17恒定磁场单元练习二答案解读

合集下载

2017年高考物理试题分类汇编及答案解析《磁场》(2021年整理精品文档)

2017年高考物理试题分类汇编及答案解析《磁场》(2021年整理精品文档)

(完整版)2017年高考物理试题分类汇编及答案解析《磁场》编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2017年高考物理试题分类汇编及答案解析《磁场》)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2017年高考物理试题分类汇编及答案解析《磁场》的全部内容。

磁场1.【2017·江苏卷】如图所示,两个单匝线圈a 、b 的半径分别为r 和2r .圆形匀强磁场B 的边缘恰好与a 线圈重合,则穿过a 、b 两线圈的磁通量之比为(A )1:1(B )1:2 (C)1:4 (D)4:1【答案】A【考点定位】磁通量【名师点睛】本题主要注意磁通量的计算公式中S 的含义,它指的是有磁感线穿过区域的垂直面积.2.【2017·新课标Ⅰ卷】如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c .已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动。

下列选项正确的是A .a b c m m m >>B .b a c m m m >>C .a c b m m m >>D .c b a m m m >>【答案】B 【解析】由题意知,m a g =qE ,m b g =qE +Bqv ,m c g +Bqv =qE ,所以b a c m m m >>,故B 正确,ACD 错误。

【考点定位】带电粒子在复合场中的运动【名师点睛】三种场力同时存在,做匀速圆周运动的条件是m a g =qE ,两个匀速直线运动,合外力为零,重点是洛伦兹力的方向判断。

大学物理活页作业答案(全套)马文蔚

大学物理活页作业答案(全套)马文蔚

1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。

)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。

)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdt vd a -==)/(422s m j i v-=)/(222--=s m ja8.解:t A tdt A adt v totoωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x totoω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(二)答案1.D 2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=3.牛顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2Rg o μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+ 分离变量积分()⎰⎰+=tovdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=t oxdt t tdx 6462.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdv mmg kv =+- 分离变量积分⎰⎰-=+t o vv o dt m k mg kv kdv ot m kmg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2cos =-θ,t vm mg d d sin =θ,以及 ta v d d θ=,θd d v a t =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +∆=;2212m t F v v ∆+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ①mgR MV V u m =+-2221)(21 ② 解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+= mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。

恒定磁场答案-清华版-终稿(1)

恒定磁场答案-清华版-终稿(1)

恒定磁场(一)参考解答一、选择题1、D2、B3、C 二、填空题 1、大小:00(1122II R R μμπ+方向:⊗2、2cos B r πα- 3、0ln 22Iaμπ三、计算题1.(1)解:金属薄片单位弧长上的电流为I Rπ IdI Rd Rθπ=θπμπμd RIR dI dB 20022==j dB i dB j dB i dB B d y x )cos (sin θθ-+=+=00220020sin 2cos 02x x y y I IB dB d R RIB dB d Rππμμθθππμθθπ=====-=⎰⎰⎰⎰∴02I B i Rμπ=r r1.(2)解:金属薄片单位弧长上的电流为2I Rπ 2IdI Rd Rθπ=0022sin (cos )x y dI I dB d R R dB dB i dB j dB i dB j μμθππθθ===+=+-r r r r r 002220002220sin cos x x y y I IB dB d R RI IB dB d R Rππμμθθππμμθθππ=====-=-⎰⎰⎰⎰∴0022x y I I B B i B j i j R Rμμππ=+=-r r r r r2.解:(1)010212()112222I I B I I dd d μμμπππ=+=+ 方向:⊙(2)010222()I I B r d r μμππ=+- 121010*******121322()ln ln 22r r m m S S S r I I d B dS BdS ldx r d r I l I l r r r r r r μμππμμππ+⎡⎤Φ=Φ===+⋅⎢⎥-⎣⎦++=+⎰⎰⎰⎰r r g四.讨论题32003200321000000440044O I IO R RI IO R Rμμππμμππ=======⊗=====101010、(1)圆环电流的B ;两直导线的B 、B ;点总磁感应强度B (2)圆环电流的B ;两直导线的B 、B ;点总磁感应强度B (3)圆环电流的B ;两直导线的B 、B ;点总磁感应强度B e ee323232000001100O O O ======⊗=⊗=+=-⊗====101012102、(1)三角形电流的B ;两直导线的B 、B ;点总磁感应强度B (2)三角形电流的B ;两直导线的B 、 B ; 点总磁感应强度B B B (3)三角形电流的B ;两直导线的B 、B ; 点总磁感应强度B 04Ilπ⊗;恒定磁场(二)参考解答一、选择题1、C二、填空题1、环路内包围的电流代数和;环路上积分点的磁场;所有电流产生的。

恒定磁场答案解读

恒定磁场答案解读

第7章恒定磁场一、选择题1. B2. C3. A4. B5. B6. B7. C8. C9. C10. A11. A12. D13. C14. C15. D16. B17. B18. B19. B20. D21. A22. C23. C24. B25. D26. B27. C28. A29. A30. B31. D32. D33. B34. D35. D36. B37. A 38. B 39. C 40. D 41. C 42. C 43. B 44. B 45. D 46. C 47. A 48. D 49. C 50. A 51. C 52. B 53. B 54. B 55. A 56. C 57. A 58. C 59. C 60. D 二、填空题1. (T)1045-⨯,500A2. RI80μ,⊗ 3. (T)108.83-⨯4. r I π20μ5. 1.4 A6.a 37. 动能, 动量8. (N)102.323-⨯,(m)101.75-⨯ 9. )s (m 103.6214-⋅⨯,(m)101.33-⨯10. (V)102.25-⨯11. )m (A 100.8823--⋅⨯,m)(N 0.352⋅ 12. )m (A 1026.9224--⋅⨯ 13. -0.14 J 14. 2, 1 15. 7:8 16. 减小; 2R x <区域减小,在2R x >区域增大(x 为离圆心的距离)17. 0, I 0μ- 18. bba aI+lnπ20μ 19.⎪⎭⎫ ⎝⎛+1π240R I μ 20. I 0μ, 0, I 02μ21. 向着长直导线平移22.aBI 223. r I H π2=, r IH B π2μμ==24. 2ln π20IaΦμ=25. x RIz y R I ˆ83)ˆˆ(π400μμ-+- 26. αsin π2B r -27. (Wb)24.0-, 0, (Wb)24.0 28.22IT m π三、计算题1. 解:由载流直导线磁场公式2204π2rL L rIB +=μ一段载流直线在P 点的磁场大小为22222201)(4)2(2π2x l l l xl IB +++=μ2222021π2xl xl Il++=μ正方形线圈整体在P 点的磁场大小为222220221121)π(24cos 4x l x l l I x l l B B B ++=+==μθ方向沿x 轴由B 与H的关系式得22222021)π(2xl x l l I BH ++==μ 方向沿x 轴2. 解:由毕奥—萨伐尔定律可知,两直线部分电流在其延长线上O 点产生的磁感应强度为0.半圆弧电流在O 点的磁感应强度B垂直于半圆面向上,大小为RI R I B 422100μμ==3. 解:由毕奥—萨伐尔定律和电流分布的对称性可知,半径为R 、载流I 的的圆电流在轴线上距离圆心r 处产生的磁感应强度B 沿电流I 的右旋前进方向,大小为2/32220)(2R x IRB +=μ此处设水平向右为正,则两圆电流在O 点r 处的磁感应强度为2/32222202/321221021])[(2])[(2R r l IR R r l IR B B B +-+++=+=μμ4. 解:由于细导线密绕,每匝电流都可以看作圆电流,于是宽度为r d 的圆电流(电流元)总匝数r n d 载流为r nI I d d =由圆电流在轴线上的磁场公式 x R x IRB ˆ)(22/32220+=μ 可得电流元I d 在P 点的磁场为 xr x rnIr xr x Ir B ˆ)(2d ˆ)(2d d 2/322202/32220+=+=μμA7-3-4图所有电流在P 点产生的磁场为x R x R rR x R nI x r x r r nI B B R ˆln 2ˆ)(d 2d 2222002/32220⎥⎥⎦⎤⎢⎢⎣⎡+-⎪⎪⎭⎫ ⎝⎛++=+==⎰⎰μμ5. 解:建立图所示的Oxyz 平面,将导体薄片分成许多沿z 轴的“无限长”直线电流,其中一根电流的载流量为y d II d d =.利用“无限长”直线电流产生磁场的公式r I B π20μ=可得r IB '=π2d d 0μ其中22y r r +='由对称性分析可知,导体薄片上所有电流在P 点产生的磁场将沿y 轴,其大小为⎪⎭⎫⎝⎛=+==⎰⎰-r d Iy y r d rI B B d d 2arctan π2d )(π2sin d 02/2/220μμθ讨论:当∞→d 时,如果保持j dI=为恒量,由上式可得 j I B 00212ππμμ==即无穷大载流平面产生的磁场为均匀场.6. 解:带电圆盘转动时,可看作无数圆电流的磁场在O 点的叠加. 取半径为ξ,宽为ξd 的圆环,其上电流ξσωξπωξπξσd 2d 2d =⋅=i它在中心O 产生的磁感应强度为:ξσωμξμd 212d d 00==i B正电荷部分产生的磁场为:r B r⎰==+00021d 21σωμξσωμ 负电荷部分产生的磁场为:)(21d 2100r R B R r -==⎰-σωμξσωμ 而题设-+=B B ,故得R=2r7. 解:电子运动速度⊥+=v v v// 由电子运动方程B e rm ⊥⊥=v v 2 得电子绕磁力线转一圈的时间为(s)1057.310100.1106.1101.914.32π2π22451931-----⊥⨯=⨯⨯⨯⨯⨯⨯⨯===B e m r T v 电子沿着磁场方向前进一光年所需时间为(s)1015.310301.0103606024365988//⨯=⨯⨯⨯⨯⨯⨯⨯==v 光年s t 在这段时间里电子绕磁力线转的圈数为1029108.81057.31015.3⨯=⨯⨯==-T t N8. 解:导线中通过电流I 时,上面一段通电导线所受的安培力大小为ILB F =方向向上,使得导线跳起. 由牛顿定律得 t F m d d =v 因F v 、同向,故t ILB t F m d d d ==v所以00d 0v v v m m =⎰⎰⎰==qqLBq q LB t I LB 0d d又因为gh 20=v所以,通过导线的电量为gh LBmq 2=A7-3-8图9. 解:建立如图所示的坐标系Ox ,在离“无限长”直线电流x 远处电流元l d I 受力21d d B l I F⨯=方向垂直于电流2I 向上. 于是,整个电流2I 所受的力为21d d B l I F F⨯==⎰⎰大小为2ln π2d 1π22102210I I x x I I F LLμμ==⎰10. 解:(1)在均匀磁场中,圆弧⋂CD 所受的磁力与弧线通以同样的电流所受的磁力相等由安培定律得 (N)283.05.022.022=⨯⨯⨯===⋂RIB F F CD方向与CD 弧线垂直,与OD 夹角为45度,如A7-3-10图所示.(2) 线圈的磁矩 n n n IS P 22m 10π22.0π412-⨯=⨯⨯==所受磁力矩大小为夹角为与,30)6090(=-B n 30sin m B P M =215.010π22⨯⨯⨯=-m)(N 1057.12⋅⨯=- M 的方向将驱使线圈法线n转向与B 平行.11. 解:建立如A7-3-11图所示的坐标系,轴方向,沿z j平板在yz 平面内,取宽度为y d , 长直电流y j I d d =,它在P 点产生的磁感应强度大小为:,π2d π2d d 00r yj r I B μμ==方向如A7-3-11图所示 将y x B B B d d d 和分解为,由对称性可知0d ==⎰x x B B ,θθcos π2d cos d d 0ryj u B B y ==又2222cos ,yx xr x y x r +==+=θ,代入上式并积分,则j u x y y jx u B B y 022021d π2d =+==⎰⎰∞∞-A7-3-9图1IO d A7-3-11图A7-3-10图12. 解:带电圆筒旋转相当于圆筒表面有面电流,单位长度上电流为ωσωσR R i =⋅=π2π2与长直通电螺线管内磁场分布类似.圆筒内为均匀磁场,ω的方向与B 一致(若0<σ,则相反).圆筒外0=B.作如图所示的安培环路L ,由安培环路定理i ab ab B l B L⋅=⋅=⋅⎰0d μ 得圆筒内磁感应强度大小为ωσμμR i B 00==写成矢量式:ωσμμR i B 00==13. 解:(1) 如图示在CD 上距O 点r 处取线元r d ,其上带电量r q d d λ=q d 旋转对应的电流强度为 r q I d π2d π2d λωω==它在O 点产生的磁感应强度大小为rrr I B d 42d d 00⋅==πλωμμ O 点的磁感应强度大小为 aba rrB B b a aO +===⎰⎰+lnπ4d π4d 00λωμωλμ 0>λ时的方向为⊗(2) I d 的磁矩为 r r I r P d 21d πd 22m λω== 总磁矩大小为])[(d 21d 332m m a b a b r r P P ba a-+===⎰⎰+λωλω0>λ时的方向与ω相同,即⊗(3) 若a >> b ,则)31()(,ln 33a ba b a a b a b a +≈+≈+,则有 a qa b B O π4π400ωμωλμ=⋅=,其中b q λ= q a b a b P m 22213ωλω=⋅=o B及m P 的方向同前.14. 解:(1)设上下两电流在P 点产生的磁感应强度分别为1B 和2B由安培环路定理⎰∑=⋅LI l B 0d μ 可得1B 和2B的大小分别为22001π2π2xa IrIB +==μμA7-3-12图22002π2π2xa IrIB +==μμ方向如图所示.由二者叠加,可得:x x x B B B 21+=22220π22xa ax a I +⋅+⋅=μ)π(220x a Ia +=μ 0=y Bi x a Ia x B)π()(220+=μ(2) 令0)π(2d d 2220=+-=x a Iax x Bμ,得0=x ,又得0d d 22<x B所以0=x 出B 有极大值.15. 解:由电流分布具有轴对称,可知磁场分布也应有轴对称,即与轴线距离相同的场点,其场强大小相等,其方向沿以圆筒轴线为轴的过场点的圆环的切向; 又因电流无限长,场强与场点的轴向位置无关.过场点作垂直于圆筒轴线,半径为r 的圆周,由安培环路定理,有 ∑⎰==⋅i L I r B l B 0π2d μ1R r <: 0=∑i I , 0=∴B 21R r R <<:)π(212R r j Ii-=∑rR r j B 2)(220-=μ写成矢量式为 r 21202)(e j rR r B⨯-=μ 2R r >:I R R j Ii=-=∑)π(2122rIrR R j B π22)(021220μμ=-=圆筒外部的磁场相当于全部电流集中在轴线上所产生的场.结果讨论:若R 1=0, 即电流均匀流过无限长实心圆柱,这时由上述解答易得, 圆柱内 r j B⨯=20μ;圆柱外解答不变.16. 解:由于电流分布对于平板厚度的平分面CD 对称,并且沿平面任意方向平移不变, 因此磁场亦具有平面对称性, 即在与平板距离相同的场点, 其磁感应强度相同, 且其值与场点沿板平面的位置坐标无关.磁感应强度的方向可作如下分析:沿电流方向将平板分成许多细长条,如A7-3-16图所示.取一对相对场点位置对称的细长条,由无限长直电流的场强叠加可知,合场强的方向垂直于电流方向而与板面平行.选择坐标如A7-3-16图, 由场分布的对称情况,过场点作图示矩形,使其中两对边与板面平行,由安培环路定理有∑⎰==⋅i LI Bh l B 02d μ2bx <, xh j I i 2⋅=∑, jx B 0μ= 或 x j B ⨯=0μ2b x >’j b hI i =∑, 20jbB μ=或 n 02e j b B⨯=μ 其中, n e为平板的外法线方向.17. 解:闭合曲线1L 环绕电流两圈,每一圈电流均是反向穿过,所以⎰-=⋅102d L I l B μ闭合曲线2L 可看成由2L '和2L ''两部分曲线构成,如A7-3-17图所示,加一辅助线AB ,则A L AB 2'构成一闭合回路,B L BA 2''构成另一回路,对两个回路,电流均是反向穿过,所以II I l B l B l B l B l B l B l B l B l B B L BA A L AB L BA AB L L L L 0002d d d d d d d d d 2222222μμμ-=--=⋅+⋅=⋅+⋅+⋅+⋅=⋅+⋅=⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰'''''''''这样可看作电流I 反向穿过回路2L 两次,所以有上式.A7-3-16图A7-3-17图18. 解:在半圆形电流上任取电流元l I d , 该电流元所受磁力为B l I F⨯=d d , 则此半圆弧导线受力为)d (⎰⨯=baB l I F由于磁场均匀,B可移至积分符号之外,因而有 B l I F b a ⨯⎪⎭⎫ ⎝⎛=⎰d 式中⎰b ald 为半圆弧上各有向线元l d 的矢量和,它等于由半圆一端a 到另一端b 的矢量,以l 表示,则B l I B l I F b a ⨯=⨯⎪⎭⎫ ⎝⎛=⎰d上式表示,均匀磁场中半圆形载流导线所受磁力与一段连接其两端的载流直导线所受的磁力相同. 按题设, l 与B之间夹角为α, 因此磁力的大小为IRB RB I F ==αsin 2F 的方向与纸面垂直,指向纸面外.19. 解:带缺口的圆柱面电流的磁场可看作一完整均匀柱面电流的磁场和在缺口位置的密度相同、方向相反的电流的磁场的叠加.由于均匀圆柱面电流在其轴线处的磁感应强度为零, 轴线处磁感应强度由缺口的反向电流的磁场决定.而由于R b <<,缺口电流可视为无限长的载流直导线, 它在轴线处产生的磁感应强度大小RjbB π20μ=方向垂直于轴线由安培力公式, 轴线位置处的载流长直导线所受磁力大小为RIjb IB l Fπ2d d 0μ== 因为两电流平行反向,故磁力方向为垂直于导线的斥力20. 解:载流线圈在均匀磁场中所受合力为⎰⎰=⨯=⨯=0]d [d B l I B l I F所受合力矩大小为()的夹角为线圈法线与B B P B P M m mϕϕ0sin ==⨯=所以线圈处于平衡状态.但因线圈上各电流元都受到安培力作用且沿径向向外,所以线圈导线中存在张力,且各处张力相等,沿切向.T7-3-18图 bA7-3-19图如A7-3-20(a)图任取一电流元,它对圆心O 所张的角为θd ,它两端受张力T 的作用,沿径向受安培力Fd 作用,导线元处于平衡态,则 2d sin 2d θT F = 又 θd d d d IBR lB I B l I F ==⨯=因电流元足够小,θd 足够小2d 2d sinθθ≈ 于是有IBR T =本题也可通过分析一段弧的受力求解.如7-3-20(b)图,考虑半圆形载流导线受力,其所受安培力为 R IB B l I F 2d =⨯=⎰由圆线圈处于平衡态,有T F 2=故IBR T =21. 解:设小磁针的等效磁矩为m p,则小磁针在磁场中所受力矩为θθB p B p M m m -≈-=sin式中θ为m p与B 间的夹角,负号表示该磁力矩为恢复力矩,由定轴转动定律22d d tJ M θ=θθJ B p tm -=22d d J B p m =2ω, B p J T m π=2所以 =π=)2(TB J p m 2.63×10-2 A ·m 2A7-3-20(a)图⋅⋅⋅⋅⋅⋅A7-3-20(b)图⋅⋅⋅⋅⋅⋅T。

大学物理简明教程陈执平参考解答(完整版)7.恒定磁场习题.

大学物理简明教程陈执平参考解答(完整版)7.恒定磁场习题.

7-1 如图AB 、CD 为长直导线,BC 是一段圆心为O 、半径为R 的圆弧形导线,若导线通有电流I ,求O 点的磁感应强度。

解: AB 段产生:0B 1= BC 段产生:R12IB 02μ=,方向垂直向里CD 段产生:)231(R 2I )60sin 90(sin 2R 4IB 00003-=-=πμπμ方向垂直向里 )6231(R 2I B B B B 03210ππμ+-=++=,垂直纸面向内7-2 两条无限长直载流导线垂直且不相交,它们相距最近处为cm 0.2d =,电流分别为A 0.4I 1=和A 0.6I 2=, P 点到两导线距离都是d ,求P 处的磁感应强度大小。

解: 电流I 1在P 点产生 T 100.4d2I B 5101-⨯==πμ 方向垂直向里 电流I 2在P 点产生 T 100.6d2I B 5202-⨯==πμ 方向在纸面里垂直指向电流I 1P 点 T 102.7B B B 52221-⨯=+=5.1B B tg 12==θ,91560'=θ7-3 一宽度为b 的半无限长金属板置于真空中,均匀通有电流0I 。

P 点为薄板边线延长线上的一点,与薄板边缘的距离为d 。

如图所示。

试求P 点的磁感应强度B 。

解 建立坐标轴OX ,如图所示,P 点为X 轴上的一点。

整个金属板可视为由无限多条无限长的载流导线所组成,其中取任意一条载流线,其宽度为dx ,其上载有电流dx b I dl 0=,它在P 点产生的场强为()x d b b dx I r dIdB P -+==πμπμ44000的方向垂直纸面向里。

由于每一条无限长直载流线在P 点激发的磁感强度dB 具有相同的方向,所以整个载流金属板在P 点产生的磁感应强度为各载流线在该点产生dB 的代数和,即⎰⎰-+==bP P x d b dx bI dB B 004πμbx d b b I 0001ln 4-+=πμb d d b I πμ4ln 00+=P B 方向垂直于纸面向里。

恒定磁场参考答案

恒定磁场参考答案

恒定磁场参考答案恒定磁场参考答案磁场是我们日常生活中常见的物理现象之一。

它是由电流或磁体产生的,并且可以对其他物体产生各种各样的影响。

在这篇文章中,我们将探讨恒定磁场的一些基本概念和应用。

首先,我们来了解一下什么是恒定磁场。

恒定磁场是指磁场的强度和方向在空间中保持不变的情况。

这意味着无论我们在磁场中的位置如何,磁场的性质都是一样的。

这与变化磁场不同,变化磁场的强度和方向会随着时间的推移而改变。

恒定磁场有许多重要的应用。

其中一个应用是在磁共振成像(MRI)中。

MRI是一种医学成像技术,它利用恒定磁场和无线电波来生成人体内部的图像。

MRI可以帮助医生诊断各种疾病,如肿瘤和神经系统疾病。

恒定磁场在MRI中起到了至关重要的作用,它能够使人体内的原子核在磁场中产生共振,从而产生信号被接收器捕获并转化为图像。

另一个应用是在磁力计中。

磁力计是一种测量磁场强度和方向的仪器。

它通常由一个磁针和一个刻度盘组成。

当磁针暴露在磁场中时,它会受到磁场力的作用,从而指向磁场的方向。

通过读取刻度盘上的刻度,我们可以确定磁场的强度。

磁力计在许多领域中都有广泛的应用,包括地质勘探、导航和科学研究等。

此外,恒定磁场还与电磁感应相关。

电磁感应是指当导体在恒定磁场中运动时,会在导体中产生感应电流。

这个现象是由法拉第电磁感应定律描述的。

根据这个定律,感应电流的大小与导体的速度、磁场的强度和导体的几何形状有关。

电磁感应在发电机和变压器等电力设备中起着重要的作用。

最后,让我们来看一下恒定磁场对物体运动的影响。

当一个带电粒子进入恒定磁场时,它会受到洛伦兹力的作用。

洛伦兹力是由带电粒子的速度和磁场的方向决定的。

根据洛伦兹力的方向,带电粒子可能会被弯曲成一个圆形轨道,这被称为磁场中的圆周运动。

这个现象在粒子加速器和等离子体物理学中非常常见。

总之,恒定磁场是一个重要的物理现象,它在许多领域中都有广泛的应用。

无论是在医学成像、磁力计、电磁感应还是物体运动中,恒定磁场都起着关键的作用。

【单元练】(必考题)高中物理选修2第二章【电磁感应】经典练习卷(含答案解析)

【单元练】(必考题)高中物理选修2第二章【电磁感应】经典练习卷(含答案解析)

一、选择题1.法拉第发明了世界上第一台发电机―法拉第圆盘发电机,原理如图所示。

铜质圆盘水平放置在竖直向下的匀强磁场中,圆盘圆心处固定一个带摇柄的转轴,边缘和转轴处各有一个铜电刷与其紧贴,用导线将电刷与电阻R 连接起来形成回路,其他电阻均不计。

转动摇柄,使圆盘如图示方向匀速转动。

已知匀强磁场的磁感应强度为B ,圆盘半径为r ,电阻的功率为P 。

则( )A PR R 的电流方向为从c 到dB .圆盘转动的角速度为2PR Br ,流过电阻R 的电流方向为从d 到c C 2PR R 的电流方向为从c 到d D PR R 的电流方向为从d 到c B 解析:B 将圆盘看成无数幅条组成,它们都切割磁感线,从而产生感应电动势,出现感应电流,根据右手定则圆盘上感应电流从边缘流向圆心,则流过电阻R 的电流方向为从d 到c , 根据法拉第电磁感应定律得圆盘产生的感应电动势为201·22r E Brv Br Br ωω+=== 则感应电流为E I R=又电阻R 的功率为 2P I R =则联立解得22PR Br ω=故选B 。

2.近日,第二架国产大飞机919C 在上海浦东国际机场首飞成功,919C 在上海上空水平匀速飞行,由于地磁场的存在,其机翼就会切割磁感线,下列说法正确的是( )A .机翼左端的电势比右端电势低B .机翼左端的电势比右端电势高C .飞机飞行过程中洛伦兹力做正功D .飞机飞行过程中洛伦兹力做负功B解析:BAB .上海位于北半球,地磁场在北半球地表上空方向是斜向下,由右手定则判断飞机机翼切割磁感线的感应电动势方向为从右往左,所以机翼左端的电势比右端电势高,故B 正确,A 错误;CD .洛伦兹力的方向始终垂直于速度,因此洛伦兹力不做功,故CD 错误。

故选B 。

3.图中两条平行虚线之间存在匀强磁场,虚线间的距离为L ,磁场方向垂直纸面向里。

abcd 是位于纸面内的直角梯形线圈,ab 与dc 间的距离也为L 。

高二物理磁场基本性质常见磁场试题答案及解析

高二物理磁场基本性质常见磁场试题答案及解析

高二物理磁场基本性质常见磁场试题答案及解析1.如图所示,在水平直导线正下方,放一个可以自由转动的小磁针. 现给直导线通以向右的恒定电流,不计其他磁场的形响,则( )A.小磁针保持不动B.小磁针的N将向下转动C.小磁针的N极将垂直于纸面向里转动D.小磁针的N极将垂直于纸面向外转动【答案】C【解析】由安培定则知,通电直导线在下方产生的磁场方向垂直直面向里,而磁场方向即小磁针静止时N极指向,故小磁针N极会垂直纸面向里转动,选项C正确,其余错误。

【考点】通电直导线磁场安培定则2.如图所示,三根通电长直导线P、Q、R互相平行,垂直纸面放置,其间距均为a,电流强度均为I,方向垂直纸面向里(已知电流为I的长直导线产生的磁场中,距导线r处的磁感应强度B=kI/r,其中k为常数) 。

某时刻有一电子(质量为m、电量为e)正好经过原点O,速度大小为v,方向沿y轴正方向,则电子此时所受磁场力为()A.方向垂直纸面向里,大小为B.方向指向x轴正方向,大小为C.方向垂直纸面向里,大小为D.方向指向x轴正方向,大小为【答案】A【解析】由安培定则和矢量叠加原理,可知原点O处的磁感应强度唯一由R处的电流决定,大小为,方向指向x轴负正方向,用左手定则可判定电子洛伦兹力的方向为垂直纸面向里,大小为,A正确。

【考点】通电直导线周围磁场的方向,洛伦兹力、洛伦兹力的方向3.下面关于磁场的一些说法中正确的是( )A.所有的磁场都是由于电荷的运动而产生的,即都是由电流产生的B.所有的磁场的磁感线都是闭合曲线,或者伸向无穷远C.磁场中某点的磁感线的切线方向就是磁感应强度的方向,即小磁针N极在该点的受力方向D.某小段通电导线不受磁场力的作用,说明该点的磁感应强度为零【答案】BC【解析】磁场与静电场不同,所有的磁场的磁感线都是闭合曲线,但对于条形磁铁而言,通过其中心轴线的磁感线是一条直线,它两端都伸向无穷远(也可以说这条磁感线是在无穷远处闭合),因此B选项正确.C选项就是磁感应强度的方向定义,C正确;错误分析:有人错选A,这是对“磁现象的电本质”的错误理解,其实磁场有两种,一种是由于电荷的运动产生的,另一种则是由于电场的变化产生的,在麦克斯韦理论中我们会学到.有人错选D,是因为他们没有想到磁场对电流的作用与电流方向有关,当电流方向与磁场方向在同一直线上时,电流就不受磁场力.在这点上,与电场对电荷的作用不一样,如果电荷在某点不受电场力,则该点的电场强度为零.【考点】本题考查了磁场的本质、磁感线的性质等磁场中比较基础知识,需要通过记忆进行理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.恒定磁场单元练习(二)答案
1.B 2.C 3.A 4.C 5.398
6. 2/2
IB R π,垂直于磁场向上,0
90
7.解:电子在垂直于磁场的平面内作匀速圆周运动
22
ω==mR R
v m evB
轨道半径:)(1069.57m eB
mv
R -⨯==
旋转频率:)(1080.22119-⨯=π==
νS m
eB T 8. 解:(1)055.6''>=-=mV U U U A A AA
根据洛仑兹力公式可判断:载流子为带负电的电子,因而半导体是n 型半导体 (2)由于nqa
IB
U AA =
' 201086.2'
⨯==
∴AA qaU IB
n (个/m 3)
9. 解:经分析可知,同轴电缆内外磁场具有柱对称性,所以取
同心的圆为安培环路 ∑⎰
=⋅内)
l l
I l d H (
A
B
v
:1R r < 22
1
2r R I r H ππ=
π⋅ 2
1
002R Ir H B πμ=
μ=
:21R r R <<I r H =π⋅2 r
I
H B πμ=
μ=2 :32R r R << )()
(22
222
22
3R r R R I I r H -π-π-
=π⋅
)
(2)
(2
22322
300R R r r R I H B -π-μ=μ= :3R r > 02=π⋅r H 00=μ=H B
*10. 半径为R 的均匀带电薄圆盘,总电荷为q .圆盘绕通过盘心且垂直盘面的轴线以角速度ω 匀速转动,求(1)盘心处的磁感强度;(2)圆盘的磁矩. 解:(1)均匀带电薄圆盘转动后在圆盘面上会形成许多半径不同的圆电流半径为
r ,厚度为dr 的圆环转动后形成的圆电流为:
2/22R
qrdr rdr dt dq di πω=ωππσ==
此圆电流在盘心处产生的磁感应强度为:2
0022R qdr
r di dB πωμ=μ=
盘心处的磁感应强度:R q
R
qdr dB B R
S
πωμ=πωμ==

⎰22002
0 (2)2
322R
dr
qr r R qrdr S di dm ω=ππω=⋅= 圆盘的磁矩:2
2
341qR R dr qr dm m R
S ω=ω==⎰⎰ 磁矩的方向:根据电流的方向用右手定则判断。

相关文档
最新文档