(有机化学)第一章 绪论

合集下载

有机化学第一章 绪论

有机化学第一章 绪论

有机化合物与人们的生活密切相关: 衣、食、住、行都离不开有机化合物; 动植物体和人类本身也是由有机化合物组成的。 有机化合物种类繁多,数量巨大,且增加很快。
1880 年 12,000 种
1910 年 150,000 种
1940 年 500,000 种
1961 年 1,750,000 种
1965~1970年,年均新增26.2万种,1995~2000年,年 均新增130万种。
HO OH
OH OH
HO HO OH OH
海葵毒素
HO HO
OH
③分子识别和分子设计正在渗透到有机化学的各领域; 计算机技术引入,在结构测定、分子设计和合成设计等 方面都发挥着重要的作用。
④有机化学继续在农用化学品、药物和医用化学品以及
分子电子材料的开发中起主导作用。 ⑤绿色合成:环保,资源可持续利用; 原料简单、条件温和,经过简单步骤,快速、高选择性、 高效地转化为目标分子。
分子式:C129H223N3O54
有64个手性中心, 可能的异构体271。
H2N O
OH O O HO OH O OH CH3 HO OH OH OH OH H2C OH OH OH HO OH OH O OH OH OH OH OH OH
O HO N H
O
HO CH3 OH CH3 OH
OH CH3 CH3 O O CH3
C
C
C C
C
若三个骨架都和氢结合的话,分子式是相同的(C5H12)。
具有相同的分子式而结构不同的化合物,称为同分异构 体,这种现象称为同分异构现象。 有机化学中,不能只用分子式来表示一个有机化合物, 而必须用构造式。
含5个碳原子的化合物,开链的分子骨架有:

有机化学 第1章 绪论

有机化学 第1章  绪论
有机化学
第一章 绪 论
【本章重点】
共价键的形成及共价键的属性、诱导效应。 【必须掌握的内容】 1. 有机化合物及有机化学。 2. 有机化合物构造式的表示方法。 3. 共价键的形成——价键法(sp3、sp2 sp杂化、σ键与π 键)和分子轨道法。 4. 共价键的基本属性及诱导效应。 5. 共价键的断键方式及有机反应中间体。 6. 有机化合物的酸碱概念。
2Cl·
△H = +242kJ / mol (
双原子分子键能也就是键的离解能;多原子分子 同类型共价键的键能,是各个键离解能的平均值。
如: CH4 +435.1 ·CH +443.5 ·CH2 +443.5 ·CH +338.9 而CH
4 3
离解能△H(kJ / mol) ·CH3 + H· ·CH2 ·CH ·C ·C + H· + H· +物通过蒸馏、结晶、吸附、
萃取、升华等操作孤立出单一纯净的有机物。
[结构] 对分离出的有机物进行化学和物理行为的了解
,阐明 其结构和特性。
[反应和合成] 从某一有机化合物(原料)经过一系列反
应转化成一已知的或新的有机化合物(产物)。
§有机化合物的特点
有机化合物的特点通常可用五个字概括: “多、燃、低、难、慢”。
△H = (435.1 + 443.5 + 443.5 + 338.9)= 1661 kJ / mol 故甲烷C-H 键的键能为:1661 / 4 = 415.3 kJ / mol 键能是指破坏或形成某一个共价键所需的平均能量。 一般来说,有机分子的键能越小,键就越活泼;键能越 大,键就比较稳定。
4. 键的极性与偶极矩 由两个电负性不同的原子组成共价键时,由 于成键的两个原子对价电子的吸引力不同,使成 键电子云在两个原子间的分布不对称,造成共价 键的正负电荷中心不重合形成极性键。

第一章 有机化学绪论

第一章 有机化学绪论
有机化学
Organic Chemistry
主讲:王红梅
有机化学绪论
一、有机化合物和有机化学
二、共价键
三、酸碱理论 四、有机化合物的分类 五、有机化合物构造式的表达方式 六、有机化合物共价键的断裂方式和反应类型
有机化合物命名 同分异构现象 各类化合物结构(杂化形式) 有机化合物性质(特别是化学性质) 各类化合物的制备方法 各类有机化合物之间的转化 立体化学概念 有机反应的机理
实际上碳原子并不直接以激发态的原子轨道参与形成共价键, 而是先杂化,再成键。形成烷烃时,碳原子取 sp3 杂化。
z
四面体结构, 轨道间夹角 为 109.5o.
x
sp3杂化
y
激发态: 2s 1 + 2px1 + 2py1 + 2pz1
1s22(sp3)12(sp3)12 (sp3)12(sp3)1
杂化轨道电子排布
1931年,鲍林(Pauling L)提出原子 轨道杂化理论。
C: 1s22s22px12py1
相互影响、相互混合 2px 2s 2py 2pz
C:1s22s22px12py1
碳原子轨道的这种转化过程成为碳原子的杂化。
杂化轨道(hybrid orbital):
在成键的过程中,由于原子间的相互影响,
上页 下页 首页
sp3杂化
乙烷 (CH3CH3)
σ键: 旋转不影响轨道重叠程度, 即σ 键可沿键轴“自由”转动; 重叠程度 大, 稳定性高; 键的极化度小.
头碰头重叠形成 C-Cσ键
分子中所有键角约为 109.5oC(四面体构型)
H
0p m
bond 154pm
H H H
上页 下页 首页

《有机化学》第一章 绪论

《有机化学》第一章 绪论

Sp3杂化
2P
2S 6C
2P 跃迁 2S
杂化
Sp3杂化轨道
Sp2杂化
2P 2S 6C
2P 跃迁 2S
杂化
Sp2杂化轨道
Sp2和sp3杂化轨道的形状大体相似,只是由于s成分的 逐渐增多,形状较胖,电负性较大。
Sp杂化
2P 2S 6C
2P 跃迁 2S
杂化
Sp杂化轨道
判断杂化类型的方法(第2和3章重点讲)
第一节 有机化学(Organic chemistry)发展概况
Organic一词的意思是有机的、有生命的 , 因此,有机化合物的最初定义是指来源于 动、植物体的物质 。
甘蔗------制取蔗糖; 大米或果汁----酿制酒精 植物油和草木灰共融--------制成肥皂 米醋------乙酸等称为有机物,形成“生命力论”
共价键 C--C C=C C—O C—N C--Br
键能 347.3 611 359.8 305. 4 284.5
3、键角(bond angle) 有机分子中二个共价键之间的夹角,称为键角。
4、键的极性和分子的极性
当两个相同的原子或原子团形成共价键时,由 于其电负性相同,因此成键电子云对称地分布 在两个原子周围,分子的正、负电荷中心重合, 这种键称为非极性共价键。
=dq 偶极矩的单位为德拜(Debye, Debye.Peter 荷兰物理学家), 简写为D。1D=10-8cm 10-10静电单位。
双原子分子的极性就是其键的极性,多原子分子 的极性是各个价键极性的矢量和。偶极矩是矢量,方向 从正电荷中心指向负电荷中心,可书写如下:
δ+
H

Cl
偶极矩 u=q•d
由于青霉素的发现和大量生产,拯救了千百万 肺炎、脑膜炎、脓肿、败血症患者的生命,及时 抢救了许多的伤病员。青霉素的出现,当时曾轰 动世界。为了表彰这一造福人类的贡献,弗莱明、 钱恩、弗罗里于1945年共同获得诺贝尔医学和生 理学奖。

有机化学 chap1-绪论

有机化学 chap1-绪论

1848年—— 含碳化合物的化学 1854年
油脂
有机物 × 无机物
1874年—— 碳氢化合物及其
衍生物的化学
维勒(德国)
2020年4月17日星期五
NH4OCN(氰酸铵)

O NH2–C–NH2(尿素)
《有机化学》
有机化学——碳化合物的化学
1、与人类关系密切
凭什么一个C
就能成为一门 独立学科?
2、数量众多
生命科学 材料科学 环境科学 化学生物学 能源、工业、农业 ...... 等方面
1901~1998年,诺贝尔化学奖共90项,其中有机化学方面的 化学奖55项,占化学奖61%
2020年4月17日星期五
《有机化学》
1989年美国Harvard大学kishi教授等完成海 葵毒素(palytoxin) 的全合成。
Constitution(构造):指组成分子的原子或基团相互 连接的顺序。如C2H4Cl2有CH2ClCH2Cl和CH3CHCl2
2020年4月17日星期五
《有机化学》
Configuration(构型):指组成分子的原子或基团的固 有空间排列,其排列状态的改变,必须靠共价键的断 裂和新的化学键的形成。
化合 物
醛、酮 CH3–CHO CH3-C-CH3 O 羧酸和羧酸衍生物 CH3–COOH CH3-C-Cl
生 含氮 硝基化合物 CH3–NO2
物 化合

CH3–NH2
物 重氮和偶氮化合物
–+N2HSO4-
杂环化合物 O 2020年4月17日星期五
S
《有机化学》
四、有机物结构表示方式——构造式 表示无机物——分子式——组成(H2O) 构造式——分子中原子的连接方式和次序。

有机化学:第一章绪论

有机化学:第一章绪论

C2H6O
HH
H
H
H C C OH
HCO
Hቤተ መጻሕፍቲ ባይዱ
HH
乙醇
H
H
甲醚
同分异构现象非常普遍。
三、有机化合物的共同性质
1. 为什么化工厂在有机产品车间前都有“严 禁火种”的告示牌?
2. 为什么白糖放在热锅里炒时,熔融后焦化 变黑?
3. 为什么油渍不能被水洗掉而能被汽油擦去?
三、有机化合物的共同性质
• 对热不稳定,可以燃烧;
1. 开链化合物:
• 碳原子相互结合成链状,两端张开不成环;
CH3CH2CH2CH3 丁烷
CH3CH=CHCH3 2-丁烯
2.碳环化合物:
• 碳原子相互连接成环;
1)脂环化合物:性质与开链化合物类似;
CH3CH2CH2CH2CH2CH3 正己烷
H2C
H2 C
CH2
H2C
CH2 C H2
环己烷
2)芳香族化合物:具有特殊的“芳香性”;
有机化学
第一章 绪 论
有机化学的重要性
• 有机化学是医学科学的一门基础理论课程。
• 医学科学的研究对象是复杂的人体,组成人 体的物质除了水和一些无机盐以外,绝大部 分是有机物,它们在体内有着不同功能,并 进行一系列的化学变化。
有机化学的重要性
• 生物化学是运用有机化学的原理和方法研究生 物体内化学变化的一门科学。
H2 C
H2C
CH2
H2C
CH2
C H2

环己烷
3. 杂环化合物:
• 环中具有其他杂原子,如氧、硫、氮等。
O
N
呋喃
吡啶
(一)、根据碳链骨架分类:

有机化学 第一章 绪 论


0.134 sp2
1 S 3
0.121 sp
1 S 2
30
四. 有机化合物分类
(Classification of Organic Compounds)
1. 按碳骨架分类 ①. 链状化合物(脂肪族化合物) 例: CH3CH2CH2CH3
CH3CH2CH2OH
CH3CH2CH CH2
②. 碳环化合物 特点:有环、环上原子都是由碳组成。
C C
C C
官能团 双键 叁键 卤素
化合物 烯烃
炔烃
X
羰基
醇 醛、酮 羧酸
COOH
羧基
本章结束
35
附录:
弗里德里希· 韦勒(Friedrich Wohler, 1800~1882, 德国化学家) 韦勒因首先在实验室里从无机物合成了有机物 —— 尿素而闻名于 世 。 韦勒1800年7月31日生于德国法兰克福附近的埃施耳斯亥姆。1814 年入中学后,成绩总是不太好。其原因是热衷于化学实验和矿物的采集 而忽视了课程的学习。他的启蒙教师是业余化学爱好者布赫医生,他经 常向布赫医生借书,并且在一起做实验。1820年考入玛尔堡大学医学院。 次年,由于对列奥波德·格梅林的崇敬而转学到海德尔堡大学。原来准 备当医生的维勒,在格梅林劝说下,1823年,跟瑞典著名学者柏齐利乌 斯学习一年,继续做他的氰基化合物问题的研究。1824年回国,1825年, 担任柏林工艺学校的教师,每周有8个小时的课,学校为他建立了一所
袜子、手套、衣服等,又可以制成传送带、渔
网、缆绳等。 合成橡胶:丁基橡胶、丁腈橡胶、丁苯橡胶等,制备它们 的单体都是有机化合物。合成的橡胶机械强度 远远超过天然橡胶,而且克服了天然橡胶受热 发粘、冷却变脆的缺点。

《有机化学》第1章_绪论(高职高专 )


1.1 有机化合物和有机化学
一.有机化学(Organic Chemistry)的发展
① 1806年,Berzelius首先提出“有机化学” 概念;无机化学. ② 生命力学说:有机化合物只能来源于有机体(organic) 。 ③ 1828年, F.Wöhler从无机物氰酸铵人工合成了有机物尿素,突 破生命力学说约束,促进有机化学发展并成为一门单独学科。
特殊的共价键组成决定了上述特点。
石墨的晶体结构(sp2)
Graphite
金刚石的晶体结构(sp3)
足球烯erical
有机化合物结构上存在同分异构现象:
一.同分异构现象 分子式相同而结构相异因而其性质也各异的不同 化合物,称为同分异构体,这种现象叫同分异构现象。
A:B A·+ B·
例如:
Cl : Cl (光照) Cl·+ Cl· CH4 + Cl · CH3 ·+ H : Cl
例如: 乙醇和二甲醚(官能团异构)
CH3CH2OH CH3OCH3
CH3 CH3CHCH3
丁烷和异丁烷(碳链异构)
CH3CH2CH2CH3
原子数目和种类越多,同分异构体数越多.
碳架异构 构造异构 同分异构 立体异构 构型异构 位置异构
(丁烷与异丁烷) (1-丁烯与2-丁烯)
官能团异构 (二甲醚与乙醇) 构象异构
(2)键角(方向性):任何一个两价以上的原子,与其它原 子所形成的两个共价键之间的夹角. (3)键能 :气态原子A和气态原子B结合成气态A-B分子 所放出的能量,也就是气态分子A-B离解成A和B两个 原子(气态)时所吸收的能量.
(泛指多原子分子中几个同类型键的离解能的平均值).
◆离解能:某个共价键离解所需能量.

有机化学第1章绪论ppt课件


04
有机化学与生产生活的关系
有机化学在医药领域的应用
药物合成
通过有机化学方法合成药 物,如抗生素、抗癌药物 等。
药物分析
利用有机化学原理和技术 对药物进行质量控制和纯 度检测。
药物设计
基于有机化学知识,设计 具有特定生物活性的药物 分子结构。
有机化学在农业领域的应用
农药合成
通过有机化学方法合成农药,用 于防治农作物病虫害。
有机化学第1章绪论 ppt课件
• 绪论 • 有机化合物的结构与性质 • 有机化学反应的类型与机理 • 有机化学与生产生活的关系 • 有机化学的学习方法与技巧
目录
01
绪论
有机化学的研究对象
01
02
03
04
05
碳氢化合物
含氧化合物
含氮化合物
杂环化合物
生命有机体中的 有机化合物
研究最简单的有机化合物— —烷烃、烯烃、炔烃等的结 构、性质和合成方法。
取代反应
有机分子中的某些原子或原子团 被其他原子或原子团所取代的反 应。
氧化反应
有机物得氧或失氢的反应。
还原反应
有机物加氢或去氧的反应。
有机化学反应的机理
链锁反应
链引发、链传递和链终止三个阶段组 成。
离子型反应
自由基型反应
共价键发生均裂时,成键电子平均分 配给两个碎片,都产生单电子的碎片 (自由基),再由自由基与试剂之间 进行的反应。
命名
采用系统命名法,根据有机化合物的结 构特点和官能团类型进行命名,包括俗 名、普通命名法和系统命名法等。
03
有机化学反应的类型与机理
有机化学反应的类型
加成反应
发生在有双键或叁键的物质中。 加成反应后,重键打开,原来重 键两端的原子各连上一个新基团。

有机化学-第一章-绪论


sp2杂化的碳原子的几何
构型为平面三角形。
sp2杂化的碳原子 有机化学 第一章
24
sp1杂化
sp杂化轨道 形状:梨形
成分: 1/2 s + 1/2 P 夹角: 180° 碳原子构型:直线型
未参与杂化的两个 p 轨道的对 称轴相互垂直,且均垂直于sp 杂化轨道对称轴所在直线。
可形成两个 键和两个π键
19
杂化轨道理论 (hybrid orbital theory) 碳原子在基态时的价电子层电子构型
C : 2s2 2px1 2py1 2pz0
吸收能量
C*: 2s1 2px1 2py1 2pz1
sp3杂化
重新 分配
sp2杂化
sp杂化
有机化学 第一章
20
sp3杂化
可形成四 个 键
有机化学 第一章
21
ψ*

1
2

ψ
原子轨道组合成分子轨道必备条件: ① 能量相近 ② 最大重叠 ③ 对称性相同
有机化学 第一章
27
分子轨道理论(molecular orbital theory)
电子在分子轨道中的填充顺序
能量最低原理 泡利不相容原理 洪特规则(兼并轨道规则)
最大重叠 此外还遵循成键三原则: 能量相近
1.1 有机化合物和有机化学
•有机化学是研究有机化合物的组成、结构、性质 、合成、应用及相关理论的一门科学。
那么,什么是有机物呢?
十七世纪中叶,据物质来源分为:动物、植物 和矿物
有机——“有生命的物质”
有机化学 第一章
3
有机化学发展的历史
十九世纪初瑞典化学家 柏齐利乌斯(Berzelius)把动物物质和 植物物质合并称有机化合物,把矿物物质称为无机化合物。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在有机分析和合成发展的同时,有机结构理论得到 了迅速的发展和完善。
1857年凯库勒和库帕各自独立提出——有机化合物中碳原子都是四价的, 相互结合成碳链 1861年布特列洛夫提出了化学结构,结构决定性质,性质可推出结构 1865年凯库勒提出了苯的构造式。 1874年范特霍夫和勒贝尔分别提出了碳的四面体结构,建立了分子的立 体概念,说明了旋光异构现象。 1885年拜尔提出了张力学说,至此,有机结构理论基本建立起来。 20世纪初建立了价键理论。
有机化学 (李景宁) (胡宏纹)
主讲:王素青
主要参考书
《基础有机化学(上、下册)》,邢其毅主编,高等教育出 版社。 《有机化学(上、下册)》,莫里森主编,科学出版社。 《有机化学命名原则》 ,中国化学会,科学出版社。 《有机化学》 ,王积涛主编,南开大学出版社。 《有机化学》 ,高鸿斌主编,高等教育出版社 《有机化学例题与习题-解题与水平测试》 ,冯俊材编,高 等教育出版社 《有机化学例题与题解》 ,邢其毅,裴伟伟等主编,高等教 育出版社 《有机化学解题分析与习题》 冯金城,郭生主编(华北东北 等九所高等师范院校合编),科学出版社 《基础有机化学问答》 ,袁履冰,上海科学技术出版社。 《有机化学》L. G. 韦德 JR著 万有志等译
有机化学中,有机合成占有独特的核心地位。 1989年美国Harvard大学kishi教授等完成海葵毒素(palytoxin)的全 合成。 21世纪,要实现“理想的”合成法。强调实用、环境友好、资源可 持续利用。“绿色合成”-“绿色化学” 简单原料、条件温和,经过简单步骤,快速、高选择性、高效地转 化为目标分子。 有机新材料(分子材料)化学。
20 世纪 30 年代建立了量子化学理论:化学键的 微观本质 诱导效应 、共轭效应、及共振论 20 世纪 60 年代将现代物理方法用到测定分子结 构上,确定了许多复杂有机化合物的结构:糖、蛋 白质、氨基酸、胆甾醇、血红素、叶绿素等 有机化学的各分支学科形成
药物化学、香料化学、染料化学、农药化学、环境化学、有 机新材料化学……等学科。 1901~1998年,诺贝尔化学奖共90项,其中有机化学方面的 化学奖55项,占化学奖61%。
当今世界有机化学:
1、很多复杂的分子结构被阐明,其中很多具有强烈的生理作用,为其他 学科提出了大量研究课题 2、合成与天然物完全相同的分子 3、对天然分子进行改性 4、用计算机进行有机合成的设计工作
当代有机化学发展的一个重要趋势:与生命科学的结合。 1980年(DNA) -1997年(ATP-腺嘌呤核苷三磷酸 )与生命科学 有关的化学诺贝尔奖八项;
1781年 法国 拉瓦锡(voisier)
1830年 德国 李比希(J.Liebiy)
19世纪中期进入了煤焦油合成时代 20世纪40年代至今 石油和天然气合成时代,
合成了许多复杂的有机化合物 有机物可来源于生物体也可由无机物转化而来。 迄今已知的化合物超过2000万(主要通过人工合成 ),其中绝大多数是 有机化合物。
WÖhler给瑞典化学家J.Berzelius的信中这样写到: 我应当告诉您的是:我制造出尿素,而且不求助于肾或动 物——无论是人或犬。 1845年,柯尔伯(H.kolber) 合成醋酸;用碳、硫磺、氯气和水为 原料。1854年柏赛罗(M.berthelot) 合成了油脂、1861年布特列洛 夫合成了糖类。实现了从单质到有机物的完全合成,生命力学说 逐渐被抛弃。 有机元素分析方法 有机化合物均含有:碳和氢
SP(乙炔等)
SP2杂化(BF3 乙烯等)
sp:180o SP3杂化(CH4, CCl4, NH3, H2O)
sp2: 120 o
2、性质上的特点 A、 物理性质方面特点
1) 挥发性大,熔点、沸点低
2) 水溶性差 (大多不容或难溶于水,易溶于有机溶剂 B、化学性质方面的特点 1) 易燃烧 2) 热稳定性差,易受热分解(许多化合物在200~300度 就分解) 3) 反应速度慢
4) 反应复杂,副反应多
第二节 1.价键理论:
共价键的形成及其属性
1.组成和结构之特点
有机化合物种类繁多、数目庞大(已知有七百多万种、且 还在不但增加) 但组成元素少 (C, H, O, N ,P, S, X等)
原因:
1) C原子自身相互结合能力强
2) 结合的方式多种多样(单键、双键、三键、链状、环状) 3) 同分异构现象 (构造异构、构型异构、构象异构)普遍
例如,C2H6O就可以代表乙醇和甲醚两种不同的化合物
1、化学结构种类多; 2、 能够有目的地改变功能分子的结构,进行功能组合和集成; 3、能够在分子层次上组装功能分子,调控材料的性能。
当前研究的热点领域:
1. 具有潜在光、电、磁等功能的有机分子的合成和组装 2. 分子材料中的电子、能量转移和一些快速反应过程的研究; 3. 研究分子结构、排列方式与材料性能的关系,发展新的分子组装的方法,探 讨产生特殊光电磁现象的机制; 探索新型分子材料在光电子学和微电子学中的应用
HCl
键 键
乙烯
C、可杂化性:杂化轨道理论
核外电子在一般状态下总是处于一种较为稳定的状态, 即基态。而在某些外加作用下,电子也是可以吸收能量 变为一个较活跃的状态,即激发态。在形成分子的过程 中,由于原子间的相互影响,单个原子中,具有能量相 近的两个电子亚层中,具有能量较低的电子亚层的一个 或多个电子会激发而变为激发态,进入能量较高的电子 亚层中去,即所谓的跃迁现象,从而新形成了一个或多 个能量较高的电子亚层。此时,这一个与多个原来处于 较低能量的电子亚层的电子所具有的能量增加到与原来 能量较高的电子亚层中的电子相同。这样,这些电子的 轨道便混杂在一起,这便是杂化,而这些电子的状态也 就是所谓的杂化态。 杂化轨道理论从电子具有波动性、波可以叠加的观点出 发,认为一个原子和其它原子形成分子时,中心电子所 用的电子轨道不是原来纯粹的s轨道或p轨道,而是若干 不同类型、能量相近的电子轨道经叠加混杂、重新分配 轨道的能量和调整空间伸展方向,组成了同等数目的能 量完全相同的新的电子轨道——杂化轨道,以满足化学 结合的需要。这一过程称为电子轨道的杂化。
学习有机化学的要求
1)、认真听课,作好笔记。 2)、勤思考、多提问,再理解的基础上记忆。
3)、学完每章,应归纳、总结。掌握该章的重点、难 点和规律。
4)、按时独立的完成作业。 5)、参阅有关的资料(参考书、杂志)。 6)、重视有机实验,以实验促进学习。
第一章 绪 论
【本章重点】 共价键的形成及共价键的属性、诱导效应。 【必须掌握的内容】 1. 有机化合物及有机化学。
简单有机小分子化合物(组成、价键、结构、性质、鉴定、 反应、合成)——复杂有机化合物(结构、鉴定、合 成) ——大分子化合物( 结构、鉴定、合成、相互作 用) —— 超分子(分子识别、分子组装、功能) 三项内容:分离、结构、反应和合成
[
分离] 从自然界或反应产物通过蒸馏、结晶、吸附、萃取、升
华等操作孤立出单一纯净的有机物。 [结构] 对分离出的有机物进行化学和物理行为的了解,阐明 其结构和特性。 [反应和合成] 从某一有机化合物(原料)经过一系列反应转化 成一已知的或新的有机化合物(产物)。
一、共价键的形成
共价键的成键条件:成键原子的原子轨道重叠的结果(两个 成键原子都有未成键且自旋相反的电子,能够通过配对来获得最外 层电子数达到稳定的构型。)
+ 1s 1s 分子轨道 氢分子
2p +
1s
2p +
1s 1s
2p +
共#43; Cl
HCl
4H + C
CH4
B. 方向性

基本要点
1. 只有最外电子层中不同电子亚层中的电子可以进行轨道杂 化,且在第一层的两个电子不参与反应。 2. 不同电子亚层中的电子在进行轨道杂化时,电子会从能量 低的层跃迁到能量高的层,并且杂化以后的各电子轨道能量 相等又高于原来的能量较低的电子亚层的能量而低于原来能 量较高的电子亚层的能量。当然的,有几个原子轨道参加杂 化,杂化后就生成几个杂化轨道。 3. 杂化轨道成键时,要满足原子轨道最大重叠原理。 4. 杂化后的电子轨道与原来相比在角度分布上更加集中,从 而使它在与其他原子的原子轨道成键时重叠的程度更大,形 成的共价键更加牢固。
二、有机化学的产生和发展
有机化学作为一门学科诞生于:19世纪初 有‘生机’之物 —— 碳化合物 —— 碳氢化合物。 十八世纪前,利用天然有机物。
我国古代对天然有机物的利用:植物染料、酿酒、制醋、中草 药(神农本草经,汉末)、造纸(汉朝)
其他国家,如古代印度、巴比伦、埃及、希腊和罗马也都在染 色、酿酒对天然有机物进行了利用。埃及人用靛蓝和茜素作木乃 伊裹布的染料,古犹太人祈祷者披巾上的蓝色是从一种地中海鱼 中提取出来的。
2000年,类基因组计划:我国科学家完成了1%的工作框架

有机化学的重要性
有机化学是许多现代科学技术的基础 生命科学(生物化学,分子生物学等) 医药学(药物化学,病理学,生化分析等)
农业(农业化学,农用化学品等)
石油(石油化工等) 材料科学(高分子化学,功能材料等) 食品(食品化学,营养学,添加剂等) 日用化工(染料,涂料,化装品等)
1675年法国化学家勒梅里(N.Lemery)首次提出“有机化合物” 1806年瑞典化学家贝采利乌斯(J.Berzelius)首次引用有机 化合物,提出了有机化学的概念并提出生命力学说
1828年 德国化学家 F.WÖhler (维勒) 由无机物氰酸铵 合成出有机物尿素。
NH4OCN (NH3)2CO
十八世纪中末期,分离和提纯技术的发展,分离得到 天然有机物。
瑞典化学家舍勒(Scheele,K.W) 酒石+硫酸——酒石酸晶体(1770年,第一篇论文) 柠檬——柠檬酸(1784年) 苹果——苹果酸(1785年) 酸牛奶——乳酸(1780年) 五倍子——五倍子酸(1786)——焦性没食子酸。 其他人的工作: 尿——尿素(1773年) 马尿——马尿酸(1829) 脂肪——胆固醇(1815年) 鸦片——吗啡(1805年) 植物中——生物碱、金鸡钠碱、辛可宁(1820年)
相关文档
最新文档