拌合站拌合楼基础承载力计算书
搅拌站地基承载力计算书

地基承载力计算书1、拌合站配置情况拌和站配备2台中联-CIFA JS2000拌和机,共配置8个水泥罐,单个罐自重10吨,在装满材料时材料重按照2个150吨,2个100吨计算。
2、拌和站储料罐基础设计根据罐体基础扩大后尺寸为16.8×3.2-3.6×1.5m,由于实际需要基础扇型布置,其扇型底面积为50m2。
按照此尺寸面积检算地基承载力。
图2-1 拌和站基础平面图3、抗倾覆计算1.本次计算按空罐在10级风作用下的倾覆稳定性验算每个储料罐空壳及支起架重为10t,设计储料罐容装水泥重150t (2个)、100t(2个),水泥罐直径2.97m(2个);3.4m(2个),罐身长14.3m(按15m长计算风力弯矩),4个罐基本并排竖立,受风面积182.18m2,整体受风力抵抗风载,在最不利风力、空罐情况下计算基础的抗倾覆性,示意图中A点为抗倾覆点。
C30钢筋混凝土比重2.5t/m3,体积75m3。
风级风速换算参考《桥梁工程师手册》1-2-6表风力、等级的划分,见表3-1。
表3-1 风级风速换算表风级风速m/s 风级风速m/s10 24.5-28.4 11 28.5-32.6图3-2 抗倾覆计算示意图2.计算公式(1)风荷载强度公式 : 0k z s z w w βμμ=k w —风荷载强度(Pa );0w —基本风压值(Pa ),根据《建筑结构荷载规范》附录E ,蚌埠地区重现期R=50年的基本风压值为300Pa ;z β—高度Z 处的风振系数,本次计算取1;s μ—风荷载体型系数,对圆形截面取0.8; z μ—风压高度变化系数; 本次计算取1.18;k w =0.8×1.18×1×300=283.2Pa 。
(2)基础抗倾覆计算/c k f k M M ==G 1×1/2×基础宽/k w ×受风面×(14.3/2+4)≥1.5即满足要求k M —抵抗弯矩 (KN •M ) f M —风荷载弯矩(KN •M )G 1—储蓄空罐+基础自重(KN)k w —风荷载强度(Pa )(3)基础抗滑稳定性验算 K 0= G 1×f/ F 风≥1.3 即满足要求 G 1—储蓄罐与基础自重(KN) F 风—风荷载(KN)f —基底摩擦系数,查表得0.25;罐与基础自重计算求得:G 1=4×10×10+75×2.5×10=2275KN ;k w =283.2Pa ;受风面积:2×14.3×(3.4+2.97)=182.18m 2;/c k f k M M = G 1×1/2×基础宽/k w ×受风面积×(14.3/2+4)=(2275×3.6/2)/(283.2×182.18×11.15/1000)=7.1>1.5,满足抗倾覆要求。
(精选)拌合站地基承载力计算表

拌合站地基承载力计算为了确保混凝土拌合站使用安全,我单位对拌合站所选位置处地基进行了设计验算,并在基础施工时,进行了重力触探试验。
一、HZS50拌和机各基础承载力计算1.1水泥罐地基承载力计算1个100T罐(装满水泥)自重约为1050KN,1个200T罐(装满水泥)自重约为2100KN,1个200T罐(装满粉煤灰)自重约为1900KN,本站共设1个100T 水泥罐,1个200T水泥罐,1个200T粉煤灰罐,总重为:G罐=1050+2100+1900=5050KN;混凝土基础分为A第二层基础1个(4.4×15.75×2m)和B整体式扩大基础(5.4×15.75×1.8m),基础自重为:G基础=(4.4×15.75×2+5.4×15.75×1.8) ×2400×9.8÷1000=6860KN;混凝土基础底面积为:S=5.4×15.75=85.05m2地基承载力为:σ=(G罐+ G基础)/S=(6860+5050)/85.05=140kPa;取安全系数1.5,则:1.5×140=210kPa;经静力触探现场实测,地基承载力为315 kPa>210kPa,满足安全施工要求。
1.2主机地基基础承载力计算一个主机自重为73.5KN,一次拌料1m3,搅拌层平台、下立柱、出料斗组装重量70KN,总重为:G主机=73.5+70+1×2.4×9.8=167KN;主机采用整体式扩大基础,支腿尺寸0.8×0.8×0.8m,自重为:G基础=(6.5×5×0.4+0.8×0.8×0.8)×2400×9.8÷1000=317.8KN;混凝土基础底面积:S=6.5×5=32.5m2地基承载力为:σ=(G主机+ G基础)/S=(167+317.8)/32.5=14.9kPa;安全系数取1.5,则:14.9×1.5=22.35kPa经静力触探现场实测,地基承载力为150kPa>22.35kPa,满足安全施工要求。
拌合站基础计算

拌合站拌合楼基础承载力计算书德商TJ-4标拌和站,配备HZS90拌和机,设有3个储料罐,单个罐在装满材料时均按照100吨计算。
拌合站在X103县道右侧,对应新建线路里程桩号k16+800。
经过现场开挖检查,在地表往下0.5~1.5米均为粉质粘土。
1.计算公式1.1 .地基承载力P/A=σ≤σ0P—储蓄罐重量 KNA—基础作用于地基上有效面积mm2σ—土基受到的压应力 MPaσ0—土基容许的应力 MPa通过地质钻探并经过计算得出土基容许的应力σ0=0.109 Mpa。
2.风荷载强度W=K1K2K3W0= K1K2K31/1.6v2W —风荷载强度 PaW0—基本风压值 PaK1、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0v—风速 m/s,取17m/sσ—土基受到的压应力 MPaσ0—土基容许的应力 MPa3.基础抗倾覆计算K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×(7+7)≥1.5 即满足要求M1—抵抗弯距 KN•MM2—抵抗弯距 KN•MP1—储蓄罐与基础自重 KNP2—风荷载 KN4.基础抗滑稳定性验算K0= P1×f/ P2≥1.3 即满足要求P1—储蓄罐与基础自重 KNP2—风荷载 KNf-----基底摩擦系数,查表得0.25;5 .基础承载力P/A=σ≤σ0P—储蓄罐单腿重量 KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力 MPaσ0—砼容许的应力 MPa2、储料罐基础验算2.1.储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:输料管储料罐主机楼房地基开挖尺寸为半径为10.0m圆的1/4的范围,宽5.0m,浇筑深度为1.4m。
2.2.计算方案开挖深度少于3米,根据规范,不考虑摩擦力的影响,计算时只考虑单个储蓄罐重量通过基础作用于土层上,集中力P=1000KN,单个水泥罐基础受力面积为2.8m×5m,承载力计算示意见下图粉质粘土本储料罐根据历年气象资料,考虑最大风力为17m/s,储蓄罐顶至地表面距离为21米,罐身长14m,3个罐基本并排竖立,受风面120m2,整体受风力抵抗风载,在最不利风力下计算基础的抗倾覆性。
拌合站水泥罐基础地基承载力计算书

银百高速(G69)甜永段TYSY3合同段01混凝土拌合站地基承载力计算书路港集团有限公司银百高速(G69)甜永段TYSY3项目经理部二0一七年五月01混凝土拌和站地基承载力计算书1编制说明本方案编制是根据施工现场土质情况及水泥罐特点而进行的,为确保有足够的水泥贮藏量,保证工程顺利进行,本工程采用双HLS90Q拌和站,计划投入8座100T水泥罐。
2编制范围路港集团有限公司银百高速(G69)甜永段TYSY3合同段项目经理部1#混凝土拌和站。
3编制依据1、施工现场总平面布置图;2、水泥罐总示意图及基础图参数3、银百高速(G69)甜永段TYSY3合同段施工图。
4、《建筑结构荷载规范》GB50009-2012。
4水泥罐基础设计1、本水泥罐基础根据现场实际地质情况,采用扩大基础,每个水泥罐基础为4000×4000×1000mm;根据现场需要,采用双HLS90Q拌和站,每台拌合机配置4座100T水泥罐,故4座水泥罐扩大基础连成一个环形基础。
基础采用C25钢筋砼,钢筋为双层配筋,钢筋为φ12。
2、每个水泥罐下设计四个支座,支座设计为C25砼,800×800×500mm立方体。
每个支座对应水泥罐罐脚处预埋4根φ20钢筋,以加强承台和基础的连接;3、水泥罐预埋板采用δ20mm Q235钢板,再焊接9根φ25锚固钢筋,锚固筋穿过支座与扩大基础钢筋网相焊接。
预埋板安装时每个预埋板四个角高程误差在1mm内,每个水泥罐4个预埋板高程误差在2mm 以内。
预埋时采用水准仪实时量测;5水泥罐基础计算根据实际地基承载力试验,本基础位置地基持力层的承载力:P地=190KPa。
F=G+V+N=50+1000+400=1450KN S=4×4=16㎡P罐=(G+V+N)/S=(1450)/16=90.625Kpa<190KPa所以,地基承载力满足要求。
试中F--压力,G—水泥罐自重KN,V—水泥罐满载后水泥重量KN,N—基础混凝土自重KN,S—水泥罐基础面积㎡,P罐—水泥罐满载后产生的压应力KPa,P地—地基承载力KPa。
拌合站基础承载力计算书(003)

设计计算书计算[2010]003号 共2页 第一页拌合站水泥(粉煤灰)罐基础承载力计算书打鱼凼工程拌合站设6个水泥和粉煤灰罐,其中2个粉煤灰罐为200t 容量。
4个水泥罐分别为60t 和80t 各两个。
基础采用混凝土基础,其施工工艺按照水泥罐罐体提供厂家贵州省黔西南州泰安水泥有限公司和粉煤灰罐制作单位(拌合站主机提供单位)提供的基础图制作。
单个罐体基础为5m ×5m ×1.5m (高)C25素混凝土。
以下黔水公司打鱼凼项目部对基础设计进行验算复合:基础验算包括地基承载力计算、风荷载抗倾覆计算等(1)基础承载力计算:打鱼凼工程所在地处石漠化严重的山区,表面土层覆盖很薄,出露岩层多为灰岩。
所以施工中,在拌合站选址处进行了石方开挖,拌合站全部基础坐落在强风化和中风化灰岩地基上,除去表层覆盖层后,拌合站地基岩石开挖深度1m ~5m 。
其中200t 粉煤灰罐混凝土基础平均高2.8m ,平面面积=A 20.86m 2,基础混凝土方量58.41m 3。
罐体和满载重量kN P g 5.21461065.14200=⨯+=)(基础重量kN P g 25.1460105.241.58=⨯⨯=kpa A P A P j g z 9.17286.20/)25.14605.2146(//=+=+=σ灰岩为硬质岩,该地基岩石基础为强风化和中风化交接处,据建筑《地基基础设计规范》(GBJ7-89)岩石地基承载力表中查得岩石地基承载力在强风化岩层值为500~1000kpa ,或按照灰岩轴心抗拉强度30Mpa 的约最小0.1倍的方式确定承载力,按最小参数取为500kpa 。
kpa kpa A P A P j g z 5009.172//<=+=σ 地基承载力符合要求。
(2)抗倾覆计算:设计资料上显示:本地区为多风地带,多年平均风速 1.9m/s ,多年平均最大风速15.5m/s ,极端最大风速19.0m/s ,风向多为东风和南风为主。
拌合站拌合楼基础承载力、储料罐基础验算、拌合楼基础验算计算书

拌合站拌合楼基础承载力、储料罐基础验算、拌合楼基础验算计算书目录一.计算公式 (3)1.地基承载力 (3)2.风荷载强度 (3)3.基础抗倾覆计算 (3)4.基础抗滑稳定性验算 (4)5.基础承载力 (4)二、储料罐基础验算 (4)1.储料罐地基开挖及浇筑 (4)2.计算方案 (4)3.储料罐基础验算过程 (5)3.1 地基承载力 (5)3.2 基础抗倾覆 (5)3.3 基础滑动稳定性 (6)3.4 储蓄罐支腿处混凝土承压性 (6)三、拌合楼基础验算 (6)1.拌合楼地基开挖及浇筑 (6)2.计算方案 (7)3.拌合楼基础验算过程 (7)3.1 地基承载力 (7)3.2 基础抗倾覆 (8)3.3 基础滑动稳定性 (8)3.4 储蓄罐支腿处混凝土承压性 (8)拌合站拌合楼基础承载力计算书3号拌合站为先锋村拌和站,配备HZS90拌和机,设有4个储料罐,单个罐在装满材料时均按照100吨计算。
拌合楼处于先锋村内,在103国道右侧180m ,对应新建线路里程桩号DK208+100。
经过现场开挖检查,在地表往下0.5~1.5米均为粉质粘土,1.5米以下为卵石土。
一.计算公式1 .地基承载力P/A=σ≤σ0P — 储蓄罐重量 KNA — 基础作用于地基上有效面积mm2σ— 土基受到的压应力 MPaσ0— 土基容许的应力 MPa通过地质钻探并经过计算得出土基容许的应力σ0=0.108 Mpa (雨天实测允许应力)2.风荷载强度W=K 1K 2K 3W0= K 1K 2K 31/1.6v2W — 风荷载强度 PaW0— 基本风压值 PaK 1、K 2、K 3—风荷载系数,查表分别取0.8、1.13、1.0v— 风速 m/s,取17m/sσ— 土基受到的压应力 MPaσ0— 土基容许的应力 MPa3.基础抗倾覆计算K c =M 1/ M 2=P1×1/2×基础宽/ P2×受风面×(7+7)≥1.5 即满足要求M 1— 抵抗弯距 KN •MM 2— 抵抗弯距 KN •MP1—储蓄罐与基础自重 KNP2—风荷载 KN4.基础抗滑稳定性验算= P1×f/ P2≥1.3 即满足要求KP1—储蓄罐与基础自重 KNP2—风荷载 KNf-----基底摩擦系数,查表得0.25;5 .基础承载力P/A=σ≤σ0P—储蓄罐单腿重量 KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力 MPaσ0—砼容许的应力 MPa二、储料罐基础验算1.储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:地基开挖尺寸为半径为10.0m圆的1/4的范围,宽5.0m,浇筑深度为1.4m。
(完整版)拌合站、水泥罐、搅拌站地基计算

目录一.计算公式 (2)1.地基承载力 (2)2.风荷载强度 (2)3.基础抗倾覆计算 (2)4.基础抗滑稳定性验算 (3)5.基础承载力 (3)二、储料罐基础验算 (3)1.储料罐地基开挖及浇筑 (3)2.计算方案 (3)3.储料罐基础验算过程 (4)3.1 地基承载力 (4)3.2 基础抗倾覆 (4)3.3 基础滑动稳定性 (5)3.4 储蓄罐支腿处混凝土承压性 (5)三、拌合楼基础验算 (5)1.拌合楼地基开挖及浇筑 (5)2.计算方案 (6)3.拌合楼基础验算过程 (6)3.1 地基承载力 (6)3.2 基础抗倾覆 (7)3.3 基础滑动稳定性 (7)3.4 储蓄罐支腿处混凝土承压性 (7)拌合站拌合楼基础承载力计算书1号拌合站为华阳村拌和站,配备HZS90拌和机,设有4个储料罐,单个罐在装满材料时均按照100吨计算。
拌合楼处于华阳村内,在78省道右侧30m,对应新建线路里程桩号DK208+100。
经过现场开挖检查,在地表往下0.5~1.5米均为粉质粘土,1.5米以下为卵石土。
一.计算公式1 .地基承载力P/A=σ≤σ0P—储蓄罐重量KNA—基础作用于地基上有效面积mm2σ—土基受到的压应力MPaσ0—土基容许的应力MPa通过地质钻探并经过计算得出土基容许的应力σ0=0.108 Mpa(雨天实测允许应力)2.风荷载强度W=K1K2K3W0= K1K2K31/1.6v2W —风荷载强度PaW0—基本风压值PaK1、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0v—风速m/s,取17m/sσ—土基受到的压应力MPaσ0—土基容许的应力MPa3.基础抗倾覆计算K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×(7+7)≥1.5 即满足要求M1—抵抗弯距KN•MM2—抵抗弯距KN•MP1—储蓄罐与基础自重KNP2—风荷载KN4.基础抗滑稳定性验算K0= P1×f/ P2≥1.3 即满足要求P1—储蓄罐与基础自重KNP2—风荷载KNf-----基底摩擦系数,查表得0.25;5 .基础承载力P/A=σ≤σ0P—储蓄罐单腿重量KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力MPaσ0—砼容许的应力MPa二、储料罐基础验算1.储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:地基开挖尺寸为半径为10.0m圆的1/4的范围,宽5.0m,浇筑深度为1.4m。
拌合站基础承载力计算

1#拌合站基础承载力计算1计算依据1)《铁路桥涵设计基本规范》(TB10002D1-2005)2)《建筑地基基础设计规范》(GB50007-2011)3)铁路工程设计技术手册《桥梁地基和基础》(修订版)2计算荷载2.1恒载1)装满材料的储存罐:自重=(100+5)t;2)主机:单腿承受静载3t;3)混凝土基础自重:2.5t/m32.2活载风荷载,风速按17m/s。
3计算公式3.1地基承载力P/A=σ≤σP—各竖向力 kNA—基础作用于地基上有效面积mm2σ—土基受到的压应力 MPaσ—土基容许的应力 MPa3.2风荷载强度W=K1K2K3W= K1K2K31/1.6v2W —风荷载强度 PaW—基本风压值 PaK1、K2、K3—风荷载系数,查表分别取0.8、1.3、1.0v—风速 m/s,取17m/s σ—土基受到的压应力 MPaσ—土基容许的应力 MPa 3.3基础抗倾覆计算K c =M1/ M2≥1.5 即满足要求M1—竖向力产生的弯距 kN.mM2—水平力产生的弯距 kN.mP1—地基所承受的竖向力kNP2—风荷载 kN4储存罐基础验算4.1储料存罐地基开挖及浇筑每个罐体的4个支腿坐在同一基础底板,埋深度为0.5m,基础底板面积2.74m ×2.74m=7.51㎡(示意图如下):4.2计算方案计算时考虑单个储蓄罐重量通过基础作用于土层上,集中力P=1050kN,单个水泥罐基础受力面积为2.74m×2.74m,承载力计算示意见下图:根据历年气象资料,考虑最大风速为17m/s ,储蓄罐顶至地表面距离为19m ,罐身长14m,受风面25.9m 2,整体受风力抵抗风载,在最不利风力下计算基础的4.3储存罐基础验算过程 4.3.1地基承载力已知满仓储料罐1050KN ,基础自重7.51×0.5×25=93.845KN ;计算面积A=7.51m 2,P/A= 1143.845KN/7.51m 2=0.152MPa 4.3.2基础抗倾覆储料罐空罐时,倾覆可能性为最危险状态,此时 Kc=M 1/ M 2=P 1×1/2×基础宽/ P 2×受风面×(7+6.77)=(50+2.74×2.74×0.5×25)×1.4/(187.85×25.9×13.5/1000)=3.1≥1.5满足抗倾覆要求其中 W=K1K2K3W0= K1K2K31/1.6v2=0.8×1.3×1.0×1/1.6×172=187.85Pa<0.5kpa5 拌和机基础验算5.1 拌和机地基开挖及浇筑平面示意图如下:主机条形基础预埋钢板主机基础为条形基础,边长2.9m×0.8m,高0.5m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正桥南段主线及立交工程
江南拌合站基础计算书
编制:
复核:
审核:
中国洲坝集团股份
长江六桥施工总承包项目经理部
2017年7月
拌合站拌合楼基础承载力计算书
一
长江六桥江南拌合站紧挨正桥南段主线(K2+330~K2+400)路基左侧处,配备2套HZQ90拌和机,每套拌合机设有5个储料罐,单个罐在装满材料时均按照100吨计算。
3)基础滑动稳定性
根据公式4
满足基础滑动稳定性要求。
4)拌合站主站支腿处混凝土承压性
根据5力学计算公式,已知单腿受力 ,承压面积为
本储料罐受东北季风气候影响,根据历年气象资料,考虑最大风力为18m/s,储蓄罐顶至地表面距离为18.3米,罐身长12m,5个罐基本并排竖立,每个罐体自重10t,受风面200m2,基础作为整体受风力抵抗风载,在最不利风力下空载计算基础的抗倾覆性。计算示意图如图所示。
基础采用的是商品混凝土 ,储料罐支腿受力最为集中,混凝土受压面积为 ,等同于试块受压应力低于 即为满足要求。
二
建筑结构荷载规GB5009-2012
公路桥涵施工技术规JTG/TF50-2011
三
1 .
P —储蓄罐重量
A—基础作用于地基上有效面积
—土基受到的压应力
—土基容许的应力
通过动力触探检测得出土基容许的应力
2.
—风荷载强度
—基本风压值
、 、 —风荷载系数,查表分别取0.8、1.13、1.0
—风速 ,取18
3.
1)地基承载力
根据公式1
已知
计算面积地基承载ຫໍສະໝຸດ 满足承载要求。2)基础抗倾覆
根据公式2
风压
根据公式2
基础抗倾覆稳定性系数
抗倾覆能力满足要求。
3)基础滑动稳定性
根据公式4
基础滑动稳定性
满足基础滑动稳定性要求。
4)储蓄罐支腿处混凝土承压性
根据公式5,已知 的储存罐,单腿受力 ,承压面积为
满足受压要求。
1.
根据厂家提供的拌和站安装施工图,现场平面尺寸如下:
储量罐基础宽3.9m,基础深1.2m,采用0.6m厚钢筋混凝土结构,为增加基础稳定性,5个料罐基础连为一体。支撑柱采用0.7m钢筋砼方柱。砼采用标号C25。
2.
开挖深度少于3米,根据规,不考虑摩擦力的影响,计算时只考虑单个储蓄罐重量通过基础作用于土层上,集中力P=1000KN,单个水泥罐基础受力面积为3.9m×3.9m,混凝土体积为9m3,钢筋砼比重按25KN/m3计。承载力计算示意见下图
—土基受到的压应力
—土基容许的应力
3.
P1× ×基础宽× ×受风面 1.5即满足要求
—抵抗弯距
—抵抗弯距
—储蓄罐与基础自重
—风荷载
4.
即满足要求
—储蓄罐与基础自重
—风荷载
—基底摩擦系数,查表得0.25;
5 .
—储蓄罐单腿重量
—储蓄罐单腿有效面积
—基础受到的压应力
—砼容许的应力 (设计采用C25砼)
四
经过验算,储料罐基础满足承载力和稳定性要求。
五
1.
开挖深度少于3米,根据规,不考虑摩擦力的影响,计算时考虑四个支腿重量通过基础作用于土层上,集中力 ,单个基础受力面积为 ,承载力计算示意见下图
本拌合楼受西南季风气候影响,根据历年气象资料,考虑最大风力为 ,楼顶至地表面距离为15米,受风面 ,整体受风力抵抗风载,在最不利风力下计算基础的抗倾覆性。计算示意图如下
基础采用的是商品混凝土 ,拌合楼支腿受力最为集中,混凝土受压面积为 ,等同于试块受压应力低于 即为满足要求。
2.
1)地基承载力
根据公式1,已知静荷载 ,取动荷载系数为1.4,动荷载P1=1120KN,单个支腿受力280KN,计算面积积
地基承载力满足承载要求。
2)基础抗倾覆
根据公式3
满足抗倾覆要求
其中