数学广角——鸡兔同笼(完整)

合集下载

【复习进阶篇】人教版 五年级数学衔接精编讲义 专题09《数学广角—鸡兔同笼》(解析)

【复习进阶篇】人教版 五年级数学衔接精编讲义 专题09《数学广角—鸡兔同笼》(解析)

人教版数学四升五数学衔接讲义〔复习进阶〕专题09 数学广角—鸡兔同笼知识点一:“鸡兔同笼〞问题的特点:鸡兔同笼是鸡、兔的总头数和总脚数,求其中鸡和兔务有多少只的问题。

知识点二:“鸡兔同笼〞问题的解题方法1、砍足法〔抬腿法〕解答思路:假设砍去每只鸡、每只兔一半的脚,那么每只鸡就变成了“独脚鸡〞,每只兔就变成了“双脚兔〞.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,那么脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即-=〔只〕了.-=〔只〕.显然,鸡的只数就是3512234735122、假设法〔经典〕鸡兔同笼问题的根本关系式是:如果假设全是兔,那么那么有:鸡数=〔每只兔子脚数×鸡兔总数-实际脚数〕÷〔每只兔子脚数-每只鸡的脚数〕兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=〔实际脚数-每只鸡脚数×鸡兔总数〕÷〔每只兔子脚数-每只鸡的脚数〕鸡数=鸡兔总数-兔数3、方程法: 根据鸡兔的脚之和列方程解答。

一.选择题〔共4小题,总分值8分,每题2分〕1.解放军叔叔进行野外训练,晴天每天行25km,雨天每天行15km,8天共行了180km。

这期间雨天有〔〕天。

A.8 B.6 C.2 D.4【思路引导】假设都是晴天,根据与实际行走路程的差,除以每个晴天与每个雨天所行路程的差,求雨天天数。

【完整解答】〔8×25﹣180〕÷〔25﹣15〕=〔200﹣180〕÷10=20÷10=2〔天〕答:这期间雨天有2天。

应选:C。

2.鸡兔同笼,一共有260只脚,并且兔子比鸡多20只,那么笼子里有〔〕A.鸡40只,兔60只B.鸡30只,兔50只C.鸡20只,兔40只【思路引导】兔子比鸡多20只,假设去掉兔子20只,那么兔子和鸡的只数就相等,即减少了20×4=80〔只〕脚,这样只有260﹣80=180〔只〕脚,然后除以〔4+2〕就是鸡的只数,再加上20就是兔子的只数。

数学广角—鸡兔同笼

数学广角—鸡兔同笼

精品“正版”资料系列,由本公司独创。

旨在将“人教版”、”苏教版“、”北师
大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。

本资源创作于2020年8月,是当前最新版本的教材资源。

包含本课对应
内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。

备课教案
本课教学反思
英语教案注重培养学生听、说、读、写四方面技能以及这四种技能综合运用的能力。

写作是综合性较强的语言运用形式, 它与其它技能在语言学习中相辅相成、相互促进。

因此, 写作教案具有重要地位。

然而, 当前的写作教案存在“ 重结果轻过程”的问题, 教师和学生都把写作的重点放在习作的评价和语法错误的订正上,忽视了语言的输入。

这个话题很容易引起学生的共鸣,比较贴近生活,能激发学生的兴趣, 在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴。

在教授语法
时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下基础。

此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时则对语法知识进行讲解。

在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高。

再者,培养学生的学习兴趣,增强教案效果,才能避免在以后的学习中产生两极分化。

在教案中任然存在的问题是,学生在“说”英语这个环节还有待提高,大部分学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一部分学生的学习成绩的提高还有待研究。

小学四年级 数学广角:鸡兔同笼

小学四年级 数学广角:鸡兔同笼

数学广角-鸡兔同笼鸡兔同笼【知识梳理】一、“鸡兔同笼”问题的解题方法1、猜测、列表的方法先从鸡是8只,兔是0只开始猜测,鸡的只数每次减少1只,兔的只数就相应地增加1只,保证鸡兔的只数和是8只,一直猜到鸡兔的脚数和是26只为止。

数据量较大时,解题过程就很繁琐。

2、假设的方法①假设笼子里全是鸡兔的只数=(实际脚数-2⨯鸡兔的总只数)÷(4-2)鸡的只数=鸡兔的总只数-兔的只数②假设笼子里全是兔鸡的只数=(4⨯鸡兔的总只数-实际脚数)÷(4-2)兔的只数=鸡兔的总只数-鸡的只数3、方程法鸡的只数⨯2+兔的只数⨯4=鸡兔的总脚数二、“鸡兔同笼”问题解法的应用当题中所给数据较大时,不易采用猜测、列表方法,用假设的方法或方程法解决问题较简便。

【诊断自测】一.填空题1.笼子里有若干只鸡和兔.从上面数,有8个头,从下面数,有26只脚.鸡有只,兔有只.2.30枚硬币,由2分和5分组成,共值9角9分,2分硬币有个,5分有个.3.鸡、兔同笼,一共有94只脚,兔比鸡少11只,鸡有只,兔有只.4.买1个篮球要40元,买1个排球30元.250元买8个球,其中有个篮球和个排球;300元钱买8个球,其中有个篮球和个排球.5.10人参加智力竞赛,每人必须回答24个问题,答对一题得5分,答错一题扣3分,结果得分最低的人得8分,且每个人的得分都不相同,那么第一名至少得分.【考点突破】类型一:鸡兔同笼问题(假设法)例1、在进行智力竞赛时,规定每人底分先给50分,每人必须回答10个问题,且规定答对一题得10分,答错或不答反扣5分.某人得分90分,问这个人答对几道题?答案:6解析:某人得分90分,其实他答题实际得了90﹣50=40(分);假设10个问题他全答对了,应得100分,但实际得了40分,也就是被扣掉了100﹣40=60(分);答错或不答不但不得分,反而反扣5分,也就是答错或不答一题要扣掉15分;所以这60分就是因为答错或不答扣掉的,因此答错或不答的题有[100﹣(90﹣50)]÷15=4(道),答对了10﹣4=6(道).解:10﹣[100﹣(90﹣50)]÷15,=10﹣60÷15,=10﹣4,=6(道).答:这个人答对了6道题.例2、一名篮球运动员在一场比赛中一共投中11个球,有2分球,也有3分球,已知这名运动员一共得了26分,他投中的2分球和3分球各得多少分?答案:7个2分球,4个3分球解析:假设投中的全部是3分球,可得:3×11=33(分),比实际得的26分多:33﹣26=7(分),是因为我们把每个2分球当作了3分球,每个球多算了3﹣2=1分,所以可以求出2分球的个数:7÷1=7(个),那么3分球的个数是:11﹣7=4(个).解:假设投中的全部是3分球,2分球的个数:(3×11﹣26)÷(3﹣2)=7÷1=7(个)3分球的个数是:11﹣7=4(个);答:他投中了7个2分球,4个3分球.例3、实验小学六年级二班48人到公园去划船,一共租了7条船.售票处规定每条大船坐8人,每条小船坐6人,要保证每位同学都能坐上船,而且大小船都有,那么需要大小船各多少条?答案:大船有3条,小船有4条解析:此题采用假设法分析:如果全部用的是大船,则可坐7×8=56人,那就比实际多坐56﹣48=8人,因为其中有一部分小船,每条大船比小船多坐8﹣6=2人,所以,小船有:8÷2=4条,则大船有:7﹣4=3(条).解:假设7条船全部是大船,则可以坐7×8=56(人),所以小船有:(56﹣48)÷(8﹣6),=8÷2=4(条)则大船有:7﹣4=3(条)答:大船有3条,小船有4条.例4、鸡和兔一共有30只,腿一共有100只.鸡、兔各有多少只?答案:鸡有10只,兔子有20只解析:假设全是鸡,共有脚2×30=60只,比实际脚的只数少了100﹣60=40(只),数量出现矛盾,因为我们把4只脚的兔子看做了2只脚的鸡,每只少算了:4﹣2=2只脚;因此根据这个矛盾可以求出兔子的只数,列式为:40÷2=20(只);那么鸡的只数是:30﹣20=10(只);问题得解.解:假设全是鸡,兔子的只数为:(100﹣2×30)÷(4﹣2),=40÷2,=20(只);那么鸡的只数是:30﹣20=10(只);答:鸡有10只,兔子有20只.例5、盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克.盒中大钢珠、小钢珠各有多少个?答案:盒中大钢珠有14个,小钢珠16个解析:假设全部都是大钢珠,则共重:11×30=330(克),比原来的克数重:330﹣266=64(克),因为一个大钢珠比一个小钢珠重11﹣7=4克,小钢珠的个数是:64÷(11﹣7)=16(个),进而得出大钢珠的个数;解:解法一:假设全是大钢珠.小钢珠:(30×11﹣266)÷(11﹣7)=16(个);大钢珠:30﹣16=14(个);解法二:假设全是小钢珠.大钢珠:(266﹣30×7)÷(11﹣7)=14(个);小钢珠:30﹣14=16(个);答:盒中大钢珠有14个,小钢珠16个.例6、新星小学“环保卫士”小分队12人参加植树活动.男同学每人栽了4棵树,女同学每人栽了2棵树,一共栽了34棵树.男女同学各有多少人?答案:男同学有5人,女同学有7人解析:假设12人全部是男同学,则一共植树12×4=48棵,这比已知的34棵多了48﹣34=14棵,又因为1个男同学比一个女同学多植树4﹣2=2棵,由此可得参加植树的女同学有14÷2=7人,则男同学有12﹣7=5人.解:假设12人全部是男同学,则女同学有:(12×4﹣34)÷(4﹣2),=14÷2,=7(人),男同学有12﹣7=5(人),答:男同学有5人,女同学有7人.例7、小明家有鸡、兔共15只,它们的总腿数有40条.鸡、兔各有多少只?答案:鸡有10只,兔有5只解析:此题可以利用假设法,假设全是鸡,那么就有15×2=30条腿,这比已知40条腿少了40﹣30=10条腿,1只兔比1只鸡多4﹣2=2条腿,由此即可得出兔有:10÷2=5只,则鸡有:15﹣5=10只,由此即可解答.解:假设全是鸡,那么兔有:(40﹣15×2)÷(4﹣2)=10÷2=5(只)则鸡有:15﹣5=10(只)答:鸡有10只,兔有5只.例8、某慈善机构为福利院募捐组织了一场义演,学生票和成人票共售出1500张,筹款19500元.学生票每张10元,成人票每张15元,学生票和成人票各售出多少张?答案:学生票600张,成人票900张解析:假设全是成人票,则需要筹款1500×15=22500元,这比已知的19500元多了22500﹣19500=3000元,因为一张成人票比一张学生票多15﹣10=5元,据此可得学生票是3000÷5=600张,则成人票是1500﹣600=900张.解:(1500×15﹣19500)÷(15﹣10),=3000÷5,=600(张),则成人票是:1500﹣600=900(张),答:学生票600张,成人票900张.类型二:鸡兔同笼问题(方程法)例9、鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?答案:鸡有62只,兔有38只解析:设兔有x只,则鸡有100﹣x只,那么兔的腿一共有4x条,鸡的腿一共有(100﹣x)×2,再根据“鸡的腿的条数比兔的腿的条数少28条,”即兔的腿的条数﹣鸡的腿的条数=28,由此列出方程解答.解:设兔有x只,则鸡有(100﹣x)只,4x﹣(100﹣x)×2=28,4x﹣200+2x=28,6x=228,x=38,100﹣38=62(只),答:鸡有62只,兔有38只.例10、有龟和鹤共40只,龟的腿和鹤的腿共有112条.龟鹤各有几只?答案:龟有16只,鹤有24只解析:设龟有x只,则鹤有(40﹣x)只,由题意得:龟的只数×4+鹤的只数×2=112,从而列方程求解.解:设龟有x只,则鹤有(40﹣x)只,由题意得:4x+(40﹣x)×2=112,4x+80﹣2x=112,2x=32,x=16,40﹣x=40﹣16=24,答:龟有16只,鹤有24只.【易错精选】一.选择题1.数学竞赛共10题,做对一题得8分,做错一题(或不做),倒扣5分,小军得41分,他做错了()A.3题B.4题C.5题D.2题2.小兔子采蘑菇,晴天每天能采36只,雨天每天只能采24只,它一连几天共采了288只蘑菇,平均每天采32只,这些天中有()天是晴天.A.2B.6C.4D.53.太和镇某小学植树小分队10人参加植树活动.男生每人栽了5棵树,女生每人栽了3棵树,一共栽了42棵树.男生有()人.A.8B.6C.44.全国足球甲A联赛每胜一场得3分,平一场得1分,负一场得0分,某支球队共得了30分,赛了14场,其中平了3场,那么负了.()A.4场B.3 场C.2 场D.1场二.填空题5.一次数学竞赛有10道题,做对一题得10分,做错一题倒扣2分,小明得了76分,小明做对了题.6.鸡、兔同笼,一共有94只脚,兔比鸡少11只,鸡有只,兔有只.7.海边的沙滩上,海龟和仙鹤共有12只,有30条腿.仙鹤有只.8.鸡兔同笼,从上面数有19个头,从下面数有56只脚,鸡有只,兔有只.9.自行车和三轮车共20辆,总共有52个轮子,自行车辆,三轮车辆.【精华提炼】1、假设的方法①假设笼子里全是鸡兔的只数=(实际脚数-2⨯鸡兔的总只数)÷(4-2)鸡的只数=鸡兔的总只数-兔的只数②假设笼子里全是兔鸡的只数=(4⨯鸡兔的总只数-实际脚数)÷(4-2)兔的只数=鸡兔的总只数-鸡的只数【本节训练】训练【1】刘军向某市运送2000只玻璃杯,每只运费0.1元,若损坏1只,不但得不到运费,还要赔偿0.4元.刘军最后共得到运费198元.你知道损坏了几只玻璃杯吗?训练【2】一个笼子里关了一些鸡和兔,从上面数头有100个,从下面数脚共有220只,笼子中有鸡,兔各多少只?训练【3】一个停车场:停着汽车和摩托车(两个轮)共24辆,这些车子共有86个轮子,求摩托车和汽车各有多少辆?训练【4】小明的爸爸在旅行社工作,本月为顾客订制了2种门票共30张,一共用去2400元.其中瘦西湖门票为150元,个园门票为45元.两种票各买了多少张?基础巩固一.选择题1.停车场里有三轮车和自行车共20辆,共有42个轮子,自行车共有()辆.A.2B.12C.182.在学校一次环境保护知识抢答比赛中,共有20道题,每答对一道题得10分,答错一道倒扣5分,蓝天队最后得分是155分,那么该队共答对()题.A.10B.12C.15D.173.学校举行智力竞赛,答对一题加10分,答错一题扣6分,李龙共抢答16题,最后得分16分,他答错了()题.A.9B.15C.7D.104.36人去划船,一共租了8只船,每只大船坐5人,每只小船坐3人,那么一共租了()只小船.A.6B.2C.35.组装车间要装配两轮摩托车和三轮车共21辆,需要51个轮胎,两轮摩托车和三轮摩托车的辆数分别是()A.12和9B.8和13C.10和11二.填空题6.班里组织知识竞赛,选手进行抢答.答对一题加10分,答错一题倒扣6分.小明共抢答12道题,最后得分72分.小明共答对题.7.鸡兔共有20个头,70只腿.鸡有只,兔有只.8.有2分和5分的硬币共18枚,一共6角钱,5分的硬币有枚.9.学校有象棋、跳棋共26副,2人下l副象棋,6人下一副跳棋,恰好可供120个学生进行课外活动.象棋有副,跳棋有副.10.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么汽车有辆.三.应用题11.鸡兔同笼,有12个头,30只脚,鸡、兔各有多少只?(用你喜欢的方法解答)12.80名学生分别住进了12间宿舍,每间大宿舍住8人,每间小宿舍住6人,12间宿舍刚好都住满,大、小宿舍各有几间?13.六年级同学分组参加课外兴趣小组.科技类每5人一组,艺术类每3人一组,共有37名同学参加报名,正好分成9组.参加科技类和艺术类的学生各有多少人?巅峰突破一.选择题1.有5元和10元的人民币共20张,一共是175元,5元的人民币有()张.A.5B.10C.152.“鸡兔同笼”问题是我国古代的数学名题之一,《孙子算经》中记载的题目是这样的“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”,同学们,你得出的这个古代名题的结果是()A.鸡23只兔12只B.鸡12只兔23只C.鸡14只兔21只3.一位工人搬运1000只玻璃杯,每只杯子的运费是3分,破损一只要赔5分,最后这位工人得到运费26元,搬运中他打碎杯子()只.A.30B.50C.60D.804.一队猎手一队狗,二队并作一队走,数头一共三十三,数脚一共九十整,问有多少猎手多少狗?()A.18,15B.21,12C.12,215.一次数学竞赛,共有20道题.每一题,做对者得6分,做错或者未做者,扣一分.小毕参加竞赛得了78分,那么他做对了()道题.A.17B.16C.15D.14二.解答题6.车棚里停着三轮车和自行车一共10辆,一共有24个轮子.三轮车和自行车各有多少辆?(调整假设,列表解答)假设三轮车的辆数相应的自行车的辆数轮子总个数5 57.某市高中一年级学生进行野外军训.晴天每天行20千米,雨天行10千米.在8天内行程为140千米.这期间有多少天晴天?有多少天雨天?8.仓库有1440个苹果准备装箱,现有两种规格的箱子共27个,已知每个大箱子可装苹果70个,每个小箱子可装苹果40个.问大、小箱子各需多少个?参考答案【诊断自测】1、答案:3,52、答案:17、133、答案:鸡有23只,兔有12只4、答案:1,7,6,25、答案:80【易错精选】1、A2、B3、B4、C5、答案:8解析:根据题意,假设全做对得10×10=100(分),小明得了76分,少得100﹣76=24(分),一求出做错的道数,就可以求出作对的道数.解:根据题意,假设小明全做对可得:10×10=100(分);现在小明得了76分,比总分少:100﹣76=24(分);因为每做错一道少得:10+2=12(分),所以小明做错的道数是:24÷12=2(道),那么他做对的道数是:10﹣2=8(道).6.答案:23,12.解析:根据“兔比鸡少11只,”知道鸡的只数=兔的只数+11,再根据“鸡兔共有脚94只,”知道鸡的只数×2+兔的只数×4=94,由此列方程即可解答.解:设兔有X只,则鸡有(X+11)只,4X+2×(X+11)=94,4X+2X+22=94,6x+22=94,6X=72,X=12;鸡:X+11=12+11=23;7.答案:9解析:假设12只全是仙鹤,则腿的总条数是:12×2=24条,比实际少了:30﹣24=6条,因为我们把海龟当作了仙鹤,每只少算了4﹣2=2条腿,一共少算了6条腿,则一共有海龟:6÷2=3只,进而即可求出仙鹤的只数.8.答案:10,9解析:设兔有x只,则鸡有(19﹣x)只,由鸡的只数×2+兔的只数×4=鸡兔共有脚数,据此等量关系列方程求解.解:设兔有x只,则鸡有(19﹣x)只,由题意得(19﹣x)×2+4x=56,38﹣2x+4x=56,2x=18,x=9;19﹣x=19﹣9=10;9.答案:8,12解析:此类问题可以利用假设法,假设全是自行车,那么就有20×2=40个轮子,已知的52个轮子比40就多了52﹣40=12个轮子,1辆三轮车比1辆自行车多3﹣2=1个轮子,由此即可得出三轮车有:12÷1=12辆,则自行车有:20﹣12=8辆.解:假设全是自行车,那么三轮车有:(52﹣20×2)÷(3﹣2)=12÷1=12(辆)则自行车有:20﹣12=8(辆);【本节训练】训练【1】答案:4解析:解答此题先假设2000只玻璃杯全都安全运到,应得运费2000×0.1=200(元),现在共得运费198元,说明途中有损坏的玻璃杯;现在比假设少得运费200﹣198=2(元),损坏一只玻璃杯比安全运到少得0.1+0.4=0.5(元),用2÷0.5=4(只),就是损坏的玻璃杯数量.解:(2000×0.1﹣198)÷(0.1+0.4)=(200﹣198)÷0.5=2÷0.5=4(只);答:损坏了4只玻璃杯.训练【2】答案:鸡有90只,兔子有10只解析:假设全是兔,共有4×100=400只脚,这比已知220只脚多出了400﹣220=180只,因为1只兔比1只鸡多4﹣2=2只脚,所以鸡有:180÷2=90只,进而求得兔的只数,由此即可解决问题.解:(4×100﹣220)÷(4﹣2)=180÷2=90(只)100﹣90=10(只)答:鸡有90只,兔子有10只.训练【3】答案:汽车有19辆,摩托车有5辆解析:假设全是两轮摩托车,则轮子有24×2=48个,这比已知的86个轮子少了86﹣48=38个,因为一辆四轮汽车比一辆摩托车多4﹣2=2个轮子,所以四轮汽车有38÷2=19辆,则摩托车有24﹣19=5辆,由此即可解决问题.解:假设全是两轮摩托车,则四轮汽车有:(86﹣24×2)÷(4﹣2)=38÷2=19(辆)摩托车有:24﹣19=5(辆)答:汽车有19辆,摩托车有5辆.训练【4】答案:150元的买了10张,45元的买了20张解析:根据题干,设买了x张150元的,则买了(30﹣x)张45元的,根据等量关系:买每张150元花掉的钱数+买每张45元花掉的钱数=总钱数2400,列出方程即可解决问题.解:买了x张150元的,则买了(30﹣x)张45元的,根据题意可得方程:150x+45×(30﹣x)=2400150x+1350﹣45x=2400105x=1050x=1030﹣10=20(张)答:150元的买了10张,45元的买了20张.基础巩固1、C2、D3、A4、B5、A6、答案:97、答案:5,158、答案:8解析:假设都是2分的硬币,则一共2×18=36=3角6分,而实际一共有6角,原因是硬币中有5分的,1个5分硬币比1个2分硬币多3分,现在多出60﹣36=24分需要多少个5分硬币呢?用24除以3,即可得解.解:(60﹣18×2)÷(5﹣2),=(60﹣36)÷3,=24÷3,=8(枚);9、答案:9;1710、答案:14解析:假设24辆全是4个轮子的汽车,则一共有轮子24×4=96个,这比已知的86个轮子多出了96﹣86=10个,因为1辆汽车比1辆三轮车多4﹣3=1个轮子,据此可得三轮车有10辆,再求汽车即可.解:假设24辆全是4个轮子的汽车,则三轮车有:(24×4﹣86)÷(4﹣3)=10÷1=10(辆)24﹣10=14(辆)巅峰突破一.选择题1.答案:A.2.答案:A.3.答案:B.4.答案:B.5.答案:D.二.解答题6.答案:自行车有6辆,三轮车有4辆.解析:此类问题可以利用假设法,假设全是自行车,那么就有10×2=20个轮子,已知的24个轮子比20就多了24﹣20=4个轮子,1辆三轮车比1辆自行车多3﹣2=1个轮子,由此即可得出三轮车有:4÷1=4辆,则自行车有:10﹣4=6辆.解:三轮车有:(24﹣10×2)÷(3﹣2),=4÷1=4(辆)则自行车有:10﹣4=6(辆);答:自行车有6辆,三轮车有4辆.7.答案:6天晴天,2天雨天解析:属于鸡兔同笼问题,采用假设法即可解答解:假设全是晴天,则雨天有:(8×20﹣140)÷(20﹣10),=(160﹣140)÷10,=20÷10,=2(天),所以晴天有:8﹣2=6(天);答:这期间有6天晴天,2天雨天.8.答案:大箱子需12个、小箱子需15个解析:假设27个箱子全是大箱子,则一共可装27×70=1890个,这比已知的1440个苹果多出了1890﹣1440=450个,因为1个大箱子比1个小箱子多装70﹣40=30个苹果,据此可得小箱子15个,则大箱子就需27﹣15=12个,据此即可解答.解:假设27个箱子全是大箱子,则小箱子需:(27×70﹣1440)÷(70﹣40)=450÷30=15(个)所以大箱子有:27﹣15=12(个),答:大箱子需12个、小箱子需15个.。

数学广角——鸡兔同笼(完整)

数学广角——鸡兔同笼(完整)

(1)假设笼子里都是鸡,就有35×2=70(只)脚, 比实际少94-70=24(只)脚 (2)因为把兔看成鸡,每只兔少算4-2=2(只)脚, 所以有24÷2=12(只)兔 (3)有35-12=23(只)鸡
(1)假设笼子里都是鹤,就有40×2=80(条)腿, 比实际少112-80=32(只)脚 (2)因为把龟看成鹤,每只龟少算4-2=2(条)腿, 所以有32÷2=16(只)龟 (3)有40-16=24(只)鹤
数学广角——鸡兔同笼
大约一千五百年前,我国古代数学名著《孙子算 经》中记载了一道数学趣题——“鸡兔同笼”问题。 今有雉兔同笼,上有三十五头, 下有九十四足,问雉兔各几何? 笼子里有若干只鸡和兔。从上面数,有35个头,从 下面数,有94只脚。鸡和兔各有几只?
例题1
笼子里有若干只鸡和兔。从上面数,有8个 头,从下面数,有26只脚。鸡和兔各几只?
按照顺序列表试一试
(1)假设笼子里都是鸡,就有8×2=16(只)脚, 比实际少26-16=10(只)脚 (2)因为把兔看成鸡,每只兔少算4-2=2(只)脚, 所以有10÷2=5(只)兔 (3)有8-5=3(只)鸡
(1)假设笼子里都是兔,就有8×4=32(只)脚, 比实际多32-26=6(只)脚 (2)因为把鸡看成兔,每)兔
(1)假设都是女生,就种了12×2=24(颗)树, 比实际少32-24=8(颗)树 (2)因为把男生看成女生,每个男生少算3-2=1(颗)树, 所以有8÷1=8(个)男生 (3)有12-8=4(个)女生
(1)假设都是小钢珠,就重30×7=210(g), 比实际少266-210=56(g) (2)因为把大钢珠看成小钢珠,每颗大钢珠少算 11-7=4(g) , 所以有56÷4=14(颗)大钢珠 (3)有30-14=16(颗)小钢珠

四年级数学上册数学广角-鸡兔同笼问题(完整版)

四年级数学上册数学广角-鸡兔同笼问题(完整版)

鸡兔同笼问题学生/课程年级学科授课教师日期时段核心内容鸡兔同类问题课型一对一教学目标1.理解鸡兔同笼问题的数量关系2.会根据题目所给条件,选择假设法,分组法等方法解题;3.理解鸡兔同笼中各数量间的关系,并能够灵活运用解决实际生活问题重、难点重点:教学目标2,3 难点:教学目标3知识导图导学一:鸡兔同笼——基本题型知识点讲解 1:列表法解鸡兔同笼当题中数字比较小时,可以用列表法解决鸡兔同笼问题例 1. 笼子里有若干只鸡和兔。

从上面数,有8个头,从下面数,有26只脚。

鸡和兔各有几只?我爱展示1.笼子里有若干只鸡和兔。

从上面数,有8个头,从下面数,有26只脚。

鸡和兔各有几只?知识点讲解 2:假设法解鸡兔同笼(1)使用假设法的前提:已知鸡与兔头的和,腿的和,求鸡和兔的只数。

(2)解题步骤(3)公式解法1:假设全部都是兔:设兔得鸡(兔的脚数×总只数-总脚数)÷鸡与兔的腿差=鸡的只数总只数-鸡的只数=兔的只数解法2:假设全部都是鸡:设鸡得兔(总脚数-鸡的脚数×总只数)÷鸡与兔的腿差=兔的只数总只数-兔的只数=鸡的只数例 1. 笼子里有若干只鸡和兔。

从上面数,有35个头,从下面数,有94只脚。

鸡和兔各有多少只?我爱展示1.鸡兔同笼,共有头100个,足316只,那么鸡有多少只?兔有多少只?知识点讲解 3:鸡兔同笼变形题对错得分题:腿差=得分+扣分赔偿型:腿差=运费+赔偿解题关键:学会找题中的鸡或兔,找头的和,腿的和例 1.乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。

问:搬运过程中共打破了几只花瓶?例 2. 小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?例 3.开心辞典智力竞赛中,开心队抢答了10道题,如果以100分开始算分,答对一题加10分,答错一题减10分,最后开心队得了140分,开心队答错了几题?我爱展示1.运输2000只陶瓷碗,运费按到达时完好的数目计算,每只3角,如有破损,破损1个陶瓷碗还要倒赔7角,结果得到运费535元,问这次搬运中陶瓷碗损坏了( )只。

四年级下册数学广角--鸡兔同笼

四年级下册数学广角--鸡兔同笼

鸡兔同笼1、动物园里有仙鹤和长颈鹿共17只,共54条腿。

问:仙鹤、长颈鹿各多少只?2、3、某中学某班买了35张电影票,共用了250元,其中甲票单价8元,乙票单价6元。

甲、乙两种票各买了几张?4、5、某人徒步旅行,平路每天走38千米,山路每天走23千米,他15天共走了450千米。

问:这期间他平路、山路各走了多少千米?6、7、全班46人去划船,共乘12艘船,其中大船每船坐5人,小船每船坐3人。

问:大小船各多少?8、9、盒子里有大小两种钢珠共30个,共重26克,已知大的每个1克,小的每个7克。

问:盒中大、小两种钢珠各多少个?10、一辆公共汽车共载乘客50人,其中一部分人在中途下车,每张票价0.6元,剩下的客人到终点下车,票价每张0.9元。

售票员共收票款36.9元。

问:中途下车多少人?11、7、12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?8、五(1)班有40名同学参加植树,男生每人植3棵,女生每人植2棵,已知男生比女生多植30棵树。

问:男生、女生各有多少人?9、一个大人一餐吃2个面包,两个孩子一餐吃1个面包,现有大人和孩子共99人,一餐刚好吃了99个面包。

问:大人和孩子各有几人?10、自行车越野赛全程220千米,全程被分为20个路段,其中一部分路段长14千米,其余的长9千米。

问:长9千米的路段有多少个?11、某瓷器商店委托搬运站运送800只花瓶,双方商定运送后完好的每只花瓶运费是0.35元。

如果打破一只,不但不计费,而且还要赔偿2.50元,结果运到目的地后,搬运站共得到运费268.6元,打破了几只花瓶?12、13、某电视机厂每天生产电视500台,在质量评比中,每生产一台合格电视机记5分,生产一台不合格电视机扣18分。

如果四天得了931分,那么这四天生产了多少台合格电视机?14、15、某运输队为商店运输暖瓶500箱,每箱6个。

已知每个暖瓶的运费为0.55元,损坏一个,不仅得不到这个暖瓶的运费,还要赔偿11.5元,结果运输队共得到1553.6元。

四年级数学下册课件-9 数学广角—鸡兔同笼-人教版(共11张PPT)

四年级数学下册课件-9 数学广角—鸡兔同笼-人教版(共11张PPT)
提示:1、独立把答案写在学习单上。2、 小组长组织交流分享答案。3、准备展示。
意思是:笼子里有若干只鸡和兔。从上面
数,有8个头,从下面数,有22只 脚。鸡和兔各有几只?
画图法
假设法 假设全是鸡:
8×2=16(只) ……现有脚数 22-16=6(只)……减少的脚数 6÷(4-2)=3(只)……兔的只数 8-3=5(只) ……鸡的只数 答:兔有3只,鸡有5只。
画图法
假设法 假设全是兔:
8×4=32(只) ……现有脚数 32-22=10(只)……增加的脚数 10÷(4-2)=5(只)……鸡的只数 8-5=3(只) ……兔的只数 答:兔有3只,鸡有5只。
笼子里有若干只鸡和兔。从上面数 ,有35个头,从下面数,有94只脚 。鸡和兔你有 什么收获?
鸡兔同笼
了解解决“鸡兔同笼 ”问题的各种方法,重 点掌握其中的一种方法 。
雉(zhi)指鸡
意思是:笼子里有若干只鸡和兔。从上面
数,有38个5 头,从下面数,有 只9242
脚。鸡和兔各有几只?
合作要求:
画图法、列表法和假设法可以解决“鸡 兔同笼”问题,选择一个在预习时你已经
弄懂的方法解决这个问题。
谢谢

数学广角-鸡兔同笼

数学广角-鸡兔同笼

鸡兔同笼
1、鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?
2、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?
3、鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?
4、东风小学有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,答错一道不但不得分,还要扣去3分,这3名同学都回答了所有的题目,小明得74分,小华得22分,小红得87分,他们三人共答对多少题?
5、在知识竞赛中,有10道判断题。

每答对一题得2分,答错一题要倒扣一分。

小明同学虽然答了全部的题目,但最后只得了14分,请问,他答错了几题?
6、某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分,小华做对几道题?
7、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)假设都是二等奖,奖金总额就是100×60=6000(元), 比实际少10000-6000=4000(元) (2)因为把一等奖看成二等奖,每个一等奖少算 300-100=200(元) , 所以有4000÷200=20(个(1)假设都是排球,就一共28×6=168(元), 比实际少210-168=42(元) (2)因为把篮球看成排球,每个篮球少算42-28=14(元) , 所以有42÷14=3(个)篮球 (3)有6-3=3(个)排球
数学广角——鸡兔同笼
大约一千五百年前,我国古代数学名著《孙子算 经》中记载了一道数学趣题——“鸡兔同笼”问题。 今有雉兔同笼,上有三十五头, 下有九十四足,问雉兔各几何? 笼子里有若干只鸡和兔。从上面数,有35个头,从 下面数,有94只脚。鸡和兔各有几只?
例题1
笼子里有若干只鸡和兔。从上面数,有8个 头,从下面数,有26只脚。鸡和兔各几只?
(1)假设笼子里都是鸡,就有35×2=70(只)脚, 比实际少94-70=24(只)脚 (2)因为把兔看成鸡,每只兔少算4-2=2(只)脚, 所以有24÷2=12(只)兔 (3)有35-12=23(只)鸡
(1)假设笼子里都是鹤,就有40×2=80(条)腿, 比实际少112-80=32(只)脚 (2)因为把龟看成鹤,每只龟少算4-2=2(条)腿, 所以有32÷2=16(只)龟 (3)有40-16=24(只)鹤
(1)假设都是小船,就坐8×4=32(人), 比实际少38-32=6(人) (2)因为把大船看成小船,每条大船少算6-4=2(人) , 所以有6÷2=3(条)大船 (3)有8-3=5(条)小船
进了9个,有的3分,有的2分,总共21分,求3分球有几个?
(1)假设都是2分球,就得9×2=18(分), 比实际少21-18=3(分) (2)因为把3分球看成2分球,每个3分球少算3-2=1(分) , 所以有3÷1=3(个)3分球 (3)有9-3=6(个)2分球
按照顺序列表试一试
(1)假设笼子里都是鸡,就有8×2=16(只)脚, 比实际少26-16=10(只)脚 (2)因为把兔看成鸡,每只兔少算4-2=2(只)脚, 所以有10÷2=5(只)兔 (3)有8-5=3(只)鸡
(1)假设笼子里都是兔,就有8×4=32(只)脚, 比实际多32-26=6(只)脚 (2)因为把鸡看成兔,每只鸡多算4-2=2(只)脚, 所以有6÷2=3(只)鸡 (3)有8-3=5(只)兔
(1)假设都是女生,就种了12×2=24(颗)树, 比实际少32-24=8(颗)树 (2)因为把男生看成女生,每个男生少算3-2=1(颗)树, 所以有8÷1=8(个)男生 (3)有12-8=4(个)女生
(1)假设都是小钢珠,就重30×7=210(g), 比实际少266-210=56(g) (2)因为把大钢珠看成小钢珠,每颗大钢珠少算 11-7=4(g) , 所以有56÷4=14(颗)大钢珠 (3)有30-14=16(颗)小钢珠
相关文档
最新文档