教育个性化辅导教案提纲学生: 日期: 年 月 日 星期: 时段:中考数学专题8 动态几何与函数问题【前言】在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。
整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。
而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。
但是这两种侧重也没有很严格的分野,很多题型都很类似。
所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。
其中通过图中已给几何图形构建函数是重点考察对象。
不过从近年中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。
但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。
第一部分 真题精讲【例1】 如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E.(1)将直线l 向右平移,设平移距离CD 为t (t≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积.(2)当24t <<时,求S 关于t 的函数解析式.【例2】已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E .(1)求证:AOE △与BOF △的面积相等;(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.【例3】如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21。
动态几何问题动态几何中的函数问题

动态几何问题动态几何中的函数问题近几年动态几何命题的趋势是:运动对象从动点型→动线型→动图型;运动形式从平移→旋转→对称→位似→折叠;蕴涵的函数关系从一次函数→二次函数→分段函数。
从知识整合的角度来看不仅有几何代数的数形结合,还有几何坐标的解析整合,较好地渗透了分类讨论,数形结合。
转化等数学思想方法,有较强的综合性。
本文主要探讨如何解决动态几何中的函数问题。
其基本策略:把握图形的运动规律,寻求图形运动的一般与特殊位置关系,在“动”中探求“静”的本质,在“静”中去探“动”的规律。
解决问题时在“动”中建立变量之间的函数关系,在“静”中利用函数关系解决几何问题。
图形运动变化的过程中,探求两个变量之间的函数关系,并根据实际情况确定自变量的取值范围,利用函数关系去解决有关的几何问题。
例1已知:如图1,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB,BC方向匀速移动,它们的速度都是1cm、,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(),解答下列问题:(1)当t为何值时,△PBQ是直角三角形(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在其中一时刻t使四边形APQC的面积是△A BC面积的23如果存在,求出相应的t值,不存在请说明理由。
(3)设PQ的长(cm),试确定y与之间的关系式。
图1图2略解(1)由题意,得AP=tcm,BQ=tcm,在△ABC中,AB=BC=3cm,∠B=60°,所以BP=(3-t)cm,在△PBQ中,BP=(3-t)cm。
BQ=t,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°,当∠BQP=90°,BQ=12BP时,即t=12(3-t),t=1()。
当∠BPQ=90°时,BP=12BQ。
3-t=12t,t=2(),故当t=1或t=2时,△PBQ是直角三角形。
动态几何中的函数问题

动态几何中的函数问题作者:赵艳来源:《中学数学杂志(初中版)》2008年第03期近几年动态几何命题的趋势是:运动对象从动点型→动线型→动图型;运动形式从平移→旋转→对称→位似→折叠;蕴涵的函数关系从一次函数→二次函数→分段函数.从知识整合的角度来看不仅有几何代数的数形结合,还有几何坐标的解析整合,较好地渗透了分类讨论,数形结合.转化等数学思想方法,有较强的综合性.本文主要探讨如何解决动态几何中的函数问题.其基本策略:把握图形的运动规律,寻求图形运动的一般与特殊位置关系,在“动”中探求“静”的本质,在“静”中去探“动”的规律.解决问题时在“动”中建立变量之间的函数关系,在“静”中利用函数关系解决几何问题.1 图形运动中的函数问题图形运动变化的过程中,探求两个变量之间的函数关系,并根据实际情况确定自变量的取值范围,利用函数关系去解决有关的几何问题.例1 已知:如图1,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB,BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s),解答下列问题:(1)当t为何值时,△PBQ是直角三角形?(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t使四边形APQC的面积是△ABC面积的23?如果存在,求出相应的t值,不存在请说明理由.(3)设PQ的长为x(cm),试确定y与x之间的关系式.图1 图2略解 (1)由题意,得AP=tcm,BQ=tcm,在△ABC中,AB=BC=3cm,∠B=60°,所以BP=(3-t)cm,在△PBQ中,BP=(3-t)cm. BQ=t,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°,当∠BQP=90°,BQ=12BP时,即t=12(3-t),t=1(s).当∠BPQ=90°时,BP=12BQ. 3-t=12t,t=2(s),故当t=1s或t=2s时,△PBQ是直角三角形.(2)如图2,过点P作PM⊥BC于点M,y与t的关系式为:y=34t2-334t+934,假设存在某一时刻t,使得四边形APQC的面积是△ABC面积的23,则四边形△,所以34t2-334t+934=23×12×32×32,但该方程无实数解. 所以无论t 取何值,四边形APQC的面积都不可能是△ABC面积的23.(3)y与x的关系式为:y=312x2+323.评析此类问题在试题中出现的较多,结合几何与代数的知识,综合考查利用几何图形的基本性质和列一元一次方程、一元二次方程解决问题,并根据方程根的情况判断t值的存在性,对分类讨论思想和问题转化思想有一定的要求.例2 有一根直尺,短边长2cm,长边长10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm,如图3,将直尺的短边DE与直角三角形纸板的斜边AB部分重合,且点D与点A重合,将直尺沿AB方向平移,如图4,设平移的长度为xcm(0≤x≤10),直尺和三角形纸板的重叠部分(图中阴影部分)的面积为Scm2.⑴当x=0时(如图3),S=,当x=10时,(如图3),S=;⑵当0⑶当4⑷当6⑸求出当x为何值时,阴影部分S的面积为11cm2?图3 图4答案⑴2cm2,2cm2;⑵S=2x+2;⑶S=-x2+10x-14⑷;S=22-2x;⑸x=5时.评析此是以图形的平移为载体,蕴含着分段函数关系,考查学生对图形运动中的变量关系的理解,学会用运动变化的观点和分类讨论考虑问题.2 坐标平面内图形运动中的函数问题解决此类问题借用坐标系中的几何图形,由图形中的动点引出两个变量之间的函数关系,进而利用探索的函数关系求图形在符合某个条件时动点的坐标或者解决其它有关问题.图5例3 如图5,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(3,0)、(3、4).动点M、N分别从O、B同时出发,以每秒1个单位的速度运动,其中点M沿OA 向终点A运动,点N沿BC向终点C运动. 过点N作NP⊥BC,交AC于点P,连结MP,已知动点运动了x秒.⑴P点的坐标为(,);(用含x的代数表示)⑵设△MPA的面积为y,试求x为何值时y最大,最大是多少?⑶请你探索,当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?并求P点坐标.略解⑴P(3-x,43x);⑵△-x)·43x=23x2+6x,当x=32时,y最大为32.⑶MA=3-x,要使△MPA为等腰三角形.则有当PA=PM,BN=x,BN=12MA,所以x=12(3-x),所以x=1. 当AP=AM时,3-x=x·53,所以x=98,当AP=MA时,3-x=(3-2x)2+(43)2,x=0(舍去),x=5443,因此有三种情况.评析此题的条件既相互关联又相互制约,在解题中“由数思形”“以形促数”可以开辟多角度,多层次的解题思维途径,考查学生的运算能力和对复杂图形的解构能力.图6例4 如图6所示,在直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD=5. 若矩形以每秒2个单位长度沿x轴正方向作匀速运动. 同时点P从A点出发以每秒1个单位长度沿A—B—C—D的路线作匀速运动,当P点运动到D点时停止运动,矩形ABCD也随之停止运动.⑴求P点从A点运动到D点所需的时间;⑵设P点运动时间为t(秒).①当t=5时,求出点P的坐标;②若△OAP的面积为S,试求出S与t之间的函数关系式(并写出相应的自变量t取值范围).略解⑴P点从A点运动到D点所需的时间为(3+5+3)÷1=11(秒),⑵①当t=5时,P点从A点运动到BC上,此时OA=10,AB+BP=5,所以BP=2.过点P作PE⊥AD于点E,则PE=AB=3,AE=BP=2,所以OE=OA+AE=10+2=12.所以点P的坐标(12,3).②分三种情况:(Ⅰ)当02.(Ⅱ)当3(Ⅲ)当82+11t.综上所述,S与t之间的函数关系式是:当02;当32+11t.评析本题是动点动图相结合的动态几何中的函数问题.此类题目应从相关图形的性质和数量关系分类讨论来解决. 用动态的观点看待分段函数和图形结合问题.3 函数图象中的图形运动问题解决此类问题先求函数解析式,然后在函数图象上探求符合几何条件的点. 运用待定系数法和数形结合思想,求出函数的解析式,再利用解析式解决有关几何问题.图7例5 如图7所示,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A,B两点,其中A点的坐标为(3,4),B点在y轴上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A,B不重合),过P作x轴的垂线与这个二次函数的图象交于E点,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;(3)D为直线AB与这个二次函数的图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.略解⑴由题意可知4=3+m,所以m=1. 设函数关系为y=a(x-1)2,所以4=a(3-1)2,所以a=1,所以y=(x-1)2=x2-2x+1.⑵设P、E纵坐标分别为和,所以--(x+1)2=-x2+3x,即h=-x2+3x(0⑶存在,四边形DCEP为平行四边形则有PE=DC,因为D在y=x+1上,所以D(1,2),-x2+3x=2,,舍去).所以当点P坐标为(2,3)时,四边形DCEP是平行四边形.评析此题以二次函数为对象,考查满足条件的二次函数形式,而动点P在一次函数图象上运动,应从相关图象图形的性质、数量关系进行分析,探求新的函数关系式,考查学生综合应用能力.图8例6 矩形OABC在直角坐标系中的位置如图8所示,A,C两点的坐标分别为A(6,0),C(0,3),直线y=34x与BC边相交于点D.⑴求点D的坐标;⑵若抛物线y=ax2+bx经过D,A两点,试确定此抛物线的表达式;⑶P为x轴上方(2)中抛物线上一点,求△POA面积的最大值;⑷设(2)中抛物线的对称轴与直线OD交于点M,点Q为对称轴上一动点,以Q、O、M 为顶点的三角形与△OCD相似,求符合条件的Q点的坐标.答案⑴D(4,3);⑵y=-38x2+94x;⑶△的最大值=12×6×278=818;⑷符合条件的点有两个:,0)、,-4).评析本题仍以二次函数为载体,把确定解析式作为突破口,其中构造的基本图形也是动态几何图形,解此类问题也应从图形图象的性质入手,探求变量之间的关系,继而探求图形在符合某个条件时动点的坐标.“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文”。
动态几何与函数问题

动态几何和函数问题是数学中两个不同的概念,但它们可以相互结合来解决一些有趣的问题。
动态几何是指在几何图形中,通过改变参数或条件,观察图形的变化情况。
它关注的是几何图形的性质随着条件的变化而变化的规律。
函数问题则是研究数学函数的性质、行为和应用。
函数是一种映射关系,将一个自变量的取值映射到一个因变量的取值。
函数问题可以涉及函数的连续性、可导性、极值、曲线的图像、函数的变换等方面。
将动态几何与函数问题结合起来,我们可以通过动态几何软件来观察函数图像的变化,从而更好地理解函数的性质。
例如,我们可以通过改变函数的系数或参数,观察函数图像的平移、缩放、翻转等变化;或者通过改变函数的定义域和值域,观察函数图像的截断、延伸等变化。
此外,我们还可以利用动态几何软件来解决一些与函数相关的几何问题。
例如,给定一个几何图形,我们可以通过动态几何软件构造函数来描述该图形的性质,并通过函数的分析和计算来解决与该图形相关的问题。
综上所述,动态几何和函数问题是两个独立但相互关联的数学概念,在解决数学问题时可以相互结合,帮助我们更好地理解和探索数学的奥妙。
动态几何中的函数问题--学生版

在现实世界中,处处都有运动,我们常说“运动是绝对的,静止是相对的”。
在数学学习中我们也研究动态的几何问题。
运动的对象有点、线、角等几何图形;运动形式有平移、旋转、折叠等。
由于动态的几何问题有较强的综合性,近几年成为了中考试卷压轴题的热门。
例1、如图,在△ABC中,AB=AC=5,BC=6。
点D是边AB上的点,DE//BC交AC于点E。
(1)求△ABC的面积;(2)若点D在AB上移动(D不与A、B重合),以DE为边,在点A的下方作正方形DEFG。
设AD=x,△ABC与正方形DEFG重叠部分的面积为S,试求S关于x的函数关系式,并写出定义域;(3)在(2)中,连结BG。
当△BDG是等腰三角形时,请直接写出AD的长。
小结:例1是一个典型的几何动态问题,我们来梳理动态几何问题的基本题型结构以及相应解决问题的策略和方法。
(1)问题结构这类问题的突出特点是给出一个几何图形,使图形中某些元素的相对位置变化,但某种位置关系(如平行、垂直、保持某种角度等)不变,或者保持某种数量关系不变,探求某两个元素间的函数关系。
这是用函数思想研究动态图形的典型问题。
从问题的层次来看,一般有三个层次:→问题起点:静止的定态,即针对背景图形,解决常规问题;→一般化:按某一规则运动的动态,求变量之间的关系,通常建立函数模型;→特殊化:求特殊位置关系和特殊值的静态,常常寻找等量关系,建立方程模型求解。
(2)方法策略静→充分观察研究静止的背景图形,挖掘隐含条件,为后面解决动态问题减少障碍;动→用运动与变化的眼光去观察和研究图形,以“不变”应“万变”,寻找动态元素的变化规律,从而建立函数关系;静→通过进一步几何推理,进行变化过程中特殊状态下几何元素间关系的挖掘和使用,寻找特殊状态下的等量关系建立方程;而由于运动过程中出现特殊状态的瞬间不止一个,因此通常要进行分类讨论,找到恰当的分类标准进行分类讨论,分析相应的静止图形,以静制动,各个击破。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学重难点专题讲座第八讲 动态几何与函数问题【例1】如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E.(1)将直线l 向右平移,设平移距离CD 为t (t≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积.(2)当24t <<时,求S 关于t 的函数解析式.【解】(1)由图(2)知,M 点的坐标是(2,8) ∴由此判断:24AB OA ==,; ∵N 点的横坐标是4,NQ 是平行于x 轴的射线, ∴4CO = ∴直角梯形OABC 的面积为:()()112441222AB OC OA +⋅=+⨯=..... (3分) (2)当24t <<时,阴影部分的面积=直角梯形OABC 的面积-ODE ∆的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系)∴1122S OD OE =-⋅∵142OD OD t OE ==-,∴()24OE t =- .∴()()()21122441242S t t t =-⨯-⋅-=--284S t t =-+-.【例2】已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少? (3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.【思路分析】本题看似几何问题,但是实际上△AOE 和△FOB 这两个直角三角形的底边和高恰好就是E,F 点的横坐标和纵坐标,而这个乘积恰好就是反比例函数的系数K 。
所以直接设点即可轻松证出结果。
第二问有些同学可能依然纠结这个△EOF 的面积该怎么算,事实上从第一问的结果就可以发现这个矩形中的三个RT △面积都是异常好求的。
于是利用矩形面积减去三个小RT △面积即可,经过一系列化简即可求得表达式,利用对称轴求出最大值。
第三问的思路就是假设这个点存在,看看能不能证明出来。
因为是翻折问题,翻折之后大量相等的角和边,所以自然去利用三角形相似去求解,于是变成一道比较典型的几何题目,做垂线就OK.【解析】(1)证明:设11()E x y ,,22()F x y ,,AOE △与FOB △的面积分别为1S ,2S , 由题意得11ky x =,22k y x =.1111122S x y k ∴==,2221122S x y k ==. 12S S ∴=,即AOE △与FOB △的面积相等.(2)由题意知:E F ,两点坐标分别为33k E ⎛⎫⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, (想不到这样设点也可以直接用X 去代入,麻烦一点而已)1111432234ECF S EC CF k k ⎛⎫⎛⎫∴==-- ⎪⎪⎝⎭⎝⎭△, 11121222EOF AOE BOF ECF ECF ECFAOBC S S S S S k k S k S ∴=---=---=--△△△△△△矩形11112212243234OEF ECF ECF S S S k S k k k ⎛⎫⎛⎫∴=-=--=--⨯-- ⎪⎪⎝⎭⎝⎭△△△2112S k k ∴=-+. 当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值. (3)解:设存在这样的点F ,将CEF △沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-, 90EMN FMB FMB MFB ∠+∠=∠+∠= ,EMN MFB ∴∠=∠.又90ENM MBF ∠=∠= ,ENM MBF ∴△∽△.(将已知和所求的量放在这一对有关联的三角形当中)EN EM MB MF∴=,11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭∴==⎛⎫-- ⎪⎝⎭, 94MB ∴=. 222MB BF MF += ,222913444k k ⎛⎫⎛⎫⎛⎫∴+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得218k =. 21432k BF ∴==. ∴存在符合条件的点F ,它的坐标为21432⎛⎫⎪⎝⎭,.【例3】如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,BC =16,DC =12,AD =21。
动点P 从点D 出发,沿射线DA 的方向以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P ,Q 分别从点D ,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动。
设运动的时间为t (秒)。
(1)设△BPQ 的面积为S ,求S 与t 之间的函数关系式;(2)当t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形?(3)是否存在时刻t ,使得PQ ⊥BD ?若存在,求出t 的值;若不存在,请说明理由。
【思路分析】 本题是一道和一元二次方程结合较为紧密的代几综合题,大量时间都在计算上。
第三讲的时候我们已经探讨过解决动点问题的思路就是看运动过程中哪些量发生了变化,哪些量没有变化。
对于该题来说,当P,Q 运动时,△BPQ 的高的长度始终不变,即为CD 长,所以只需关注变化的底边BQ 即可,于是列出函数式。
第二问则要分类讨论,牢牢把握住高不变这个条件,通过勾股定理建立方程去求解。
第三问很多同学画出图形以后就不知如何下手,此时不要忘记这个题目中贯穿始终的不动量—高,过Q 做出垂线以后就发现利用角度互余关系就可以证明△PEQ 和△BCD 是相似的,于是建立两个直角三角形直角ABM CDPQ 图1边的比例关系,而这之中只有PE 是未知的,于是得解。
这道题放在这里是想让各位体会一下那个不动量高的作用,每一小问都和它休戚相关,利用这个不变的高区建立函数,建立方程组乃至比例关系才能拿到全分。
【解析】解: (1)如图1,过点P 作PM ⊥BC ,垂足为M ,则四边形PDCM 为矩形。
∴PM =DC =12∵QB =16-t ,∴S =12×12×(16-t)=96-t(2)由图可知:CM =PD =2t ,CQ =t 。
热以B 、P 、Q 三点为顶点的三角形是等腰三角形,可以分三种情况。
①若PQ =BQ 。
在Rt △PMQ 中,22212PQ t =+,由PQ2=BQ2 得 22212(16)t t +=-,解得t =72; ②若BP =BQ 。
在Rt △PMB 中,222(162)12BP t =-+。
由BP2=BQ2 得:222(162)12(16)t t -+=- 即23321440t t -+=。
由于Δ=-704<0∴23321440t t -+=无解,∴PB ≠BQ …③若PB =PQ 。
由PB2=PQ2,得222212(162)12t t +=-+ 整理,得23642560t t -+=。
解得1216163t t ==,(舍)(想想看为什么要舍?函数自变量的取值范围是多少?)综合上面的讨论可知:当t =71623t =秒或秒时,以B 、P 、Q 三点为顶点的三角形是等腰三角形。
(3)设存在时刻t ,使得PQ ⊥BD 。
如图2,过点Q 作QE ⊥ADS ,垂足为E 。
由Rt △BDC ∽Rt △QPE ,得DC PE BC EQ =,即121612t =。
解得t =9 所以,当t =9秒时,PQ ⊥BD 。
【例5】P A EDCQBO 图2如图,在Rt ABC △中,90A ∠= ,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.【思路分析】本题也是一道较为典型的题。
第一问其实就是重要暗示,算DH 的长度实际上就是后面PQ 的长度,在构建等腰三角形中发挥重要作用。
算DH 的方法很多,不用累述。
第二问列函数式,最重要的是找到y(QR)和x(BQ)要通过哪些量练联系在一起.我们发现RQ 和QC 所在的△QRC 和△BAC 是相似的,于是建立起比例关系得出结果.第三问依然是要分类讨论,但凡看到构成特殊图形的情况都要去讨论一下.不同类之间的解法也有所不同,需要注意一下.解:(1) Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠= ,B B ∠=∠. BHD BAC ∴△∽△,DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯= . (2)QR AB ∥,90QRC A ∴∠=∠= .C C ∠=∠ ,RQC ABC ∴△∽△, RQ QC AB BC ∴=,10610y x-∴=, A BCD ER PH Q即y 关于x 的函数关系式为:365y x =-+. (3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠= ,290C ∠+∠= , 1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=, 6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BAC CR CA == ,366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形.ABCD ERP H QM2 1 A BCD E RP HQA BCD E R PHQ第二部分 发散思考【思考1】如图所示,菱形ABCD 的边长为6厘米,60B ∠=°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A C B →→的方向运动,点Q 以2厘米/秒的速度沿A B C D →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、Q 运动的时间为x 秒时,APQ △与ABC △重叠部分的面积为y 平方厘米(这里规定:点和线段是面积为O 的三角形),解答下列问题:(1)点P 、Q 从出发到相遇所用时间是 秒;(2)点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是 秒;(3)求y 与x 之间的函数关系式.【思路分析】此题一二问不用多说,第三问是比较少见的分段函数。