用matlab实现寻找最短路

合集下载

matlab的floyd算法

matlab的floyd算法

matlab的floyd算法Floyd算法,是一种图论算法,用于在加权图中求解最短路径。

它是以发明者之一、罗伯特·弗洛伊德的名字命名的。

这个算法同样被用于对于任意两点之间的最长路径(所谓的最短路径问题)进行求解。

算法描述给定一个带权的有向图G=(V,E),其权值函数为w,下面我们定义从顶点i到顶点j的路径经过的最大权值为dist(i,j)。

特别地,当i=j时,dist(i,j)=0。

为了方便描述算法,我们用D(k,i,j)表示从顶点i到顶点j且路径中的所有顶点都在集合{1,2,⋯,k}中的所有路径中,最大边权值的最小值。

则从顶点i到顶点j的最短路径的边权值就是 D(n,i,j),其中n是图中顶点的数量。

算法思想:建立中间顶点集合算法是通过不断地扩充中间顶点集合S,来求解任意两点之间的最短路径。

具体来说,设S={1, 2, ⋯, k},其中k是整数。

Floyd算法的基本思想是,依次考察所有可能的中间顶点x(即所有S中的顶点),对于每个中间顶点x,若从i到x再到j的路径比已知的路径更短,则更新dist(i,j)为更小的值D(k,i,j)。

最终,在S={1, 2, ⋯, n}的情况下,所得到的D(n,i,j)就是顶点i到顶点j之间的最短路径的长度。

Floyd算法的核心是一个三重循环,在每一轮循环中,枚举S中所有的中间顶点x,通过动态规划计算出从i到j的最短路径长度D(k,i,j)。

这一过程可表述为:for k = 1 to nfor i = 1 to nfor j = 1 to nif D(k,i)+D(j,k) < D(k,i,j)D(k,i,j) = D(k,i)+D(j,k)其中D(0,i,j)即为dist(i,j),若i和j不连通,则D(0,i,j)=+Inf。

算法实现function D = Floyd(adjmat)% adjmat为邻接矩阵邻接矩阵adjmat的定义为:- 若两个顶点之间有边相连,则对应位置为该边的边权值;- 若两个顶点之间没有边相连,则对应位置为0。

最短路dijkstra算法Matlab程序

最短路dijkstra算法Matlab程序

function [c0,c,path0,path]=dijkstra(s,t,C,flag)% Use the Dijkstra's algorithm to find the shortest path from% s to t and can also find the shortest path between s and all% the other points.% Reference: Graph Theory with Applications by J. A. Bondy and% U. S. R. Murty.% Input -- s is the starting point and also is the point s.% -- t is the given terminal point and is the point t.% -- C \in R^{n \times n}is the cost matrix, where% C(i,j)>=0 is the cost from point i to point j.% If there is no direct connection between point i and% j, C(i,j)=inf.% -- flag: if flag=1, the function just reports the% shortest path between s and t; if flag~=1, the% function reports the shortest path between s and t,% and the shortest paths between s and other points.% Output -- c0 is the minimal cost from s to t.% -- path0 denotes the shortest path form s to t.% -- c \in R{1\times n} in which the element i is the% minimal cost from s to point i.% -- path \in R^{n \times n} in which the row i denotes% the shortest path from s to point i.% Copyright by MingHua Xu(徐明华), Changhzou University, 27 Jan. 2014. s=floor(s);t=floor(t);n=size(C,1);if s<1 || t < 1 || s > n || t > nerror(' The starting point and the terminal point exceeds the valid range');endif t==sdisp('The starting point and the terminal point are the same points');endlabel=ones(1,n)*inf;label(s)=0;S=[s];Sbar=[1:s-1,s+1:n];c0=0;path=zeros(n,n);path(:,1)=s;c=ones(1,n)*inf;parent=zeros(1,n);i=1; % number of points in point set S.while i<n% for each point in Sbar, replace label(Sbar(j)) by% min(label(Sbar(j)),label(S(k))+C(S(k),Sbar(j)))for j=1:n-ifor k=1:iif label(Sbar(j)) > label(S(k))+C(S(k),Sbar(j))label(Sbar(j))=label(S(k))+C(S(k),Sbar(j));parent(Sbar(j))=S(k);endendend% Find the minmal label(j), j \in Sbar.temp=label(Sbar(1));son=1;for j=2:n-iif label(Sbar(j))< temptemp=label(Sbar(j));son=j;endend% update the point set S and SbarS=[S,Sbar(son)];Sbar=[Sbar(1:son-1),Sbar(son+1:n-i)];i=i+1;% if flag==1, just output the shortest path between s and t.if flag==1 && S(i)==tson=t;temp_path=[son];if son~=swhile parent(son)~=sson=parent(son);temp_path=[temp_path,son];endtemp_path=[temp_path,s];endtemp_path=fliplr(temp_path);m=size(temp_path,2);path0(1:m)=temp_path;c_temp=0;for j=1:m-1c_temp=c_temp+C(temp_path(j),temp_path(j+1));endc0=c_temp;path(t,1:m)=path0;c(t)=c0;returnendend% Form the output resultsfor i=1:nson=i;temp_path=[son];if son~=swhile parent(son)~=sson=parent(son);temp_path=[temp_path,son];endtemp_path=[temp_path,s];endtemp_path=fliplr(temp_path);m=size(temp_path,2);path(i,1:m)=temp_path;c_temp=0;for j=1:m-1c_temp=c_temp+C(temp_path(j),temp_path(j+1));endc(i)=c_temp;c0=c(t);path0=path(t,:);endreturn。

最短路问题例题

最短路问题例题

问题:求出A-F之间最短路线;(1)写出思路于算法;(2)Matlab 编程找出最短路径。

答案:A-F之间的最短路线有A-B3-D3-E1-F,A-B3-D3-E1-E2-F;A-B2-C1-D1-D2-E2-F 这三条路线的最短距离均为8。

方案一:思路:对于是否返回的分析:如图可以看出只有B端才能跨越C端的点直接到达D端的,其余的各端点都是必须按照字母顺序一路下来。

若如D端返回到C端或B端这是不可能的,因为这样无疑增加了路程,如图可以看出C端的点能到达D端的各个点,所以要求的直接命中想到达的该点;而D端出发去到E端后有图可以看出不可能再返回D端了,因为这只会增加路线的长度,而且E 端的各点是相通的,也没必要再返回D端;同样B端到达C端或D端的,因为B2,B2到能直接到达C端的各点,只有B1只能到达C1,但B1它到D1的距离和B1点到C1的距离同样为4但也不可能经过C1后返回B端的,因为C1也是联系D端的各点,而且你要返回B 段端,还不如在A端的时候就选择好一个理想的B点,这样距离会更加短。

所以不能进行返回。

如图将我们本来所需要的的路线分成两半,以D字母的为中间端。

后半部分:后半部分主要由D端连接到E端最后才连接到F端的,同时D端无法越过E端直接连接到F端。

更为重要的是前半部分,也必须要经过D端才能与F端相接,所以构成他们之间的枢纽定在D端是最好不过的。

首先的是先分析D端的三个点D1,D2,D3分别到点F的最短距离。

一、已经从D端出发去到E端后有图可以看出不可能再返回D端了,因为这只会增加路线的长度,而且E端的各点是相通的,也没必要再返回D端;二、由图可以看出E端到点F最好的路线是E2-F距离为1,除E2外的E1,E3他们到F点的方式(E1-F, E1-E2-F ,E3-F ,E3-E2-F)的距离均为2;所以如果能先到达E2则可以只考虑E2到F这条路线。

若先到达了E1,或E3、则这路线的最短路径必定变化为两条。

MATLAB应用基础短路计算仿真

MATLAB应用基础短路计算仿真

南京工程学院MATLAB应用基础(作业)题目题目八短路计算仿真:work1.mdl课程名称 MATLAB应用基础院(系、部、中心)电力工程学院专业电力系统及其自动化班级 K电力122学生姓名于湘唐(42) 张译天(43)赵晨(44) 周博梵(45)朱高斐(46)无穷大功率电源供电系统发生三相短路故障MATLAB 模拟1.1 实例在图1-1-1所示的网络中,当降压变电所10.5kV 母线上发生了三相短路时,可将系统视为无限大容量电源,试求此时短路点的冲击电流imp i ,短路电流的最大有效值imp I 和短路功率kt S 。

图1-1-11.2 理论计算过程解 取MV A 100B =S 、n av B •=U U ,已知km 401Ω=.x 。

首先计算各元件参数的标幺值电抗()525020100100510100N B k 1..S S %U X *=⨯==292037100104022n av B 12..U S l x X *=⨯⨯==•()192231001007100%N B k 43..S S U X X **=⨯=⨯==取1=*E 作成等值网络如图1-2-1所示。

图1-2-1等值网络图短路回路的等值电抗为91211922129205250....X *=⨯++=Σ短路电流周期分量的有效值为5230912111..X I **===∑ω ()kA 88251031005230B ...I I I *=⨯⨯==ωω若取冲击系数81imp .K =,则冲击电流为()kA 347882552281imp ...I .i =⨯=⨯=ω短路电流的最大有效值为()kA 384882521521imp ...I .I =⨯==ω短路功率为()MV A 3521005230B k t ..S I S *=⨯==ω2.1 无穷大功率电源供电系统仿真模型构建假设无穷大功率电源供电系统如图2-1-1所示,在0.02s 时刻变压器低压母线发生三相短路故障,仿真其短路电流周期分量幅值和冲击电流的大小。

基于MATLAB的电力系统短路计算分析【开题报告】

基于MATLAB的电力系统短路计算分析【开题报告】

开题报告电气工程及其自动化基于MATLAB的电力系统短路计算分析一、课题研究意义及现状本课题主要研究如何应用MATLAB实现电力系统中短路电路的计算分析。

简单故障时指电力系统的某处发生一种故障的情况,简单不对称故障包括单相接地短路、两项短路、两项短路接地、单相断开和两相断开等。

随着电力系统的不断发展,系统电压等级不断提高,规模也越来越大,对系统的安全稳定运行提出了更高的要求。

电力系统发生短路故障会引起系统的大电流和低电压,如果不及时切除会对人身和设备造成极大的危害,严重时甚至会导致整个系统崩溃,因此对电力系统进行暂态分析是十分必要的。

在分析电路过程中,如果电路比较复杂且方程数量多,依靠手工求解相对复杂,费时而且容易出错。

而MATLAB由于其明显的特点,有利于分析计算电路的各种问题,可以通过MATLAB的编程对电路支路上的电源、电流、频率等进行求解。

当电路规模比较大,微分方程阶数多,编程困难是,可以运用Simulink模块对电路进行仿真分析,快速简单而且容易理解。

MATLAB做为当代科学研究者和工程技术人员最为青睐的数值计算平台,能够对电力系统进行故障仿真,并进行分析,就可以从技术上保证电网的安全运行,具有巨大的社会和经济效益。

同时计算机语言技术也在不断发展和成熟,MATLAB作为一种新型的高性能语言,它和传统的程序设计语言相比具有强大的数学运算功能和绘图功能。

Matlab提供的电力系统工具箱可方便迅速地对所研究的电力系统对象进行各种暂态和稳态数字仿真,其方便的图形用户界面设计,模块化的仿真建模方法,避免了大量繁杂的编程,仿真分析结果逼近实际系统行为,是电力系统仿真分析的理想工具。

二、课题研究的主要内容和预期目标本课题主要研究如何应用MATLAB实现三相短路电流的暂态过程,主要内容:1.学习MATLAB语言中的仿真工具Simulink,以及其中的PowerSystem工具箱。

2.研究三相电路中短路电流的计算分析和原理。

用matlab实现寻找最短路

用matlab实现寻找最短路

用matlab寻找赋权图中的最短路中的应用1引言图论是应用数学的一个分支,它的概念和结果来源都非常广泛,最早起源于一些数学游戏的难题研究,如欧拉所解决的格尼斯堡七桥问题,以及在民间广泛流传的一些游戏的难题,如迷宫问题,博弈问题等。

这些古老的难题,吸引了很多学者的注意。

1847年,图论应用于分析电路网络,这是它最早应用于工程科学,以后随着科学的发展,图论在解决运筹学,网络理论,信息论,控制论,博弈论以及计算机科学等各个领域的问题时,发挥出很大的作用。

在实践中,图论已成为解决自然科学,工程技术,社会科学,军事等领域中许多问题的有力工具之一。

最短路问题是图论理论中的经典问题,寻找最短路径就是在指定网络中两节点间找一条距离最小的路。

2 最短路2.1 最短路的定义(short-path problem)对最短路问题的研究早在上个世纪60年代以前就卓有成效了,其中对赋权图()0w≥的有效算法是由荷兰著名计算机专家E.W.Dijkstra在1959年首次提出的,该算法能ij够解决两指定点间的最短路,也可以求解图G中一特定点到其它各顶点的最短路。

后来海斯在Dijkstra算法的基础之上提出了海斯算法。

但这两种算法都不能解决含有负权的图的最短路问题。

因此由Ford提出了Ford算法,它能有效地解决含有负权的最短路问题。

但在现实生w≥的情况下选择Dijkstra算法。

活中,我们所遇到的问题大都不含负权,所以我们在()0ij若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点(通常是源节点和阱节点)之间总权和最小的路径就是最短路问题。

最短路问题是网络理论解决的典型问题之一,它不仅可以直接应用于解决生产实际的许多问题,如管路铺设、线路安装、厂区布局和设备更新等,而且经常被作为一个基本的工具,用于解决其他的做优化问题。

定义1:若图G=G(V,E)中个边[v i,v j]都赋有一个实数w ij ,则称这样的图G为赋权图,w ij 称为边[v i,v j]上的权。

基于MATLAB的最短路径算法分析

基于MATLAB的最短路径算法分析

基于MATLAB的最短路径算法分析周志进(贵阳学院贵州贵阳550005)摘要:随着社会快速发展,人们生活水平提高,很多需求都在向着最优化、最快捷、最高效的方向延伸,而最短路径算法则是图论研究中的典型问题。

该文简要概述MATLAB软件,分析基于MATLAB的4种用于解决最短路径问题的算法,并研究基于MATLAB的最短路径算法的实际应用状况,以期对最短路径算法的应用提供一定借鉴意义。

关键词:MATLAB最优路径Dijkstra算法Floyd算法Bellman-Ford算法SPFA算法中图分类号:TP301.6文献标识码:A文章编号:1672-3791(2022)08(a)-0217-03最短路径算法就是用于计算一个节点到其他节点的最短路径问题,一般是指确定起点的最短路径问题,求起始节点到某一终点的最短路径问题,也常用于已知起点和终点,求解两节点之间的最短路径。

1MATLAB程序概述MATLAB是由美国MathWorks公司出品的数学软件,MATLAB意为矩阵工程,将用于一维、二维与三维数值积分的函数进行了统一,并经过基本数学和内插函数的辅助,提供数值分析、矩阵计算等诸多功能,为应用数学、工程设计和数值计算提供全方位的解决方案,很大程度上摆脱了传统程序设计语言的编辑模式。

其高效的数值及符号计算功能,可以帮助用户快速处理繁杂的数学运算问题,具备的图形处理功能可以实现计算结果和编程的可视化。

MATLAB本身是一个高级的矩阵语言,包括诸多算法、控制语句、函数等面向基本对象或问题的应用程序[1]。

比如:在最短路径计算中可以利用矩阵运算和线性方程组的求解或是数据的统计分析来优化相关问题。

2基于MATLAB的4种最短路径算法2.1Dijkstra算法Dijkstra(迪杰斯特拉)算法是最经典的单源最短路径算法,也就是用于计算一个节点到其他所有节点最短路径的算法。

Dijkstra算法采用贪心算法策略,每次遍历与起点距离最近且未访问过的节点,直至扩展到终点。

最新MATLABsimulink同步发电机短路的分析

最新MATLABsimulink同步发电机短路的分析
MATLABsimulink同步发电机 短路的分析
同步发电机突然短路电路模型:
700 e6 pm
156 e3 VLL rms
m Pm
A
SSM B E
C
sm
Continuous powergui
V
A Vabc Iabc
B
a
b
C
c
Three -Phase V-I Measurement
Selector
将选择器改成三相序分量分析 器(3-Phase Sequence analyzer)
700 e6 pm
156 e3 VLL rms
V
Mag
Pm
A SSM B E
C sm
A Vabc Iabc
Ba b
Cc
Three -Phase V-I Measurement
3-Phase
Sequence Analyzer Three -Phase Parallel RLC Load A
B
C
Continuous powergui
A B C Three -Phase Fault
Mag abc
Phas e
3-Phase Sequence Analyzer
三相序分量分析器参数设置
三相序分量分析 器可以输出A相直 流、基频以及各 次谐波电流的正 序、负序或零序 分量的幅值和相 角。
本次仿真设置如 下: 输出基频分量, 选择将正序、负 序、零序同时输 出显示到示波器。
i
Three -Phase Parallel RLC Load
A B C
A B C Three -Phase Fault
模块介绍
选择电机、电流、电压测量元件等模块需要启动电力系统元件库。 方法有两种: 1、在指令窗口中键入powerlib,回车; 2、单击开始按钮(start),依次选择simulink、SimPowerSystem。 弹出电力系统 元件库对话框如下:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用matlab寻找赋权图中的最短路中的应用1引言图论是应用数学的一个分支,它的概念和结果来源都非常广泛,最早起源于一些数学游戏的难题研究,如欧拉所解决的格尼斯堡七桥问题,以及在民间广泛流传的一些游戏的难题,如迷宫问题,博弈问题等。

这些古老的难题,吸引了很多学者的注意。

1847年,图论应用于分析电路网络,这是它最早应用于工程科学,以后随着科学的发展,图论在解决运筹学,网络理论,信息论,控制论,博弈论以及计算机科学等各个领域的问题时,发挥出很大的作用。

在实践中,图论已成为解决自然科学,工程技术,社会科学,军事等领域中许多问题的有力工具之一。

最短路问题是图论理论中的经典问题,寻找最短路径就是在指定网络中两节点间找一条距离最小的路。

2 最短路2.1 最短路的定义(short-path problem)对最短路问题的研究早在上个世纪60年代以前就卓有成效了,其中对赋权图()0w≥的有效算法是由荷兰著名计算机专家E.W.Dijkstra在1959年首次提出的,该算法ij能够解决两指定点间的最短路,也可以求解图G中一特定点到其它各顶点的最短路。

后来海斯在Dijkstra算法的基础之上提出了海斯算法。

但这两种算法都不能解决含有负权的图的最短路问题。

因此由Ford提出了Ford算法,它能有效地解决含有负权的最短路问题。

但在现实生活中,我们所遇到的问题大都不含负权,所以我们在()0ij w≥的情况下选择Dijkstra算法。

若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点(通常是源节点和阱节点)之间总权和最小的路径就是最短路问题。

最短路问题是网络理论解决的典型问题之一,它不仅可以直接应用于解决生产实际的许多问题,如管路铺设、线路安装、厂区布局和设备更新等,而且经常被作为一个基本的工具,用于解决其他的做优化问题。

定义1:若图G=G(V,E)中个边[v i ,v j]都赋有一个实数w ij ,则称这样的图G 为赋权图,w ij 称为边[v i ,v j]上的权。

定义2:给定一个赋权有向图,即给一个有向图D=(V,A),对每一个弧a=(v i ,v j),相应地有权w(a)=w ij,又给定D中的两个顶点v s ,v t 。

设P是D中从v s 到v t 的一条路,定义路P的权是P中所有弧的权之和,记为w(P)。

最短路问题就是要在所有从v s到v t 的路中,求一条权最小的路,即求一条从v s到v t 的路P0 ,使w(P0)=min w(P)P式中对D中所有从v s到v t 的路P最小,称P0 是从v s到v t 的最短路。

2.2 最短路问题算法的基本思想及其基本步骤在求解网络图上节点间最短路径的方法中,目前国内外一致公认的比较好的算法有Dijkstra和Floyd算法。

这两种算法,网络被抽象为一个图论中定义的有向图或无向图,并利用图的节点邻接矩阵记录点的关联信息。

在进行图的遍历搜索最短路径时,以该矩阵为基础不断进行目标值的最小性判别,知道获得最后的优化路径。

鉴于课本使用Dijkstra算法,下面用Floyd算法进行计算:设A=(a)n*n 为赋权图G=(V,E,F)的矩阵,当V i V j ∈E时,a ij =F(v i,v j),否则,取a ij =0,a ij =+∞(i≠j),d ij 表示从v i到v j 的点的距离,r ij 表示从v i到v j 的点的最短路中的一个点的编号。

①赋初值。

对所有i,j,d ij = a ij ,r ij =j,k=1,转向②;②更新d ij ,r ij ,对所有i,j,若d ik + d kj < d ij ,则令d ij = d ik + d kj ,r ij =k,转向;③终止判断。

若d ij <0,则存在一条含有顶点v i的负回路,终止;或者k=n,终止;否则,另k=k+1,转向②。

最短路线可由r ij得到。

2.3 用matlab程序实现上述算法编写程序函数程序如下:function f=shortpath(n,A)clear;n=input('请输入矩阵的阶n=');A=input('请输入赋权图对应的n阶矩阵A='); % 顶点之间不通时,用inf表示(MATLAB中,inf 表示无穷)D=A; %赋初值for(i=1:n)for(j=1:n)R(i,j)=j;end;end %赋路径初值for(k=1:n)for(i=1:n)for(j=1:n)if(D(i,k)+D(k,j)<D(i,j))D(i,j)=D(i,k)+D(k,j); %更新dijR(i,j)=k; %更新rijend;end;endk %显示迭代步数D %显示每步迭代后的路长R %显示每步迭代后的路径pd=0;for(i=1:n) %含有负权if(D(i,j)<0)pd=1;break;end;end %存在一条含有顶点的vi的负回路if(pd)break;end %存在一条负回路,终止程序end %程序结束下面用一个实际的例子进行一下函数实际运算:例:求解下赋权图中任意两点中的最短路。

V1 6 V42 6 53 8V08 V2 1 V5 6 v71 72 4 3V39 V5用matlab函数运行以后,运行结果如下:请输入矩阵的阶n=8请输入赋权图对应的n阶矩阵A=[0 2 8 1 inf inf inf inf;2 0 6 inf 1 inf inf inf;8 6 0 7 5 1 2 inf;1 inf 7 0 inf inf 9 inf;inf 1 5 inf 0 3 inf 8;inf inf 1 inf 3 0 4 6;inf inf 2 9 inf 4 0 3;inf inf inf inf 8 6 3 0]k =1D =0 2 8 1 Inf Inf Inf Inf2 0 63 1 Inf Inf Inf8 6 0 7 5 1 2 Inf1 3 7 0 Inf Inf 9 InfInf 1 5 Inf 0 3 Inf 8Inf Inf 1 Inf 3 0 4 6Inf Inf 2 9 Inf 4 0 3Inf Inf Inf Inf 8 6 3 0R =1 2 3 1 5 6 7 81 2 3 4 5 6 7 81 1 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 8k =2D =0 2 8 1 3 Inf Inf Inf2 0 63 1 Inf Inf Inf8 6 0 7 5 1 2 Inf1 3 7 0 4 Inf 9 Inf3 1 54 0 3 Inf 8Inf Inf 1 Inf 3 0 4 6 Inf Inf 2 9 Inf 4 0 3 Inf Inf Inf Inf 8 6 3 0R =1 2 3 1 5 6 7 81 2 3 4 5 6 7 81 1 3 42 6 7 82 23 2 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 8 k =3D =0 2 8 1 3 9 10 Inf2 0 63 1 7 8 Inf8 6 0 7 5 1 2 Inf1 3 7 0 4 8 9 Inf3 1 54 0 3 7 89 7 1 8 3 0 3 610 8 2 9 7 3 0 3Inf Inf Inf Inf 8 6 3 0 R =1 2 3 1 5 3 3 81 2 3 4 5 6 7 81 1 3 423 7 82 23 2 5 6 3 83 3 3 3 5 6 3 83 3 34 3 3 7 81 2 3 4 5 6 7 8 k =4D =0 2 8 1 3 9 10 Inf2 0 63 1 7 8 Inf8 6 0 7 5 1 2 Inf1 3 7 0 4 8 9 Inf3 1 54 0 3 7 89 7 1 8 3 0 3 610 8 2 9 7 3 0 3Inf Inf Inf Inf 8 6 3 0 R =1 2 3 1 5 3 3 81 2 3 4 5 6 7 81 1 3 423 7 82 23 2 5 6 3 83 3 3 3 5 6 3 83 3 34 3 3 7 81 2 3 4 5 6 7 8 k =5D =0 2 8 1 3 6 10 112 0 63 14 8 98 6 0 7 5 1 2 131 3 7 0 4 7 9 123 1 54 0 3 7 86 4 17 3 0 3 610 8 2 9 7 3 0 311 9 13 12 8 6 3 0 R =1 2 3 1 5 5 3 51 2 3 4 5 6 7 51 1 3 42 5 7 52 23 2 5 6 3 85 5 3 5 56 3 83 3 34 3 3 7 85 5 5 5 5678 k = 6D =0 2 7 1 3 6 9 112 0 53 14 7 97 5 0 7 4 1 2 71 3 7 0 4 7 9 123 14 4 0 3 6 86 4 17 3 0 3 69 7 2 9 6 3 0 311 9 7 12 8 6 3 0 R =1 2 6 1 5 5 6 56 6 3 4 6 67 61 1 3 42 5 7 52 2 6 2 5 6 6 85 5 3 5 56 3 86 6 3 4 6 37 85 56 5 5 678 k =7D =0 2 7 1 3 6 9 112 0 53 14 7 97 5 0 7 4 1 2 51 3 7 0 4 7 9 123 14 4 0 3 6 86 4 17 3 0 3 69 7 2 9 6 3 0 311 9 5 12 8 6 3 0 R =1 2 6 1 5 5 6 56 6 3 4 6 67 71 1 3 42 5 7 52 2 6 2 5 6 6 85 5 3 5 56 3 86 6 3 4 6 37 85 5 7 5 5678 k = 8D =0 2 7 1 3 6 9 112 0 53 14 7 97 5 0 7 4 1 2 51 3 7 0 4 7 9 123 14 4 0 3 6 86 4 17 3 0 3 69 7 2 9 6 3 0 311 9 5 12 8 6 3 0 R =1 2 6 1 5 5 6 56 6 3 4 6 67 71 1 3 42 5 7 52 2 6 2 5 6 6 85 5 3 5 56 3 86 6 3 4 6 37 85 5 7 5 567 8注:上例中是用一个无向赋权图,对与有向赋权图只需要把反向的定义为无穷大(在matlab 中即用inf代替不能到达的情况),一样可以调用上述函数程序进行运算。

相关文档
最新文档