三年级 第四讲 鸡兔同笼

合集下载

鸡兔同笼ppt免费课件

鸡兔同笼ppt免费课件

05
如何教授鸡兔同笼问题
教授给小学生的方法
1 2
3
故事化教学
将鸡兔同笼问题转化为一个有趣的故事,通过故事情节引导 学生进入问题情境,增加学习的趣味性。
实物演示
准备一些小玩具或道具,模拟鸡和兔子的数量及动作,帮助 学生直观理解问题。
画图法
教会学生使用简单的图形和线条表示鸡和兔子,通过画图来 理解数量关系。
$number {01}
鸡兔同笼问题
目录
• 鸡兔同笼问题简介 • 鸡兔同笼问题的解决方法 • 鸡兔同笼问题的变种与扩展 • 鸡兔同笼问题的实际应用 • 如何教授鸡兔同笼问题 • 鸡兔同笼问题的趣味性和挑战性
01
鸡兔同笼问题简介
起源与背景
01
鸡兔同笼问题起源于中国古代的 数学趣题,最早的记录可以追溯 到《孙子算经》等古代数学著作 。
例如,题目中给出笼子里有35个头和80只脚,我们可以假设所有的动物都是鸡,那么应该有35只鸡和0只兔,但是这样就会 有70只脚而不是80只脚,所以我们需要增加兔子的数量来使得脚的数量符合题目要求。通过调整我们可以得出实际的鸡和兔 的数量。
03
鸡兔同笼问题的变种与扩展
多个笼子的问题
多个笼子的情况
当有多个笼子,每个笼子里有不 同种类的动物和不同数量的腿时 ,需要分别对每个笼子进行推理 和计算,最后汇总结果。
系统分析
在科学研究和工程领域,系统分析是非 常重要的一环。解决鸡兔同笼问题所使 用的逻辑推理和系统分析方法,可以应 用于更复杂的工程系统和科学问题。
VS
优化问题
在解决优化问题时,我们常常需要设定一 些条件并求解满足这些条件的解。鸡兔同 笼问题的解决方法可以提供一种有效的思 路和方法来解决这类优化问题。

鸡兔同笼完整版课件.

鸡兔同笼完整版课件.

鸡兔同笼完整版课件.一、教学内容本节课我们将学习《数学》教材第四章第三节“鸡兔同笼问题”。

具体内容包括:理解鸡兔同笼问题的基本概念,掌握鸡兔同笼问题的解题方法,通过实际例题和随堂练习,让学生能够熟练解决鸡兔同笼问题。

二、教学目标1. 知识目标:使学生掌握鸡兔同笼问题的解题思路和解题方法。

2. 能力目标:培养学生运用数学知识解决实际问题的能力。

3. 情感目标:激发学生对数学学习的兴趣,提高学生的合作意识和探究精神。

三、教学难点与重点教学难点:如何引导学生发现鸡兔同笼问题中的数量关系,并运用数学方法解决。

教学重点:鸡兔同笼问题的解题思路和解题方法。

四、教具与学具准备教具:多媒体教学设备、黑板、粉笔。

学具:练习本、笔。

五、教学过程1. 实践情景引入利用多媒体展示一个农场里鸡和兔的图片,让学生观察并思考:如何通过已知的脚的数量来判断鸡和兔的数量?2. 例题讲解讲解鸡兔同笼问题的基本概念和解题思路,通过一个具体的例题,引导学生发现鸡兔同笼问题中的数量关系,并给出解题步骤。

3. 随堂练习出示几道鸡兔同笼问题的练习题,让学生独立完成,并及时给予指导和反馈。

4. 小组讨论六、板书设计1. 鸡兔同笼问题基本概念2. 解题思路和方法3. 例题解析4. 随堂练习七、作业设计1. 作业题目(1)一个笼子里有鸡和兔共30只,脚的总数为74,求鸡和兔各有多少只?(2)一个笼子里有鸡和兔共40只,脚的总数为94,求鸡和兔各有多少只?答案:(1)鸡:18只,兔:12只。

(2)鸡:25只,兔:15只。

2. 拓展作业探究鸡兔同笼问题的其他解题方法,并举例说明。

八、课后反思及拓展延伸1. 反思本次教学过程中的优点和不足,针对学生的掌握情况,调整教学策略。

2. 拓展延伸:引导学生思考鸡兔同笼问题在生活中的其他应用,如物品分配、人员安排等,提高学生运用数学知识解决实际问题的能力。

重点和难点解析1. 教学难点与重点的确定2. 实践情景引入的设计3. 例题讲解的深度和广度5. 作业设计的问题设置和答案解析6. 课后反思及拓展延伸的实施一、教学难点与重点的确定1. 让学生观察问题,找出已知和未知量。

2024版年度鸡兔同笼三年级公开课PPT课件

2024版年度鸡兔同笼三年级公开课PPT课件

古代数学游戏
鸡兔同笼问题起源于中国 古代,是一种富有趣味性 的数学游戏问题。
2024/2/3
经典数学问题
该问题在数学史上具有重 要地位,经常被用来考察 逻辑思维和数学推理能力。
广泛流传
鸡兔同笼问题不仅在中国 流传广泛,还传播到了世 界各地,成为了一种世界 性的数学问题。
8
问题现实意义
实际应用
鸡兔同笼问题在现实生活中有很多实 际应用场景,如动物数量统计、资源 分配等。
强调思维训练
3
强调“鸡兔同笼”问题对于训练逻辑思维和推理 能力的重要性,鼓励学生在日常生活中多思考、 多实践。
2024/2/3
26
06
课程总结与展望
2024/2/3
27
课程重点回顾
解题思路
回顾鸡兔同笼问题的解题思路,包括假设法、列方程法等。
题目类型
总结鸡兔同笼问题的不同类型,如已知头数和脚数求鸡兔 数量、已知鸡兔数量和总脚数求各自动物数量等。
4
教学目标
01
02
03
知识与技能
理解鸡兔同笼问题的基本 概念和解题思路,能够运 用所学知识解决实际问题。
2024/2/3
过程与方法
通过直观演示、动手操作 和合作交流,培养学生的 观察、分析和推理能力。
情感态度与价值观
激发学生对数学的兴趣和 好奇心,培养学生的探究 精神和创新意识。
5

教学内容与方法
2024/2/3
01
3. 根据差值和每只兔比每只鸡多的 脚数,计算兔的数量。
02
4. 用总头数减去兔的数量,得到鸡 的数量。
18
实例二:变形题型
01
题目:小明买回8角一支的铅笔和4角一块的橡皮共花了34 元。已知买回的铅笔比橡皮多9支,求小明买了几支铅笔?

鸡兔同笼(三年级培优)教师版

鸡兔同笼(三年级培优)教师版

鸡兔同笼问题的本质:(1) 两种不同的事物如鸡和兔(2) 它们有相同点如鸡兔都有一个头,那么在做鸡兔同笼变形题时把数量相同的特征看做头(3) 它们有不同点如鸡兔腿的数量不同,把数量不同的特征看做腿基本型鸡兔同笼的解决方法:(1) 假设 ;(2) 找总差 ;(3) 找单位差 ;(4) 求出另一种事物的数量。

鸡兔同笼问题的基本公式:(1) 假设全兔:鸡数=(每只兔脚数×鸡兔总数-实际脚数)÷(每只兔脚数-每只鸡脚数)兔数=鸡兔总数-鸡数注意假设全兔时先求出的是鸡的数量。

(2) 假设全鸡:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔脚数-每只鸡脚数)鸡数=鸡兔总数-兔数注意假设全鸡时先求出的是兔子的数量。

不建议孩子们死记硬背公式,希望透彻理解,才能灵活应用。

有若干只鸡和兔同在一个笼子里,从上面数共有35个头;从下面数,有94只脚,问鸡与兔各多少只?【知识点】:鸡兔同笼;【难度】:★★;【出处】:数学奥林匹克【分析】:方法一:共有35个头表示鸡与兔共有35只,如果35只都是兔,一共应有140354=⨯只脚,这比已知的94只脚多了4694140=-只脚.由于我们把鸡看作兔,每只鸡多算了2只脚,才有了这多出来的46只脚,因此这46里面有多少个2,笼子里面就有几只鸡,求出鸡的只数后再拿总只数减去鸡的只数即可.解答:假设全部都是兔,则鸡有:()()232462494354=÷=-÷-⨯(只)兔有:122335=-(只)答:鸡有23只,兔有12只.方法二:砍足法(金鸡独立法) (本方法了解一下即可,不通用,重点还是假设法)假设所有的动物用一半的腿站立,即鸡用1腿,兔用2腿。

这时只剩下100÷2=50条腿 这样的好处是:鸡的头腿数量相同,而兔腿数比头数多一。

所以腿比头多的数量就是兔子的数量,兔数:50-35=15(只)鸡数:35-15=20(只)注:(1)建议孩子们在熟悉之后可以列综合算式解鸡兔同笼问题。

鸡兔同笼教案优秀7篇

鸡兔同笼教案优秀7篇

鸡兔同笼教案优秀7篇小学数学《鸡兔同笼》教案篇一教学目标知识与技能:通过复习“鸡兔同笼”问题,感受中国古代数学问题的趣味性。

过程与方法:能熟练用列表、假设等不同的方法解决“鸡兔同笼”问题,体验解决问题的方法的多样性,提高解决实际问题的能力。

情感态度价值观:通过复习,培养学生的合作意识和逻辑推理能力,在解决问题的过程中,提高迁移思维的能力,进而体会数学的价值。

教学重点:熟练理解和掌握解决问题的不同思路和方法,让学生再一次亲历列表法、假设法等解题的过程,深刻体会解决问题的一般性策略。

教学难点:建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略熟练解决生活中的实际问题。

教具学具:多媒体教学过程一、情境导入师:“鸡兔同笼”是一道有名的中国古算题。

最早出现在《孙子算经》中。

许多小数数学问题都可以转化成这类问题。

师:你知道解决“鸡兔同笼”问题有几种方法吗?通过比较发现它们有什么特点?生1:列表法,适合数据较小的问题。

生2:假设法,一般情况都适合,数量关系比较容易理解。

师:今天我们复习“鸡兔同笼”问题。

二、自主探究师:摆三角形和正方形一共用了19根小棒。

(任意两个图形之间没有公共边)你能算出分别摆了多少个三角形和多少个正方形吗?(学生回答)师:星期日,小英一家八口人到博物馆参观,博物馆的票价是成人每人30元,儿童每人15元,买门票共花去210元钱,其中儿童有几人?(学生回答)师:三年级(4)班48人去北海公园划船,租了大船和小船共10条,每6人克坐满一条大船,每4人可坐满一条小船,且每条船都没有空位,他们租大船和小船各几条?(学生回答)三、探究结果汇报师:通过复习“鸡兔同笼”问题,你有哪些收获?生1:借助列表的。

方法,解决简单的实际问题。

生2:我学会了化繁为简的学习方法。

生3:用“假设”法解决问题的一般性。

四、师生总结收获师:通过本课的学习,你有哪些收获?师生总结得出:解决数学问题时,可以先提出假设,如果假设后的情况与实际不符,这时就需要进行调整。

鸡兔同笼教案

鸡兔同笼教案

鸡兔同笼教案.doc一、教学目标:1. 让学生理解并掌握鸡兔同笼问题的解法,提高解决问题的能力。

2. 培养学生的逻辑思维和团队合作精神。

3. 通过对鸡兔同笼问题的探讨,激发学生对数学的兴趣和好奇心。

二、教学内容:1. 鸡兔同笼问题的引入和基本概念。

2. 鸡兔同笼问题的解法:列举法、假设法、方程法等。

3. 鸡兔同笼问题的拓展和应用。

三、教学重点与难点:1. 教学重点:鸡兔同笼问题的解法及其应用。

2. 教学难点:鸡兔同笼问题的拓展和方程法的运用。

四、教学方法与手段:1. 采用问题驱动的教学方法,引导学生主动探究鸡兔同笼问题的解法。

2. 利用多媒体课件、教具等辅助教学,提高学生的学习兴趣。

3. 分组讨论、合作交流,培养学生的团队协作能力。

五、教学过程:1. 导入:通过一个有趣的鸡兔同笼问题,引发学生的好奇心,激发学习兴趣。

2. 讲解:介绍鸡兔同笼问题的基本概念和解法,讲解方程法的步骤。

3. 实践:让学生分组讨论,运用方程法解决实际问题。

4. 拓展:引导学生思考鸡兔同笼问题的拓展应用,如变种问题、实际场景等。

5. 总结:对本节课的内容进行归纳总结,强调鸡兔同笼问题的解法及其应用。

6. 作业布置:布置一些有关鸡兔同笼问题的练习题,巩固所学知识。

7. 课后反思:鼓励学生反思自己的学习过程,总结收获和不足。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及小组合作表现,评价学生的学习态度和团队协作能力。

2. 作业评价:对学生的课后作业进行批改,评估学生对鸡兔同笼问题解法的掌握程度和应用能力。

3. 拓展问题评价:针对课堂拓展环节,让学生提出自己的观点和解决方案,评价学生的创新思维和问题解决能力。

七、教学反思:1. 教师反思:在课后对整个教学过程进行回顾,思考教学方法的有效性,以及学生反馈的信息,为改进教学策略提供依据。

2. 学生反思:鼓励学生回顾学习过程,思考自己在解决问题中的优点和不足,制定提高计划。

三年级奥数知识点:鸡兔同笼问题

三年级奥数知识点:鸡兔同笼问题“鸡兔同笼”问题,也叫简换问题,同学们听说过吗?这是一类著名的数学问题,是指鸡与兔同在一个笼中,已知鸡与兔的总头数以及鸡与兔的总足数,求鸡和兔各是多少只的应用题。

这种类型题是古代趣题,在现实生活和生产中应用广泛,有着十分重要的使用价值。

如:“鸡兔同笼,共有45个头,146只脚。

笼中各有多少只鸡兔?”鸡兔同笼问题的特点是:题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。

解答时,一般采用假设法,即假定全部的只数都是鸡或者是兔,算出假定情况下的足数和实际上的足数和、足数差,然后推算出鸡和兔的只数。

计算时的主要数量关系是:1.如果假定全部是兔,则鸡的只数=(每只兔的足数×总头数-总足数)÷(每一只鸡与兔足数的差)简单理解就是:鸡的只数=(4 ×总头数-总足数)÷2兔的只数=总头数-鸡的只数2.如果假定全部是鸡,则兔的只数=(总足数-每只鸡的足数×总头数)÷(每一只鸡与兔足数的差)简单写就是兔的只数=(总足数-2 ×总头数)÷2鸡的只数=总头数-兔的只数《奔跑吧,兄弟》第二季第二期中的密室逃脱彻底考验了7位兄弟的智商。

陈赫受困于“鸡兔同笼”问题,无计可施,先一步越狱的包贝尔决定施以援手,但其另类解法招致陈天才的嗤之以鼻,不过事实证明该解法效果显著,陈赫最终获救,可见绝顶果然聪明,小贝着实不凡。

回顾原题,其表述是:鸡兔同笼共35头,94只脚,问鸡有几只,兔有几只?包贝尔所谓的“所有动物抬起两只脚”,抬起了70只脚,地上剩下94-70=24,对应的是兔子剩下的脚,24÷2=12就是兔子的数量。

其实就是假设法,即假设笼子里全是鸡,则应有35×2=70只脚,实际有94只脚,故兔子有(94-70)÷2=12只,鸡有35-12=23只。

典型例题1鸡兔同笼,共有45个头,146只脚。

鸡兔同笼三年级公开课课件.

鸡兔同笼三年级公开课课件.一、教学内容本节课我们将探讨《数学乐园》教材第四章“解决问题的策略”中的“鸡兔同笼”问题。

详细内容包括理解鸡兔同笼问题的实质,学习使用列表法、画图法及假设法解决此类问题,掌握基本的数量关系和解决实际问题的策略。

二、教学目标1. 理解鸡兔同笼问题的结构特点,能够识别并描述其数量关系。

2. 掌握用列表法、画图法及假设法解决鸡兔同笼问题的方法,并能够灵活运用。

3. 培养学生运用数学知识解决实际问题的能力,增强学生对数学学习的兴趣。

三、教学难点与重点教学难点:理解并运用假设法解决鸡兔同笼问题。

教学重点:掌握列表法、画图法解决鸡兔同笼问题的步骤。

四、教具与学具准备教具:PPT课件、黑板、粉笔。

学具:练习本、铅笔、彩色笔。

五、教学过程1. 实践情景引入通过PPT展示一个真实的农场,其中有鸡和兔子,引导学生观察并提问:“你们能告诉我农场里有多少只鸡和兔子吗?”2. 例题讲解(1)使用列表法解决鸡兔同笼问题。

a. 在黑板上列出鸡和兔子的数量组合,引导学生观察总腿数。

b. 通过比较找出符合题意的答案。

(2)使用画图法解决鸡兔同笼问题。

a. 在PPT上展示鸡和兔子的图形,引导学生通过画图解决问题。

(3)使用假设法解决鸡兔同笼问题。

a. 提问:“如果农场里的鸡和兔子数量变化了,你们还能不能很快找出答案?”b. 引导学生通过假设鸡或兔子的数量,列出等量关系式,求解答案。

3. 随堂练习让学生独立完成教材上的练习题,鼓励他们使用至少两种方法解题。

六、板书设计1. 板书鸡兔同笼问题2. 内容:(1)列表法步骤(2)画图法步骤(3)假设法步骤及等量关系式七、作业设计1. 作业题目(1)假设农场里共有10只鸡和兔子,共有28条腿,求鸡和兔子各有多少只?(2)如果农场里共有16只鸡和兔子,共有44条腿,求鸡和兔子各有多少只?2. 答案(1)鸡4只,兔子6只。

(2)鸡10只,兔子6只。

八、课后反思及拓展延伸1. 反思2. 拓展延伸鼓励学生运用所学知识解决生活中的类似问题,如物品分配问题等,提高学生运用数学知识解决实际问题的能力。

《鸡兔同笼》PPT课件


在数学中的应用
代数运算
鸡兔同笼问题可以通过代数运算进行求解,涉及到方程的建立和求解等数学知识。通过这类问题的训练, 可以提高学生的代数运算能力和数学思维能力。
数学建模
鸡兔同笼问题可以看作是一个简单的数学建模问题。在数学建模中,需要将实际问题抽象成数学模型,并 运用数学方法进行求解。通过鸡兔同笼问题的学习,可以引导学生初步了解数学建模的思想和方法。
方程法
一元一次方程
设鸡为x只,兔为y只。根据题目中给出的头数和脚数,可以列出一个包含x和y的一 元一次方程,然后解方程求出x和y的值。
二元一次方程组
同样地,也可以设鸡为x只,兔为y只,但是列出两个包含x和y的二元一次方程组。 通过解这个方程组,可以求出x和y的值。
列表法
逐一列举
根据题目中给出的头数和脚数的范围,可以逐一列举出所有可 能的鸡和兔的组合,并计算每种组合下的脚数。然后与实际脚 数进行比较,找出符合条件的组合。
示例
一个笼子里有鸡、兔和猪, 共有35个头和94只脚,求 鸡、兔和猪各有多少只?
不同数量级动物同笼问题
描述
笼子里的动物数量级相差 较大,例如鸡的数量远多 于兔。
解决方法
可以通过合理的估算和假 设,简化问题求解的难度。
示例
一个笼子里有大量的鸡和 少量的兔,共有1000个头 和2700只脚,求鸡和兔各 有多少只?
《鸡兔同笼》问题在现代教育中仍然具有重要意义,被广泛应用于小学数学、初中 数学等课程中。
课件目的
帮助学生理解《鸡兔同笼》问 题的背景、意义和解法,提高 学生的数学素养和解决问题的 能力。
通过对该问题的深入剖析和多 种解法的探讨,培养学生的数 学思维和创新能力。
引导学生体会数学在解决实际 问题中的应用价值,激发学生 学习数学的兴趣和动力。

鸡兔同笼教案7篇

鸡兔同笼教案7篇鸡兔同笼教案7篇作为一名优秀的教育工作者,就难以避免地要准备教案,借助教案可以更好地组织教学活动。

那么问题来了,教案应该怎么写?下面是小编为大家整理的鸡兔同笼教案7篇,仅供参考,欢迎大家阅读。

鸡兔同笼教案篇1一、教学目标:1、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

2、应用假设的数学思想,在解题中数形结合,提高学生分析问题和解决问题的能力;3、在解决“鸡兔同笼”的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。

二、教材分析本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一列表法、跳跃式列表法、取中列表法等来解决问题。

学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

三、学校及学生状况分析五年级学生在三年级时已初步学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一列表法解决问题,还有一些学生在校外的奥数班中已经学习了相关的内容。

因此,教学在这一内容时,学生的程度参差不齐。

本班的学生思维活跃,敢想,敢说,有一定的小组合组经验。

四、教学设计(一)创设情境师:今天这一节课,我们要共同研究鸡兔同笼问题。

(板书:鸡兔同笼)你们知道鸡兔同笼是什么意思?生:鸡兔同笼就是鸡兔在一个笼子里。

(媒体出示课本第80页的情景图)师:请你猜一猜,图中大约有几只兔子,几只鸡?生1:我猜大约是7只,兔子5只鸡。

生2:不一定。

因为有一棵树把鸡和兔子挡住了,所以我不知道各有几只。

(二)探求新知师:如果告诉你:鸡兔同笼,有20个头,54条脚,鸡、兔各多少?能求出几只兔子,几只鸡吗?(媒体出示题目的条件)师:想一想,要解决这个问题可以用什么方法?想好了,可以写在作业纸上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四讲鸡兔同笼
教室姓名学号
【知识要点】
解答鸡兔同笼问题,我们通常用假设法,根据题目中所给出的两个未知数的关系,用一个未知数代替另一个未知数,从而将两个未知数转换成一个未知数,先求出其中一个,再求出另一个。

因此,鸡兔同笼问题又称为假设问题。

其一般关系式可表示为:结果差÷产生不同结果的原因差=与假设相反的量
【经典例题】
★例1:一笼中装着鸡和兔,数数头有10只,数数脚有36只,鸡和兔各有多少只?
画图法:先画10个○表示鸡和兔,接着试一试吧!(如果假设都是鸡或假设都是兔)
列表法:
我会列式算一算:
★2、笼子里一共有8只鸡和兔,鸡腿和兔腿一共有20条。

鸡和兔各有多少只?
★★3、一队猎人一队狗,两队并成一队走。

数头一共是十二,数脚一共四十二。

你能算出猎人和狗各有多少吗?
★★4、车棚里共有自行车和三轮车8辆,数数共20个轮子。

自行车和三轮车各几辆?
【池中戏水】
★1、今有鸡兔同笼,上有8头,下有22足。

问:鸡有几只?兔有几只?
★2、有龟和鹤共8只,龟的腿和鹤的腿共有26条。

龟、鹤各有几只?
★3、12张乒乓球台上有34人在进行比赛,正在进行单打的球台有几张,双打的几张?
★4、六(3)班38人去公园划船,大船坐6人,小船坐4人,共租了8条船,每条船都坐满了。

大船、小船各租了几条?
★5、一停车场,停着小轿车和三轮摩托车正好24辆。

这些车共有86个轮子,那么,三轮摩托车有多少辆?
【江中畅游】
★★1、学校买来100个乒乓球,分别装在6个大盒和8个小盒里,如果2个小盒中的球数和1个大盒中的球数同样多,那么1个大盒和1个小盒各装多少个球?
★★2、张军买5角一支和2角一支的铅笔共18支,用了6元钱。

张军买了5角的铅笔几支,买了2角的铅笔几支?
★★3、王领队带领51名队员一同去划船,共租了11条船。

每条大船坐6人,每条小船坐4人,那么他们需租大船几条,小船几条?。

相关文档
最新文档