正弦函数、余弦函数的周期性与奇偶性
三角函数的周期性与奇偶性

三角函数的周期性与奇偶性三角函数是高中数学中的一个重要部分,它的周期性和奇偶性是在学习三角函数的过程中需要掌握的基本概念。
三角函数中主要包括正弦函数、余弦函数和正切函数。
1. 正弦函数的周期性和奇偶性正弦函数的定义式为y = sin x,其中x为自变量,y为因变量。
正弦函数的图像是一条波形曲线,它的周期为2π,即当x增加一个周期时,y的值会重复一次。
具体来说,正弦函数在[0,2π]区间内的最小正周期为2π。
因此,在对正弦函数进行周期性和奇偶性的分析时,可以把自变量限制在[0,2π]之间。
正弦函数的奇偶性是指当x取反时,y的值是否发生变化。
可以通过正弦函数的定义式来进行验证:sin(-x) = -sin x。
因此,正弦函数是一个奇函数,即在[0,2π]内,正弦函数关于坐标轴的原点对称。
2. 余弦函数的周期性和奇偶性余弦函数的定义式为y = cos x,其中x为自变量,y为因变量。
余弦函数的图像也是一条波形曲线,它的周期也是2π。
与正弦函数类似,余弦函数的最小正周期也为2π。
在对余弦函数进行周期性和奇偶性的分析时,也可以把自变量限制在[0,2π]之间。
余弦函数的奇偶性是指当x取反时,y的值是否发生变化。
通过余弦函数的定义式可以得知:cos(-x) = cos x。
因此,余弦函数是一个偶函数,即在[0,2π]内,余弦函数关于y轴对称。
3. 正切函数的周期性和奇偶性正切函数的定义式为y = tan x,其中x为自变量,y为因变量。
正切函数在定义域内有无数个周期,其最小正周期为π,即当x增加π时,y的值会重复一次。
因此,在对正切函数进行周期性和奇偶性的分析时,需要考虑其多个周期的情况。
正切函数的奇偶性是指当x取反时,y的值是否发生变化。
通过正切函数的定义式可以得知:tan(-x) = -tan x。
因此,正切函数是一个奇函数,即在其每个周期内,正切函数关于坐标轴的原点对称。
综上所述,三角函数的周期性和奇偶性是其在数学中的重要概念之一。
第五章 5.4 5.4.2 第一课时 正弦函数、余弦函数的周期性与奇偶性

5.4.2正弦函数、余弦函数的性质第一课时正弦函数、余弦函数的周期性与奇偶性课标要求素养要求1.了解周期函数、周期、最小正周期的定义.2.会求函数y=A sin(ωx+φ)及y=A cos(ωx+φ)的周期.3.掌握函数y=sin x,y=cos x的奇偶性,会判断简单三角函数的奇偶性. 利用y=sin x,y=cos x的图象,探索y =sin x,y=cos x的周期性、奇偶性,重点提升学生的直观想象、逻辑推理和数学抽象素养.教材知识探究丹麦这个处在安徒生童话中的国家,如同安徒生的童话描写一般,有很大的风,也有很多的风,自然也有很多很大的风车,而现在丹麦又有了世界上最大的风力发电机组,这个维斯塔斯和三菱合作的大风车V164-8.0 MW,全部高度有220米,风车风轮的直径也达到了世界最大的风力发电机组164米,扫掠面积21 000平米,在风速11米/秒时,转速在4.8~12.1 rpm之间,电力输出可达到每小时最大8百万瓦,这个风力发电组的电能能满足7 500个家庭的电力需求.风力发电机就是靠它的叶片周而复始的转动给我们带来了巨大的收益.这种周而复始的转动就是周期现象.问题 1.你能用数学语言刻画函数的周期性吗?如果函数y=f(x)的周期是T,那么函数y=f(ωx)(ω>0)的周期是多少?2.函数y=A sin(ωx+φ)或y=A cos (ωx+φ)的周期与什么量有关?其计算周期的公式是什么?提示 1.对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),则f (x )为周期函数,y =f (ωx )的周期为Tω. 2.与ω有关,T =2π|ω| .1.周期函数 没有特别说明的情况下,周期均指函数的最小正周期条件 ①对于函数f (x ),存在一个非零常数T②当x 取定义域内的每一个值时,都有f (x +T )=f (x ) 结论 函数f (x )叫做周期函数,非零常数T 叫做这个函数的周期条件 如果周期函数f (x )的所有周期中存在一个最小的正数 结论这个最小正数叫做f (x )的最小正周期函数 y =sin x y =cos x 周期 2k π(k ∈Z 且k ≠0)2k π(k ∈Z 且k ≠0)最小正周期 2π 2π 奇偶性奇函数偶函数[微判断]1.周期函数y =f (x )的定义域可以为[a ,b ](a ,b ∈R ).(×) 提示 周期函数的定义域一定为无限集,且无上下界.2.任何周期函数都有最小正周期.(×)提示 常数函数f (x )=c ,任意一个正实数都是其周期,因而不存在最小正周期. 3.若存在正数T ,使f (x +T )=-f (x ),则函数f (x )的周期为2T .(√) 4.函数f (x )=sin 2x 是奇函数.(√) 5.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π2是偶函数.(√)6.y =sin x 与y =cos x 既是中心对称图形又是轴对称图形.(√) [微训练]1.函数y =sin(x +π2)是( ) A.周期为π的奇函数 B.周期为π的偶函数 C.周期为2π的奇函数 D.周期为2π的偶函数解析 因为y =sin(x +π2)=cos x ,所以该函数是周期为2π的偶函数. 答案 D2.若函数y =sin(x +φ)(0≤φ≤π)在R 上为偶函数,则φ可等于( ) A.0 B.π4 C.π2D.π解析 代入排除,当φ=π2时, y =sin ⎝ ⎛⎭⎪⎫x +π2=cos x 为偶函数.答案 C3.下列四个函数中,图象关于y 轴对称的是( ) A.y =sin x B.y =1+cos x C.y =sin 2xD.y =cos ⎝ ⎛⎭⎪⎫2x +π3解析 图象关于y 轴对称,则为偶函数,故选B. 答案 B [微思考]函数y =A sin(ωx +φ)满足什么条件时为奇函数、偶函数?y =A cos (ωx +φ)满足什么条件时为奇函数、偶函数?提示 根据诱导公式.当φ=k π+π2,k ∈Z 时,y =A sin(ωx +φ)为偶函数,φ=k π,k ∈Z 时,y =A sin(ωx +φ)为奇函数,当φ=k π+π2,k ∈Z 时,y =A cos (ωx +φ )为奇函数,当φ=k π,k ∈Z 时,y =A cos (ωx +φ)为偶函数(k ≠0).题型一 求三角函数的周期 【例1】 求下列函数的周期: (1)y =2sin(12x +π6),x ∈R ; (2)y =1-2cos(π2x ),x ∈R ; (3)y =|sin x |,x ∈R .解 (1)∵2sin ⎣⎢⎡⎦⎥⎤12(x +4π)+π6=2sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x +π6+2π=2sin ⎝ ⎛⎭⎪⎫12x +π6, ∴自变量x 只要并且至少要增加到x +4π, 函数y =2sin ⎝ ⎛⎭⎪⎫12x +π6,x ∈R 的值才能重复出现,∴函数y =2sin ⎝ ⎛⎭⎪⎫12x +π6,x ∈R 的周期是4π.(2)∵1-2cos[π2(x +4)]=1-2cos(π2x +2π)=1-2cos(π2x ),∴自变量x 只需并且至少要增加到x +4,函数y =1-2cos(π2x ),x ∈R 的值才能重复出现,∴函数y =1-2cos(π2x ),x ∈R 的周期是4. (3)作图如下:观察图象可知最小正周期为π. 规律方法 求三角函数周期的方法 (1)定义法,即利用周期函数的定义求解.(2)公式法,对形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(A ,ω,φ是常数,A ≠0,ω≠0)的函数,T =2π|ω|.(3)观察法,即通过观察函数图象求其周期. 【训练1】 求下列函数的最小正周期: (1)y =sin ⎝ ⎛⎭⎪⎫3x +π3;(2)y =⎪⎪⎪⎪⎪⎪cos ⎝ ⎛⎭⎪⎫2x +π6.解 (1)∵sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x +2π3+π3=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫3x +π3+2π =sin ⎝ ⎛⎭⎪⎫3x +π3. ∴自变量x 只要并且至少要增加到x +2π3,函数y =sin ⎝ ⎛⎭⎪⎫3x +π3,x ∈R 的值才能重复出现,∴函数y =sin ⎝ ⎛⎭⎪⎫3x +π3,x ∈R 的周期是2π3.(2)∵函数y =cos ⎝ ⎛⎭⎪⎫2x +π6的最小正周期为π,而函数y =cos ⎝ ⎛⎭⎪⎫2x +π6的图象是将函数y =cos ⎝ ⎛⎭⎪⎫2x +π6的图象在x 轴下方的部分对折到x 轴上方,并且保留在x 轴上方图象而得到的,由此可知所求函数的最小正周期为T =π2.题型二 三角函数的奇偶性 首先判断函数的定义域是否关于原点对称 【例2】 判断下列函数的奇偶性: (1)f (x )=sin ⎝ ⎛⎭⎪⎫-12x +π2;(2)f (x )=lg(1-sin x )-lg(1+sin x ); (3)f (x )=1+sin x -cos 2 x1+sin x.解 (1)显然x ∈R ,f (x )=cos 12x ,f (-x )=cos ⎝ ⎛⎭⎪⎫-12x =cos 12x =f (x ),∴f (x )是偶函数.(2)由⎩⎨⎧1-sin x >0,1+sin x >0,得-1<sin x <1.解得定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z . ∴f (x )的定义域关于原点对称.又∵f (x )=lg(1-sin x )-lg(1+sin x ) ∴f (-x )=lg[1-sin(-x )]-lg[1+sin(-x )] =lg(1+sin x )-lg(1-sin x )=-f (x ). ∴f (x )为奇函数.(3)∵1+sin x ≠0,∴sin x ≠-1, ∴x ∈R 且x ≠2k π-π2,k ∈Z .∵定义域不关于原点对称,∴该函数是非奇非偶函数. 规律方法 判断函数奇偶性的两个关键点 (1)看函数的定义域是否关于原点对称; (2)看f (-x )与f (x )的关系.对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断. 【训练2】 判断下列函数的奇偶性: (1)f (x )=|sin x |+cos x ; (2)f (x )=1-cos x +cos x -1. 解 (1)函数的定义域为R ,又f (-x )=|sin(-x )|+cos(-x )=|sin x |+cos x =f (x ),所以f (x )是偶函数.(2)由1-cos x ≥0且cos x -1≥0,得cos x =1,从而x =2k π,k ∈Z ,此时f (x )=0,故该函数既是奇函数又是偶函数.题型三 三角函数的奇偶性与周期性的简单应用【例3】 (1)下列函数中是奇函数,且最小正周期是π的函数是( ) A.y =cos|2x | B.y =|sin x | C.y =sin ⎝ ⎛⎭⎪⎫π2+2xD.y =cos ⎝ ⎛⎭⎪⎫3π2-2x解析 y =cos|2x |是偶函数,y =|sin x |是偶函数,y =sin ⎝ ⎛⎭⎪⎫π2+2x =cos 2x 是偶函数,y =cos ⎝ ⎛⎭⎪⎫3π2-2x =-sin 2x 是奇函数,根据公式得其最小正周期T =π.答案 D(2)定义在R 上的函数f (x )既是偶函数,又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,则f ⎝ ⎛⎭⎪⎫5π3等于( )A.-12B.12C.-32D.32解析 f (5π3)=f (5π3-π)=f (2π3)=f (2π3-π)=f (-π3)=f (π3)=sin π3=32. 答案 D【迁移1】 若将例3(2)题中的“偶函数”改为“奇函数”,其他条件不变,结果如何?解 f (5π3)=f (5π3-π)=f (2π3)=f (2π3-π)=f (-π3)=-f (π3)=-sin π3=-32. 【迁移2】 若将例3(2)题条件不变,求f ⎝ ⎛⎭⎪⎫2 017π3+f ⎝ ⎛⎭⎪⎫2 018π3的值.解 f (2 017π3)=f (672π+π3)=f (π3)=sin π3=32,f (2 018π3)=f (672π+2π3)=f (2π3)=f (-π3)=f (π3)=sin π3=32, 所以f (2 017π3)+f (2 018π3)=32+32= 3.规律方法 当函数值的出现具有一定的周期性时,可以首先研究它在一个周期内的函数值的变化情况,再给予推广求值.【训练3】 若函数f (x )是以π2为周期的偶函数,且f ⎝ ⎛⎭⎪⎫π3=1,则f ⎝ ⎛⎭⎪⎫-17π6=________.解析 f (-17π6)=f (-17π6+3π)=f (π6)=f (π6-π2)=f (-π3)=f (π3)=1. 答案 1一、素养落地1.通过本节课的学习,提升学生的直观想象、逻辑推理、数学抽象素养.2.求函数的最小正周期的常用方法:(1)定义法,即观察出周期,再用定义来验证;也可由函数所具有的某些性质推出使f (x +T )=f (x )成立的T .(2)图象法,即作出y =f (x )的图象,观察图象可求出T ,如y =|sin x |.(3)结论法,一般地,函数y =A sin(ωx +φ)(其中A ,ω,φ为常数,A ≠0,ω>0,x ∈R )的周期T =2πω.3.判断函数的奇偶性,必须坚持“定义域优先”的原则,准确求函数定义域和将式子合理变形是解决此类问题的关键.如果定义域关于原点对称,再看f (-x )与f (x )的关系,从而判断奇偶性. 二、素养训练1.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2解析 由题意T =2π2=π,故选C. 答案 C2.下列是定义在R 上的四个函数图象的一部分,其中不是周期函数的是( )解析 对于D ,x ∈(-1,1)时的图象与其他区间图象不同,不是周期函数. 答案 D3.函数f (x )=x +sin x ,x ∈R ( ) A.是奇函数,但不是偶函数 B.是偶函数,但不是奇函数 C.既是奇函数,又是偶函数 D.既不是奇函数,又不是偶函数解析 由f (-x )=-x -sin x =-(x +sin x )=-f (x )可知f (x )是奇函数,但f (-x )≠f (x ),故f (x )不是偶函数. 答案 A4.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫πx -π2-1,则下列命题正确的是( )A.f (x )是周期为1的奇函数B.f (x )是周期为2的偶函数C.f (x )是周期为1的非奇非偶函数D.f (x )是周期为2的非奇非偶函数解析 f (x )=sin(πx -π2)-1=-cos πx -1,故选B. 答案 B5.函数y =sin(ωx +π4)的最小正周期为2,则ω的值为________. 解析 T =2π|ω|=2,∴|ω|=π,∴ω=±π. 答案 ±π基础达标一、选择题1.下列函数中,周期为2π的是( ) A.y =sin x2 B.y =sin 2x C.y =|sin x2|D.y =|sin 2x |解析 y =sin x 2的周期为T =2π12=4π;y =sin 2x 的周期为T =2π2=π;y =|sin x2|的周期为T =2π;y =|sin 2x |的周期为T =π2. 答案 C2.函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)的最小正周期为π5,则ω等于( ) A.5 B.10 C.15D.20解析 由题意,知T =2πω=π5,所以ω=10.答案 B3.函数y =sin ⎝ ⎛⎭⎪⎫12x -φ(0≤φ≤π)是R 上的偶函数,则φ的值是( )A.0B.π4C.π2D.π解析 由题意,得sin(-φ)=±1,即sin φ=±1,因为φ∈[0,π],所以φ=π2,故选C. 答案 C4.定义在R 上的函数f (x )周期为π,且是奇函数,f ⎝ ⎛⎭⎪⎫π4=1,则f ⎝ ⎛⎭⎪⎫3π4的值为( )A.1B.-1C.0D.2解析 f ⎝ ⎛⎭⎪⎫34π=f ⎝ ⎛⎭⎪⎫π-π4=f ⎝ ⎛⎭⎪⎫-π4=-f ⎝ ⎛⎭⎪⎫π4=-1.答案 B5.设f (x )是定义域为R ,最小正周期为3π2的函数,若f (x )=⎩⎪⎨⎪⎧cos x ,-π2≤x ≤0,sin x ,0<x ≤π,则f ⎝ ⎛⎭⎪⎫-15π4的值等于( ) A.1 B.22 C.0D.-22解析 f ⎝ ⎛⎭⎪⎫-15π4=f ⎣⎢⎡⎦⎥⎤3π2×(-3)+3π4=f ⎝ ⎛⎭⎪⎫3π4=sin 3π4=22.答案 B 二、填空题6.函数f (x )是周期函数,10是f (x )的一个周期,且f (2)=2,则f (22)=________. 解析 f (22)=f (22-20)=f (2)= 2. 答案27.关于x 的函数f (x )=sin(x +φ)有以下说法:①对任意的φ,f (x )都是非奇非偶函数;②存在φ,使f (x )是偶函数;③存在φ,使f (x )是奇函数;④对任意的φ,f (x )都不是偶函数.其中错误的是________(填序号).解析 φ=0时,f (x )=sin x 是奇函数.φ=π2时,f (x )=cos x 是偶函数.答案 ①④8.已知函数f (x )=-sin ⎝ ⎛⎭⎪⎫ωx +π3+φ,ω≠0,φ∈(-π,π)为奇函数,则φ=________. 解析 由题意知π3+φ=k π,k ∈Z ,即φ=-π3+k π,k ∈Z .∵φ∈(-π,π),当k =0时,φ=-π3;当k =1时,φ=2π3.答案 -π3或2π3三、解答题9.判断下列函数的奇偶性.(1)f (x )=sin ⎝ ⎛⎭⎪⎫34x +3π2 (2)f (x )=x ·cos x . 解 (1)f (x )的定义域是R ,且f (x )=sin ⎝⎛⎭⎪⎫34x +3π2=-cos 34x ,所以f (-x )=f (x ),则f (x )是偶函数.(2)f (x )的定义域是R ,又f (-x )=(-x )·cos(-x )=-x cos x =-f (x ),所以f (x )是奇函数.10.已知f (x )是以π为周期的偶函数,且x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=1-sin x ,求当x ∈⎣⎢⎡⎦⎥⎤52π,3π时,f (x )的解析式. 解 x ∈⎣⎢⎡⎦⎥⎤52π,3π时,3π-x ∈⎣⎢⎡⎦⎥⎤0,π2, ∵x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=1-sin x , ∴f (3π-x )=1-sin(3π-x )=1-sin x .又∵f (x )是以π为周期的偶函数,∴f (3π-x )=f (-x )=f (x ),∴f (x )的解析式为f (x )=1-sin x ,x ∈⎣⎢⎡⎦⎥⎤52π,3π. 能力提升11.设f (x )=log 31-2sin x 1+2sin x. (1)求函数f (x )的定义域.(2)判断函数f (x )的奇偶性.(3)试判断f (x )是否为周期函数?若是直接写出f (x )的最小正周期.解 (1)∵1-2sin x 1+2sin x>0,∴-12<sin x <12, ∴k π-π6<x <k π+π6,k ∈Z ,∴该函数的定义域为{x |k π-π6<x <k π+π6,k ∈Z }.(2)由(1)知定义域关于原点对称,又f (-x )=log 31+2sin x 1-2sin x =log 3⎝ ⎛⎭⎪⎫1-2sin x 1+2sin x -1 =-log 31-2sin x 1+2sin x=-f (x ), ∴该函数为奇函数.(3)f (x )为周期函数,T =2π.12.已知函数f (x )=sin 2x +cos x +1cos x +1. (1)求函数f (x )的定义域并判断函数的奇偶性;(2)求函数f (x )的最小正周期.解 (1)由cos x +1≠0,得x ≠2k π+π,k ∈Z ,所以函数f (x )的定义域为{x |x ∈R ,x ≠2k π+π,k ∈Z },f (x )=sin 2x +cos x +1cos x +1=1-cos 2x +cos x +1cos x +1=-cos 2x +cos x +2cos x +1=(cos x +1)(2-cos x )cos x +1=2-cos x .因为f(-x)=f(x),且函数f(x)的定义域关于坐标原点对称,故函数f(x)为偶函数.(2)因为f(x)=2-cos x(x≠2kπ+π,k∈Z),所以f(x)的最小正周期为2π.。
三角函数的周期性和奇偶性

三角函数的周期性和奇偶性三角函数是数学中重要的函数之一,包括正弦函数、余弦函数、正切函数等。
本文将探讨三角函数的周期性和奇偶性,从而帮助读者更好地理解和应用这些函数。
一、周期性1. 正弦函数的周期性正弦函数的周期是2π(或360°),即f(x) = sin(x)在一个周期内的值与下一个周期内的值相同。
换句话说,正弦函数在每个2π的间隔内会重复自身的图像。
例如,f(0) = sin(0) = 0,f(2π) = sin(2π) = 0,f(4π) = sin(4π) = 0,以此类推。
这种周期性特征使得正弦函数在描述周期性现象时非常有用,比如震荡、波动等。
2. 余弦函数的周期性余弦函数的周期同样是2π(或360°),即f(x) = cos(x)在一个周期内的值与下一个周期内的值相同。
与正弦函数类似,余弦函数也在每个2π的间隔内重复自身的图像。
例如,f(0) = cos(0) = 1,f(2π) = cos(2π) = 1,f(4π) = cos(4π) = 1,以此类推。
余弦函数的周期性可以应用于描述周期性运动、振动等现象。
3. 正切函数的周期性正切函数的周期是π(或180°),即f(x) = tan(x)在一个周期内的值与下一个周期内的值相同。
不同于正弦函数和余弦函数,正切函数在每个π的间隔内重复自身的图像。
例如,f(0) = tan(0) = 0,f(π) = tan(π) = 0,f(2π) = tan(2π) = 0,以此类推。
正切函数的周期性可以应用于解决角度相关问题,比如角度变换、角度关系等。
二、奇偶性1. 正弦函数的奇偶性正弦函数的奇偶性体现在函数的对称性上。
具体来说,f(x) = sin(x)是一个奇函数,即f(-x) = -f(x)。
这意味着当自变量的符号取反时,函数值也取反。
例如,f(-π/2) = sin(-π/2) = -1,f(π/2) = sin(π/2) = 1,它们关于y轴对称。
高中数学 三角函数正弦函数余弦函数的周期性与奇偶性讲义 新人教A版必修一第一册

第1课时正弦函数、余弦函数的周期性与奇偶性知识点一周期函数1.周期函数状元随笔关于最小正周期(1)并不是所有的周期函数都有最小正周期,如常数函数f(x)=C,对于任意非零常数T,都有f(x+T)=f(x),即任意常数T都是函数的周期,因此没有最小正周期.(2)对于函数y=A sin(ωx+φ)+B,y=A cos(ωx+φ)+B,可以利用公式T=2π|ω|求最小正周期.知识点二正弦函数、余弦函数的周期性和奇偶性状元随笔关于正、余弦函数的奇偶性(1)正弦函数是奇函数,余弦函数是偶函数,反映在图象上,正弦曲线关于原点(0,0)对称,余弦曲线关于y轴对称.(2)正弦曲线、余弦曲线既是中心对称图形又是轴对称图形.提醒:诱导公式三是正弦函数、余弦函数的奇偶性的另一种表示形式.[教材解难]1.教材P202思考函数的周期性与解析式中x的系数有关.2.教材P202思考知道了一个函数的周期性和奇偶性能更容易画出函数的图象,从而得到函数的性质. [基础自测]1.下列函数中,周期为π2的是( )A .y =sin x 2B .y =sin 2xC .y =cos x4D .y =cos 4x解析:对于A ,T =2π12=4π,对于B ,T =2π2=π,对于C ,T =2π14=8π,对于D ,T =2π4=π2.答案:D2.函数f (x )=sin(-x )的奇偶性是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数解析:由于x ∈R ,且f (-x )=sin x =-sin(-x )=-f (x ),所以f (x )为奇函数,故选A.答案:A3.下列函数中是偶函数的是( ) A .y =sin 2x B .y =-sin x C .y =sin|x | D .y =sin x +1解析:A 、B 是奇函数,D 是非奇非偶函数,C 符合f (-x )=sin|-x |=sin|x |=f (x ),∴y =sin|x |是偶函数.答案:C 4.函数y =sin ⎝⎛⎭⎪⎫π2-x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线x =π2对称解析:因为y =sin ⎝ ⎛⎭⎪⎫π2-x =cos x , 又因为cos(-x )=cos x ,为偶函数,所以根据余弦函数的图象和性质可知其图象关于y 轴对称. 答案:B题型一 求三角函数的周期[教材P 201例2] 例1 求下列函数的周期: (1)y =3sin x ,x ∈R ; (2)y =cos 2x ,x ∈R ;(3)y =2sin ⎝ ⎛⎭⎪⎫12x -π6,x ∈R .【解析】 (1)∀x ∈R ,有3sin(x +2π)=3sin x . 由周期函数的定义可知,原函数的周期为2π.(2)令z =2x ,由x ∈R 得z ∈R ,且y =cos z 的周期为2π,即cos(z +2π)=cos z ,于是cos(2x +2π)=cos 2x ,所以cos 2(x +π)=cos 2x ,x ∈R .由周期函数的定义可知,原函数的周期为π.(3)令z =12x -π6,由x ∈R 得z ∈R ,且y =2sin z 的周期为2π,即2sin(z +2π)=2sinz ,于是2sin ⎝ ⎛⎭⎪⎫12x -π6+2π=2sin ⎝ ⎛⎭⎪⎫12x -π6,所以2sin ⎣⎢⎡⎦⎥⎤12(x +4π)-π6=2sin ⎝ ⎛⎭⎪⎫12x -π6.由周期函数的定义可知,原函数的周期为4π.状元随笔 通常可以利用三角函数的周期性,通过代数变形,得出等式f(x +T)=f(x)而求出相应的周期.对于(2),应从余弦函数的周期性出发,通过代数变形得出cos 2(x +T)=cos 2x ,x∈R ; 对于(3),应从正弦函数的周期性出发,通过代数变形得出sin ⎣⎢⎡⎦⎥⎤12(x +T )-π6=sin ⎝ ⎛⎭⎪⎫12x -π6,x ∈R .教材反思求函数周期的方法(1)定义法:紧扣周期函数的定义,寻求对任意实数x 都满足f (x +T )=f (x )的非零常数T .该方法主要适用于抽象函数.(2)公式法:对形如y =A sin(ωx +φ)和y =A cos(ωx +φ)(其中A ,ω,φ是常数,且A ≠0,ω>0),可利用T =2πω来求.(3)图象法:可画出函数的图象,借助于图象判断函数的周期,特别是对于含绝对值的函数一般采用此法.跟踪训练1 (1)下列函数中,不是周期函数的是( ) A.y =|cos x | B .y =cos|x | C .y =|sin x | D .y =sin|x |(2)函数y =2sin ⎝ ⎛⎭⎪⎫x 3-π6的周期为________. 解析:(1)画出y =sin|x |的图象,易知y =sin|x |不是周期函数.(2)方法一 因为2sin ⎝ ⎛⎭⎪⎫x 3-π6+2π=2sin ⎝ ⎛⎭⎪⎫x 3-π6, 即2sin ⎣⎢⎡⎦⎥⎤13(x +6π)-π6=2sin ⎝ ⎛⎭⎪⎫x 3-π6. 所以y =2sin ⎝ ⎛⎭⎪⎫x 3-π6的最小正周期是6π.方法二 函数的周期T =2π|ω|=2π13=6π.答案:(1)D (2)6π(1)作出函数的图象,根据周期的定义判断.(2)利用周期的定义,需要满足f(x +T)=f(x) ;也可利用公式T =2π|ω|计算周期.题型二 正、余弦函数的奇偶性问题[经典例题] 例2 判断下列函数的奇偶性. (1)f (x )=cos ⎝ ⎛⎭⎪⎫2x +5π2; (2)f (x )=sin(cos x ).【解析】 (1)函数的定义域为R .且f (x )=cos ⎝ ⎛⎭⎪⎫π2+2x =-sin 2x .因为f (-x )=-sin(-2x )=sin 2x =-f (x ),所以函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +5π2是奇函数.(2)函数的定义域为R .且f (-x )=sin[cos(-x )]=sin(cos x )=f (x ), 所以函数f (x )=sin(cos x )是偶函数.先用诱导公式化简,再利用定义法判断函数的奇偶性.方法归纳利用定义判断函数奇偶性的三个步骤注意:若函数f (x )的定义域不关于原点对称,无论f (-x )与f (x )有何关系,f (x )仍然是非奇非偶函数.跟踪训练2 判断下列函数的奇偶性: (1)f (x )=|sin x |+cos x ; (2)f (x )=1-cos x +cos x -1. 解析:(1)函数的定义域为R ,又f (-x )=|sin(-x )|+cos(-x )=|sin x |+cos x =f (x ),所以f (x )是偶函数. (2)由1-cos x ≥0且cos x -1≥0,得cos x =1,从而x =2k π,k ∈Z ,此时f (x )=0,故该函数既是奇函数又是偶函数. (1)利用定义法判断函数的奇偶性.(2)由偶次根式被开方数大于等于0求出cos x 的值以及x 的值,最后判断函数的奇偶性.题型三 三角函数的奇偶性与周期性的综合应用[经典例题]例3 定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,求f ⎝ ⎛⎭⎪⎫5π3的值.【解析】 因为f (x )的最小正周期是π, 所以f ⎝⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-2π=f ⎝ ⎛⎭⎪⎫-π3, 因为f (x )是R 上的偶函数, 所以f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32.利用周期性 f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫53π-2π=f ⎝ ⎛⎭⎪⎫-π3,再利用奇偶性f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3,最后代入求值.方法归纳三角函数周期性与奇偶性的解题策略(1)探求三角函数的周期,常用方法是公式法,即将函数化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,再利用公式求解.(2)判断函数y =A sin(ωx +φ)或y =A cos(ωx +φ)是否具备奇偶性,关键是看它能否通过诱导公式转化为y =A sin ωx (A ω≠0)或y =A cos ωx (A ω≠0)其中的一个.跟踪训练3 若本例中函数的最小正周期变为π2,其他条件不变,求f ⎝ ⎛⎭⎪⎫-176π的值.解析:因为f (x )的最小正周期是π2,所以f ⎝ ⎛⎭⎪⎫-176π=f ⎝ ⎛⎭⎪⎫-3π+π6=f ⎝ ⎛⎭⎪⎫-6×π2+π6=f ⎝ ⎛⎭⎪⎫π6=sin π6=12利用周期性f ⎝ ⎛⎭⎪⎫-176π=f ⎝ ⎛⎭⎪⎫-3π+π6=f ⎝ ⎛⎭⎪⎫π6代入求值.课时作业 34一、选择题1.函数y =-5cos(3x +1)的最小正周期为( ) A.π3B .3π C.2π3 D.3π2解析:该函数的最小正周期T =2πω=2π3.答案:C2.函数f (x )=2sin 2x 的奇偶性为( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数解析:因为f (x )的定义域是R ,且f (-x )=2sin 2(-x )=-2sin 2x =-f (x ), 所以函数f (x )为奇函数. 答案:A3.函数f (x )=sin ⎝⎛⎭⎪⎫2 0112π-2 010x 是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数 解析:f (x )=sin ⎝⎛⎭⎪⎫2 0112π-2 010x=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π2-2 010x +1 005π=-sin ⎝ ⎛⎭⎪⎫π2-2 010x =-cos 2 010x , f (x )定义域为R ,且f (-x )=-cos(-2 010x )=-cos 2010x =f (x ), 所以函数f (x )为偶函数. 答案:B4.函数f (x )=x sin ⎝⎛⎭⎪⎫π2-x ( )A .是奇函数B .是非奇非偶函数C .是偶函数D .既是奇函数又是偶函数解析:由题,得函数f (x )的定义域为R ,关于原点对称,又f (x )=x sin ⎝⎛⎭⎪⎫π2-x =x cosx ,所以f (-x )=(-x )·cos(-x )=-x cos x =-f (x ),所以函数f (x )为奇函数.答案:A 二、填空题5.f (x )=sin x cos x 是________(填“奇”或“偶”)函数.解析:x ∈R 时,f (-x )=sin(-x )cos(-x )=-sin x cos x =-f (x ),即f (x )是奇函数.答案:奇6.函数y =cos (1-x )π2的最小正周期是________.解析:∵y =cos ⎝ ⎛⎭⎪⎫-π2x +π2,∴T =2ππ2=2π×2π=4.答案:47.函数f (x )是以2为周期的函数,且f (2)=3,则f (8)=________. 解析:∵f (x )的周期为2, ∴f (x +2)=f (x ),∴f (8)=f (2+3×2)=f (2)=3.答案:3 三、解答题8.求下列函数的最小正周期: (1)y =cos ⎝ ⎛⎭⎪⎫-2x +π6;(2)y =|sin x 2|. 解析:(1)利用公式T =2π|ω|,可得函数y =cos ⎝⎛⎭⎪⎫-2x +π6的最小正周期为T =2π|-2|=π. (2)易知函数y =sin x 2的最小正周期为T =2π12=4π,而函数y =⎪⎪⎪⎪⎪⎪sin x 2的图象是由函数y =sin x 2的图象将在x 轴下方部分翻折到上方后得到的,此时函数周期减半,即y =⎪⎪⎪⎪⎪⎪sin x 2的最小正周期为2π.9.判断下列函数的奇偶性. (1)f (x )=3cos 2x ;(2)f (x )=sin ⎝ ⎛⎭⎪⎫3x 4+3π2;(3)f (x )=x ·cos x . 解析:(1)因为x ∈R ,f (-x )=3cos(-2x )=3cos 2x =f (x ),所以f (x )=3cos 2x 是偶函数. (2)因为x ∈R ,f (x )=sin ⎝⎛⎭⎪⎫3x 4+3π2=-cos 3x 4,所以f (-x )=-cos 3(-x )4=-cos 3x 4=f (x ),所以函数f (x )=sin ⎝ ⎛⎭⎪⎫3x 4+3π2是偶函数.(3)因为x ∈R ,f (-x )=-x ·cos(-x )=-x ·cos x =-f (x ), 所以f (x )=x cos x 是奇函数. [尖子生题库]10.已知函数y =12cos x +12|cos x |.(1)画出函数的图象;(2)这个函数是周期函数吗?如果是,求出它的最小正周期.解析:(1)y =12cos x +12|cos x |=⎩⎪⎨⎪⎧cos x ,x ∈⎝⎛⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),0,x ∈⎝ ⎛⎦⎥⎤2k π+π2,2k π+3π2(k ∈Z ),函数图象如图所示.(2)由图象知这个函数是周期函数,且最小正周期是2π.。
课时学案——正弦函数、余弦函数的周期性和奇偶性

课时学案——正弦函数、余弦函数的周期性和奇偶性江苏 韩文美【课前准备】 1.课时目标(1)正确理解周期函数的定义与性质;(2)会求正、余弦函数的最小正周期,会求函数y=Asin (ωx+φ)、y=Acos (ωx+φ)的最小正周期;(3)会判断正、余弦函数的奇偶性,并会简单应用.2.基础预探(1)周期性:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有________,那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的________.(2)周期函数的周期不止一个.如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的________.(3)正弦函数是周期函数,________(k ∈Z 且k ≠0)都是它的周期,最小正周期是________.余弦函数是周期函数,________(k ∈Z 且k ≠0)都是它的周期,最小正周期是________. (4)一般地,函数y=Asin (ωx+φ)与y=Acos (ωx+φ)(其中A ,ω,φ为常数,且A ≠0,ω>0)的周期T=________.(5)就奇偶性而言,正弦函数是________函数,余弦函数是________函数. 【知识训练】1.函数y=2sinx 的周期是( )A .πB .2πC .3πD .4π 2.下列函数中,是偶函数的是( )A .y=cosx -sinxB .y=|sinx|C .y=21sinx+1 D .y=xsin 1 3.y =5sin (2x +θ)的图象关于y 轴对称,则θ=_______. 4.y =2sin (3x -4π)的图象的两条相邻对称轴之间的距离是_______. 5.若f (x )是以2π为周期的奇函数,且f (-2π)=-1,则f (25π)的值为 .6.求函数y=|sin (x+3π)+21|的最小正周期.【学习引领】1.对周期函数的定义还要进一步加以理解:(1)式子f (x+T )=f (x )是定义域内的恒等式,即对定义域内的每一个值都成立.也就是对于定义域内任何x 式子都成立,而不能是“一个x ”或“某些个x ”式子成立;从另一方面说,要判断一个函数不是周期函数,只需举一个反例就可以了.(2)式子f (x+T )=f (x )是对“x ”而言的,即周期函数的周期与自变量x 的系数有关.(3)周期函数的周期不只一个,若T 是周期,则kT (k ∈Z 且k ≠0)一定也是周期.定义规定了T 为一个实常数,而不是一个变数;同时也规定了T 的取值范围,只要求不为零,不要误认为T 一定是π的倍数.2.一个函数是周期函数,但它不一定有最小正周期,即并不是任何周期函数都有最小正周期.3.研究三角函数奇偶性时,就先判断函数的定义域是否关于原点对称.若定义域关于原点不对称,则该函数为非奇非偶函数.为了能简便迅速地判断三角函数的奇偶性,有时还需要先作适当的等价变形.【典例导析】题型一:函数周期性的应用例1.已知简谐运动f (x )=2sin (3πx+φ)(|φ|<2π)的图象经过点(0,1),则该简谐运动的最小正周期T 和φ分别为( )A .T=6,φ=6π B .T=6,φ=3π C .T=6π,φ=6π D .T=6π,φ=3π思路导析:直接利用求解函数y=Asin (ωx+φ)的周期公式加以分析与求解. 解析:由于T=ωπ2=32ππ=6,把点(0,1)代入f (x )=2sin (3πx+φ),得sin φ=21, 因为|φ|<2π,所以|φ|<2π,故选择答案:A . 点评:此类问题是高考中最常见的,公式法是求解三角函数最小正周期的基本方法,一般地,有:(1)y=Asin (ωx+φ)+h 与y=Acos (ωx+φ)+h 的最小正周期为T=||2ωπ;(2)y=|sin ωx |或y=|cos ωx |的最小正周期为T=||ωπ. 变式练习1:已知函数f (x )=sin (ωx+3π)(ω>0)的最小正周期为π,则该函数的图象( )A .关于点(3π,0)对称 B .关于直线x=4π对称 C .关于点(4π,0)对称 D .关于直线x=3π对称题型二:函数奇偶性的应用 例2.若f (x )=asin (x+4π)+3sin (x -4π)是偶函数,则实数a =________. 思路导析:利用三角函数的奇偶性及其诱导公式进行变换,通过系数对应的关系来确定相应的参数问题.解析:由偶函数的定义知:f (x )=f (-x ),又f (-x )=asin (-x+4π)+3sin (-x -4π)=-asin (x -4π)-3sin (x+4π), 即asin (x+4π)+3sin (x -4π)=-asin (x -4π)-3sin (x+4π),所以⎩⎨⎧-==-33a a ,解得a =-3,故填答案:-3.点评:三角函数的奇偶性是高考的常考内容,熟练掌握奇函数、偶函数的定义是解决此类问题的关键.在三角函数中,往往也会综合相应的公式与性质加以应用.变式练习2:f (x )是奇函数,当x <0时,f (x )=3sinx +4cosx +7,则x >0时,f (x )的表达式是( )A .-3sinx -4cosx -7B .3sinx -4cosx +7C .3sinx -4cosx -7D .-3sinx +4cosx +7 题型三:判断函数的奇偶性例3.判断下面函数的奇偶性:f (x )=lg (sin x +x 2sin 1+).思路导析:判断奇偶性首先应看定义域是否关于原点对称,然后再看f (x )与f (-x )的关系.解析:由于函数f (x )的定义域为R ,即定义域关于原点对称,又f (x )+f (-x )= lg (sin x +x 2sin 1+)+ lg (-sin x +x 2sin 1+) = lg (sin x +x 2sin 1+)(-sin x +x 2sin 1+)=lg1=0,即f (-x )=-f (x ),∴f (x )为奇函数.点评:定义域关于原点对称是函数具有奇偶性的必要(但不充分)条件.要注意判断奇偶性的步骤:一是分析定义域是否关于原点对称,二是分析f (x )与f (-x )的关系.变式练习3:函数f (x )=2πx -sin x (x ∈R )的部分图象可能是( )题型四:综合应用问题例4.关于函数f (x )=sin (|x|+π2)有下列判断:①是偶函数;②是奇函数;③是周期函数;④不是周期函数,其中正确的是( )A .①与④B .①与③C .②与④D .②与③思路导析:通过对函数关系式的恒等变换,利用诱导公式及余弦函数的性质,进而判断其对应的奇偶性与周期性问题.解析:由于f (x )=sin (|x|+π2)=cos|x|=cosx ,所以f (x )是偶函数,且是周期函数,故选择答案:B .点评:主要考查三角函数的变换、图象及其性质.在三角函数的图象与性质问题中,要注意在熟练掌握三角函数图象的基础上要对三角函数的性质灵活运用,并且要注意数形结合的方法.变式练习4:定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小周期是π,当x ∈[0,2π]时,f (x )=sinx ,则f (35π)的值是( )A .-21 B .21 C .-23 D .23 【随堂练习】1.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈[0,2π]时,f (x )=sin x ,则f (3π5)的值为( ) A .-21B .21 C .-23 D .23 2.已知y =f (x )是周期为2π的函数,当x ∈[0,2π)时,f (x )=sin 2x ,则f (x )=21的解集为( )A .{x |x =2k π+3π,k ∈Z } B .{x |x =2k π+3π5,k ∈Z } C .{x |x =2k π±3π,k ∈Z }D .{x |x =2k π+(-1)k3π,k ∈Z } 3.已知函数f (x )=sin (πx -2π)-1,则下列命题正确的是( ) A .f (x )是周期为1的奇函数 B .f (x )是周期为2的偶函数 C .f (x )是周期为1的非奇非偶函数 D .f (x )是周期为2的非奇非偶函数 4.如果函数f (x )=-2sin (2ωx -3π)的最小正周期是4π,则ω= . 5.已知函数f (x )=1-cos2πx ,则f (0)+f (1)+f (2)+…+f (2011)=____. 6.已知函数f (x )=2sin (3k x+4π),如果使函数f (x )的周期在(32,43))43,32(内,求正整数k 的值.【课后作业】1.函数y =-x cos x 的部分图象可能是( )DCBA2.如果函数f (x )=sin (πx +θ)(0<θ<2π)的最小正周期是T ,且当x =2时取得最大值,那么( )A .T =2,θ=2π B .T =1,θ=π C .T =2,θ=π D .T =1,θ=2π 3.设f (x )是(-∞,+∞)上的奇函数,f (x+2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)等于_______.A .0.5B .-0.5C .1.5D .-1.54.若f (x )具有性质:①f (x )为偶函数,②对任意x ∈R ,都有f (4π-x )=f (4π+x ), 则f (x )的解析式可以是_______.(只写一个即可) 5.判断下面函数的奇偶性:f (x )=sin 4x -cos 4x+cos2x .6.设函数f (x )=3sin (ωx+6π),ω>0,x ∈(-∞,+∞),且以2π为最小正周期. (1)求f (0);(2)求f (x )的解析式;(3)已知f (4α+12π)=59,求sin α的值.答案:【课前准备】 2.基础预探(1)f (x+T )=f (x ),周期;(2)最小正周期;(3)2k π,2π,2k π,2π;(4)ωπ2;(5)奇,偶. 【知识训练】1.B ;解析:函数y=2sinx 的周期与函数y=sinx 的周期一样,都是2π; 2.B ;解析:A 、C 是非奇非偶函数,D 是奇函数,只有B 是偶函数.3.θ=k π+2π(k ∈Z );解析:解析:y =f (x )为偶函数,则有θ=k π+2π(k ∈Z ); 4.3π;解析:由于T =3π2,相邻对称轴间的距离为3π; 5.1;解析:f (25π)= f (2π)=- f (-2π)=1; 6.解析:由于y=|sin (x+2π+3π)+21|=|sin (x+3π)+21|,即f (x+2π)=f (x ),所以T=2π.【典例导析】变式练习1:A ;解析:由题意知ω=T π2=2,所以解析式为f (x )=sin (2x+3π),经验证可知它的一个对称中心为(3π,0); 变式练习2:C ;解析:设x >0,则-x <0,∴f (-x )=3sin (-x )+4cos (-x )+7=-3sinx +4cosx +7,∵对于任意的x ∈R ,f (x )是奇函数,∴f (-x )=-f (x ),∴-f (x )=-3sinx +4cosx +7,∴f (x )=3sinx -4cosx -7;变式练习3:D ;解析:判断可知f (x )=2πx -sin x (x ∈R )是奇函数,其图象关于原点对称,且当x→+∞时,函数值y→+∞,当x→-∞时,函数值y→-∞,仅选项D 满足;变式练习4:D ;解析:因为f (x )的最小正周期是π,所以f (35π)=f (35π-2π)=f (-3π),函数f (x )是偶函数,所以f (-3π)= f (3π),因为3π∈[0,2π],所以f (3π)=sin3π=23,即f (35π)=23;【随堂练习】1.D ;解析:f (3π5)=f (3π5-2π)=f (-3π)=f (3π)=sin 3π=23;2.C ;解析:∵f (x )=sin 2x =21,x ∈[0,2π),∴2x ∈[0,π),∴2x =6π或6π5,∴x =3π或3π5,∵f (x )是周期为2π的周期函数,∴f (x )=21的解集为{x |x =2k π±3π,k∈Z }; 3.B ;解析:由于T =ππ2=2,且f (x )=sin (πx -2π)-1=cos2x -1,∴f (x )为偶函数;4.±41;解析:由于T=|2|2ωπ=4π,则ω=±41;5.2012;解析:由f (x )=1-cos2πx 知这个函数的周期是4,而f (0)+f (1)+f (2)+f (3)=0+1+2+1=4,由周期性,这样连续四项的和均为4,共有2012项,是4的503倍,故可得结果为4×503=2012;6.解析:由于k 为正整数,则函数f (x )=2sin (3k x+4π)的周期为:T=32k π=k π6,而函数f (x )的周期在(32,43)内,那么32<k π6<43,解得8π<k<9π,所以满足条件的正整数k 的值为26、27或28.【课后作业】1.D ;解析:由于y =-x cos x 为奇函数,且当x 从正数方向无限接近于0时,图象在x 轴下方;2.A ;解析:T =ππ2=2,又当x =2时,sin (π·2+θ)=sin (2π+θ)=sin θ,要使上式取得最大值,可取θ=2π; 3.-0.5;解析:由f (x+2)=-f (x ),得f (x )为周期函数,且4为f (x )的一个周期,故f (7.5)= f (8-0.5)= f (-0.5)=-f (0.5)=-0.5;4.f (x )=a 或f (x )=cos4x 或f (x )=|sin2x |等;解析:此类属于开放性题,答案不唯一,只要满足条件即可;5.解析:由于函数f (x )的定义域为R ,即定义域关于原点对称,又f (-x )= sin 4(-x )-cos 4(-x )+cos2(-x )= sin 4x -cos 4x+cos2x=f (x ),所以f (x )为偶函数.6.解析:(1)f (0)=3sin (ω×0+6π)=3sin 6π=3×21=23;(2)由于T=ωπ2=2π,则可得ω=4,则f (x )的解析式为f (x )=3sin (4x+6π); (3)由于f (4α+12π)=3sin[4(4α+12π)+6π]=3sin (α+2π)=3cos α=59,可得cos α=53,故sin α=±α2cos 1-=±54.。
三角函数的周期性与奇偶性

三角函数的周期性与奇偶性三角函数是数学中非常重要的一类函数,包括正弦函数sin(x),余弦函数cos(x),正切函数tan(x)等。
这些函数在数学、物理、工程等领域中有广泛的应用。
其中,周期性和奇偶性是三角函数的两个重要性质,下面将详细讨论这两个性质。
一、周期性1. 正弦函数sin(x)和余弦函数cos(x)的周期性:正弦函数sin(x)和余弦函数cos(x)都是周期函数,它们的周期都为2π。
也就是说,对于任意实数x,有sin(x+2π) = sin(x),cos(x+2π) =cos(x)。
这意味着当自变量x增加2π或减少2π时,函数值不变,即函数呈现出周期性的变化规律。
这样的周期性特点使得正弦函数和余弦函数在很多问题中具有重要的意义。
2. 正切函数tan(x)的周期性:正切函数tan(x)也是一个周期函数,它的周期为π。
也就是说,对于任意实数x,有tan(x+π) = tan(x)。
这意味着当自变量x增加π或减少π时,函数值保持不变。
需要注意的是,正切函数在一些特殊点(如π/2,3π/2等)处不定义,因为在这些点上正切函数的值会趋于无穷大,即函数的图像会有垂直渐进线。
二、奇偶性1. 正弦函数sin(x)的奇偶性:正弦函数sin(x)是一个奇函数,它的图像关于原点对称。
也就是说,对于任意实数x,有sin(-x) = -sin(x)。
这意味着当自变量x取相反数时,函数值的相反数与原来的函数值相等,即函数的图像关于y轴对称。
2. 余弦函数cos(x)的奇偶性:余弦函数cos(x)是一个偶函数,它的图像关于y轴对称。
也就是说,对于任意实数x,有cos(-x) = cos(x)。
这意味着当自变量x取相反数时,函数值保持不变,即函数的图像关于y轴对称。
3. 正切函数tan(x)的奇偶性:正切函数tan(x)既不是奇函数也不是偶函数,它的图像既没有关于原点的对称性,也没有关于y轴的对称性。
但是,正切函数有一个特殊的奇偶性质,即tan(-x) = -tan(x)。
正余弦函数的周期性、奇偶性
y = Asin(ωx + ϕ), x∈R.( A≠ 0, ω> 0) y = Acos(ωx + ϕ), x∈R.(A≠ 0, ω> 0)
2π T= |ω |
• 已知函数 y = f ( x ) 的周期是 ,且当 x ∈ [0,3] 的周期是3, f (1), f (5), f (16). f ( x ) = x 2 + 1 ,求 时,
余弦函数 y = cos x
定义域: 定义域:R
1.周期性 周期性
周期函数定义:对于函数 周期函数定义:对于函数f (x),如果存在 , 一个非零常数 非零常数T,使得当x取定义域内的 取定义域内的每 一个非零常数 ,使得当 取定义域内的每 一个值时 一个值时,都有 f (x+T)=f (x) 那么函数f 就叫做周期函数 就叫做周期函数, 那么函数 (x)就叫做周期函数,非零常数 T叫做这个函数的周期。 叫做这个函数的周期。 叫做这个函数的周期
2.奇偶性 2.奇偶性
探究
y
1
−3 5 π π − 2
−2π −3π
2
−π
−
π
2
O
π
2
π
−1
3π 2
2π
5π 2
3π
x
正弦函数的图象
y
1
−3 5 π π − 2
−2π −3π
2
−π
−
π
2
O
π
2
π
余弦函数的图象
−1
3π 2
2π
5π 2
3π
x
例3.判断y = cos x ⋅ sin x的奇偶性
2 π 对于y = sin x, x ∈ R, 有 sin( + π ) = sin 6 3 6 2 能否说 π是该函数的周期. 3
高中数学:正弦函数、余弦函数的性质(1)—周期性、奇偶性含解析
第11课时 正弦函数、余弦函数的性质(1)——周期性、奇偶性 课时目标1.掌握周期函数概念,会求三角函数周期.2.能判断三角函数的奇偶性. 识记强化1.周期性:(1)对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),则函数y =f (x )叫做周期函数,非零常数T 叫做这个函数的周期.对于一个周期函数f (x ),如果它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.(2)y =sin x ,y =cos x 都是周期函数,2k π(k ∈Z ,k ≠0)都是它们的周期,最小正周期是2π.2.y =A sin(w x +φ),x ∈R 及y =A cos(ωx +φ),x ∈R (其中A 、ω、φ为常数且A ≠0,ω>0)的周期为T =.2πω3.y =sin x ,x ∈R 是奇函数,y =cos x ,x ∈R 是偶函数;sin(-x )=-sin x ,cos(-x )=cos x .4.反映在图象上,正弦曲线关于原点对称,余弦曲线关于y 轴对称. 课时作业一、选择题1.下列说法中正确的是( )A .当x =时,sin≠sin x ,所以不是f (x )=sin x 的周期π2(x +π6)π6B .当x =时,sin=sin x ,所以是f (x )=sin x 的一个周期5π12(x +π6)π6C .因为sin(π-x )=sin x ,所以π是y =sin x 的一个周期D .因为cos =sin x ,所以是y =cos x 的一个周期(π2-x )π2答案:A解析:T 是f (x )的周期,对应f (x )的定义域内任意x 都有f (x +T )=f (x )成立.2.函数y =-5cos(3x +1)的最小正周期为( )A. B .3ππ3C. D.2π33π2答案:C解析:该函数的最小正周期T ==.2πω2π33.函数y =cos的最小正周期是( )(π4-x 3)A .πB .6πC .4πD .8π答案:B解析:最小正周期公式T ===6π.2π|ω|2π|-13|4.下列函数中,最小正周期为π的是( )A .y =sin xB .y =cos xC .y =sinD .y =cos2xx 2答案:D解析:A 项,y =sin x 的最小正周期为2π,故A 项不符合题意;B 项,y =cos x 的最小正周期为2π,故B 项不符合题意;C 项,y =sin 的最小正周期为T ==4π,故C 项不x 22πω符合题意;D 项,y =cos2x 的最小正周期为T ==π,故D 项符合题意.故选D.2πω5.函数f (x )=x sin ( )(π2-x )A .是奇函数B .是非奇非偶函数C .是偶函数D .既是奇函数又是偶函数答案:A解析:由题,得函数f (x )的定义域为R ,关于原点对称.又f (x )=x sin =x cos x ,∴f (-x )=(-x )cos(-x )=-x cos x =-f (x ),∴函数f (x )为奇函数.(π2-x )6.已知函数f (x )=的定义域为R ,则( )cos (sin x )A .f (x )是奇函数B .f (x )是偶函数C .f (x )既是奇函数又是偶函数D .f (x )既不是奇函数又不是偶函数答案:B解析:∵函数f (x )=的定义域为R ,关于原点对称,且f (-x )cos (sin x )====f (x ),∴f (x )=为偶函数.cos[sin (-x )]cos (-sin x )cos (sin x )cos (sin x )二、填空题7.若f (x )是奇函数,当x >0时,f (x )=x 2-sin x ,则当x <0时,f (x )=________.答案:-x 2-sin x解析:利用奇函数的定义求解.当x <0时,-x >0,因f (x )为奇函数,所以f (x )=-f (-x )=-[(-x )2-sin(-x )]=-x 2-sin x .8.函数f (x )是以2为周期的函数,且f (2)=3,则f (6)=________.答案:3解析:∵函数f (x )是以2为周期的函数,且f (2)=3,∴f (6)=f (2×2+2)=f (2)=3.9.已知函数f (x )=ax +b sin x +1,若f (20 15)=7,则f (-2 015)=________.答案:-5解析:由f (2 015)=2 015a +b sin2 015+1=7,得2 015a +b sin2 015=6,∴f (-2 015)=-2 015a -b sin2 015+1=-(2 015a +b sin2 015)+1=-6+1=-5.三、解答题10.已知函数f (x )=log |sin x |.12(1)求其定义域和值域;(2)判断奇偶性;(3)判断周期性,若是周期函数,求其周期.解:(1)|sin x |>0⇒sin x ≠0,∴x ≠k π(k ∈Z ).∴定义域为{x |x ≠k π,k ∈Z }∵0<|sin x |≤1,∴log |sin x |≥0,12∴函数的值域是{y |y ≥0}.(2)定义域关于原点对称∵f (-x )=log |sin(-x )|12=log |sin x |=f (x ),12∴函数f (x )是偶函数.(3)∵|sin x |在定义域{x |x ≠k π,k ∈Z }内是周期函数,且最小正周期是π,∴函数f (x )=log |sin x |是周期函数,最小正周期为π.1211.设f (x )=log 3.1-2sin x1+2sin x (1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性.解:(1)∵>0,1-2sin x1+2sin x ∴-<sin x <,1212∴k π-<x <k π+,k ∈Z ,π6π6∴该函数的定义域为.{xk π-π6<x <k π+π6,k ∈Z }(2)由(1)知定义域关于原点对称,又f (-x )=log 31+2sin x 1-2sin x=log 3-1(1-2sin x1+2sin x )=-log 31-2sin x1+2sin x=-f (x ),∴该函数为奇函数. 能力提升12.函数f (x )满足f (x +2)=-,则f (x )的最小正周期是________.1f (x )答案:4解析:f (x +4)=-=f (x )所以函数f (x )的最小正周期是4.1f (x +2)13.求函数f (x )=|sin x |+|cos x |的最小正周期.解:设f (x )的最小正周期为T ,则有f (x +T )=f (x ),对x ∈R 恒成立.即|sin(x +T )|+|cos(x +T )|=|sin x |+|cos x |.令x =0,得|sin T |+|cos T |=1.两边平方,得|sin T |·|cos T |=0.∴角T 的终边在坐标轴上.∴T =(k ∈N +).k π2又f=|sin |+|cos |(x +π2)(x +π2)(x +π2)=|cos x |+|-sin x |=|cos x |+|sin x |=f (x ),∴f (x )=|sin x |+|cos x |的最小正周期为.π2。
三角函数中的周期性与奇偶性
三角函数中的周期性与奇偶性三角函数是数学中的重要概念,在各个领域中都得到广泛的应用。
其中,周期性和奇偶性是三角函数的两个重要特性,对于分析和理解三角函数的性质具有重要意义。
一、周期性周期性是指函数在一定范围内以固定的间隔上下循环出现相同的值。
在三角函数中,正弦函数(sin)和余弦函数(cos)的周期均为2π。
这意味着,当自变量每增加2π时,函数的值会回到原来的位置。
以正弦函数为例,sin(x)的周期为2π,可以表示为:sin(x + 2π) = sin(x)这意味着,无论x的取值是多少,只要将其增加2π,函数的值就会回到原来的位置。
同样地,余弦函数的周期也为2π。
对于正弦函数和余弦函数的图像来说,周期性表现为波形的重复出现。
在一段周期中,波形会上升到最大值,然后下降到最小值,再经过0点回到原来的位置。
二、奇偶性奇偶性是指函数在定义域内满足一定的对称性。
在三角函数中,正弦函数是奇函数,而余弦函数是偶函数。
奇函数的特点是对称于坐标原点,即满足以下性质:sin(-x) = -sin(x)这意味着,对于正弦函数来说,当自变量取相反数时,函数的值也取相反数。
例如,sin(-π/6)等于-sin(π/6)。
与之相反,偶函数的特点是对称于y轴,即满足以下性质:cos(-x) = cos(x)这意味着,对于余弦函数来说,当自变量取相反数时,函数的值保持不变。
例如,cos(-π/3)等于cos(π/3)。
奇偶性在三角函数的图像中体现为关于y轴或坐标原点的对称性。
例如,正弦函数的图像在坐标原点上下对称,而余弦函数的图像在y 轴上下对称。
三、综合应用三角函数的周期性和奇偶性不仅仅是数学的概念,它们在实际问题中的应用也非常广泛。
周期性可以用于分析周期性现象的规律。
例如,天体运动、电流变化等都具有周期性,可以通过三角函数中的周期性概念来描述和分析这些现象。
奇偶性则可以用于简化计算或证明问题。
例如,利用正弦函数的奇性可以将某些积分计算简化,而余弦函数的偶性可以用于证明恒等式等。
人教版高一数学必修四第一章正、余弦函数的周期性与奇偶性
第一章 三角函数
y=cosx
图象
定义域 周期 最小
正周期 奇偶性
R 2kπ(k∈Z 且 k≠0)
_2_π__ _奇__函__数___
R 2kπ(k∈Z 且 k≠0)
_2_π__
_偶__函__数___
栏目 导引
第一章 三角函数
■名师点拨 (1)正、余弦函数的周期性 ①正弦函数和余弦函数所具有的周期性实质上是由终边相同的角 具有的周期性所决定的; ②由诱导公式 sin(x+2kπ)=sinx(k∈Z),cos(x+2kπ)=cosx(k∈Z) 也可以说明它们的周期性. (2)关于正、余弦函数的奇偶性 ①正弦函数是奇函数,余弦函数是偶函数,反映在图象上,正弦曲 线关于原点 O 对称,余弦曲线关于 y 轴对称; ②正弦曲线、余弦曲线既是中心对称图形又是轴对称图形.
答案:B
栏目 导引
第一章 三角函数
若函数 f(x)是周期为 3 的周期函数,且 f(-1)=2017,则 f(2)= ________. 答案:2017
栏目 导引
第一章 三角函数
正、余弦函数的周期问题
求下列三角函数的最小正周期 T: (1)f(x)=sinx+π3; (2)f(x)=12cos(2x+π3); (3)f(x)=|sinx|.
第一章 三角函数
1.4.2 正弦函数、余弦函数的性质
第 1 课时 正、余弦函数的周期性与奇偶性
第一章 三角函数
考点
学习目标
函数的周期性 了解周期函数的概念
正、余数的周 期
正、余弦函 数的奇偶性
理解三角函数的奇偶性以 及对称性,会判断给定函 数的奇偶性
栏目 导引
第一章 三角函数
判断(正确的打“√”,错误的打“×”)