北理版矩阵分析课件

合集下载

矩阵分析第5章课件

矩阵分析第5章课件
例:取n维线性空间的分量全为1的向量 e=(1,…,1)T为例. 易见 ‖e‖=1; ‖e‖2=n; ‖e‖1=n. 它们之间的大小关系是: ‖e‖<‖e‖2<‖e‖1. 命题:对n维线性空间的任意向量x成立 ‖x‖ ‖x‖2 ‖x‖1 n‖x‖ n‖x‖2 n‖x‖1 n2‖x‖ … 证:‖x‖= max{|x1|,…,|xn|} (i=1n|xi|2)1/2 = ‖x‖2 ((|x1|+…+|xn|)2)1/2 = ‖x‖1 n max{|x1|,…,|xn|} = n‖x‖
第五章 向量与矩阵范数 前言
• 向量与矩阵范数是向量与矩阵的一个重要数 字特征---用它可以建立向量集或矩阵集的 拓扑结构,从而便于研究向量或矩阵序列,向 量或矩阵级数的收敛性质.因此,这一章的理 论在数值分析及其它领域中十分有用. • 本章是本课程重点内容之一.所有5节都要认 真学好.最后一节(矩阵幂级数)是研究矩阵 函数的重要工具.
Holder不等式与Minkowski不等式
• 下面两个不等式对本章的理论推导十分有用 • Holder不等式:对任意给定p>1和q=p/(p-1) (>1,即(1/p)+(1/q)=1)及任意ak,bk0成立 k=1nakbk (k=1nakp)1/p(k=1nbkp)1/p. (C-S不等式为其(p=2时)特例) • Minkowski不等式:对任意给定p1成立 (k=1n|ak+bk|p)1/p (k=1n|ak|p)1/p+(k=1n|bk|p)1/p
ACmn 定义 ‖A‖= maxi,k|aik| 则‖A‖显然是向量范数(向量的无穷大范数),但它 不是矩阵范数,反例如下:
1 1 1 1 1 2 A 1 1 , B 0 1 , AB 1 2

矩阵分析 - 北京理工大学研究生院

矩阵分析 - 北京理工大学研究生院

课程名称:矩阵分析一、课程编码:1700002课内学时: 32 学分: 2二、适用学科专业:计算机、通信、软件、宇航、光电、生命科学等工科研究生专业三、先修课程:线性代数,高等数学四、教学目标通过本课程的学习,要使学生掌握线性空间、线性变换、Jordan标准形,及各种矩阵分解如QR分解、奇异值分解等,正规矩阵的结构、向量范数和矩阵范数、矩阵函数,广义逆矩阵、Kronecker积等概念和理论方法,提升研究生的数学基础,更好地掌握矩阵理论,在今后的专业研究或工作领域中熟练应用相关的矩阵分析技巧与方法,让科研结果有严格的数学理论依据。

五、教学方式教师授课六、主要内容及学时分配1、线性空间和线性变换(5学时)1.1线性空间的概念、基、维数、基变换与坐标变换1.2子空间、线性变换1.3线性变换的矩阵、特征值与特征向量、矩阵的可对角化条件2、λ-矩阵与矩阵的Jordan标准形(4学时)2.1 λ-矩阵及Smith标准形2.2 初等因子与相似条件2.3 Jordan标准形及应用;3、内积空间、正规矩阵、Hermite 矩阵(6学时)3.1 欧式空间、酉空间3.2标准正交基、Schmidt方法3.3酉变换、正交变换3.4幂等矩阵、正交投影3.5正规矩阵、Schur 引理3.6 Hermite 矩阵、Hermite 二次齐式3.7.正定二次齐式、正定Hermite 矩阵3.8 Hermite 矩阵偶在复相合下的标准形4、矩阵分解(4学时)4.1矩阵的满秩分解4.2矩阵的正交三角分解(UR、QR分解)4.3矩阵的奇异值分解4.4矩阵的极分解4.5矩阵的谱分解5、范数、序列、级数(4学时)5.1向量范数5.2矩阵范数5.3诱导范数(算子范数)5.4矩阵序列与极限5.5矩阵幂级数6、矩阵函数(4学时)6.1矩阵多项式、最小多项式6.2矩阵函数及其Jordan表示6.3矩阵函数的多项式表示6.4矩阵函数的幂级数表示6.5矩阵指数函数与矩阵三角函数7、函数矩阵与矩阵微分方程(2学时)7.1 函数矩阵对纯量的导数与积分7.2 函数向量的线性相关性7.3 矩阵微分方程(t)()() dXA t X t dt=7.4 线性向量微分方程(t)()()() dxA t x t f t dt=+8、矩阵的广义逆(3学时)8.1 广义逆矩阵8.2 伪逆矩阵8.3 广义逆与线性方程组课时分配说明:第一章的课时根据学生的数学基础情况可以调整,最多5学时,如学生线性代数的基础普遍较高,可以分配3学时,剩余2学时可在最后讲解第九章部分内容(Kronecker 积的概念和基本性质)。

北理工高等代数课件第三次课

北理工高等代数课件第三次课

特征值与特征向量的求解方法
• 对于每一个特征值λi,求出齐次线性方程组(λiE-A)X=0的一个基础解系,该基础解系即为对应于特征值λi的全 部特征向量(可能有多个)。
特征值与特征向量的求解方法
01
注意事项
02 在求解过程中,需要注意计算的正确性和精度。
03 当方阵A的阶数较高时,计算量较大,需要采用 一些简化的方法或技巧。
线性变换的定义和性质
• 定义:设$V_n, V_m$分别是数域$P$上的 $n$维、$m$维向量空间,若映射 $\sigma: V_n \rightarrow V_m$满足: 对任意$\alpha, \beta \in V_n, k \in P$, 有$\sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta), \sigma(k\alpha) = k\sigma(\alpha)$, 则称$\sigma$为从$V_n$到$V_m$的一个 线性变换。
线性变换的定义和性质
零变换与恒等变换
若对任意$alpha in V_n$,都有$sigma(alpha) = mathbf{0}$,则称$sigma$为零变换;若对任意$alpha in V_n$,都有$sigma(alpha) = alpha$,则称$sigma$ 为恒等变换。
线性变换的核与像
设$sigma: V_n rightarrow V_m$是一个线性变换,称集 合${alpha | alpha in V_n, sigma(alpha) = mathbf{0}}$ 为$sigma$的核,记作$text{Ker}(sigma)$;称集合 ${beta | beta = sigma(alpha), alpha in V_n}$为 $sigma$的像,记作$text{Im}(sigma)$。

《矩阵分析》

《矩阵分析》
解: (1) 0,a2,L ,an T , 0,b2,L ,bn T V1 有 0,a2 b2 ,L ,an bn T V1 R,有 0,a2,L ,an T V1.
所以,V1 是向量空间。
(2) V2 不是向量空间。
因为若 1,a2 , ,an T V2 , 则2 2,2a2 , ,2an T V2 .
数乘运算:设 k为数域 p 中的数,向量
ka1,ka2,L ,kan 称为向量 a1,a2,L ,an
与数 k 的数量乘积。记为 k
数乘运算满足下列四条规则:
50 1 60 k(l ) (kl )
70 k l k l
80 k( ) k k , 是n维向量,k, l P
则与的和 为
(a b ,a b , ,a b )
1
1
2
2
n
n
负向量:向量 (a ,a , ,a )
1
2
n
称为向量 的负向量
向量的差 ( )
加法运算满足性质
10 20 ( ) ( ) 30 0
40 0
注: 零向量和负向量是唯一的
满足: , V
(4) 对于 V , V ,使
在集合V的元素与数域F之间还定义一种运算,叫乘法.即对于
V中任一元素 与数域F中任一数k,在V中有唯一 与它们对应,称为k与 的数乘积,记为 k 且满足:
(1)1 (2)k(l ) (kl) (3)(k l) k l (4)k( ) k k
问题3:全体正实数R ,加法“”和数乘“”分别
定义为:a,b R , k R, R是否为R上的线性空间?
a b ab
k
a
ak
,
例:设A Rmn , 记 N ( A) {x Rn , Ax 0},则N ( A)为R上的线性空间. 称其为矩阵A的核或零空间。

北理版矩阵分析课件 共101页

北理版矩阵分析课件 共101页

1 ,2 , ,n 1 ,2 ,n P
定理:过渡矩阵 P 是可逆的。
任取 V ,设 在两组基下的坐标分别为
x1,x2,
,xn
T

y1,y2,
,yn
T
,那么我们有:
x1 y1

x
2


P

y
2



的为极向大量线 组性无关组,span1,2, ,s的维数即
的秩。
1,2, ,s
例 4 实数域 R 上的线性空间 R n n 中全体上三角矩
阵集合,全体下三角矩阵集合,全体对称矩阵集合,
全体反对称矩阵集合分别都构成 R n n 的子空间,
问题:这几个子空间的基底与维数分别时什么?
(2) 加法结合律 ( ) ( )
(3) 零元素 在 V 中存在一个元素 0 ,使得对
于任意的 V 都有
0
(4) 负元素
对于 V 中的任意元素 都存
在一个元素 使得
0
(5) 1
(6) k(l)(kl)
(7) (kl)kl
与向量组
(0,1,1),(1,0,1),(1,1,0)
都是 R 3 的基。R 3 是3维线性空间。
例 2 实数域 R 上的线性空间R 2 2 中的向量组
0 1
1 1,1 1
10,10
1 1,1 1
1 0
与向量组
1 0
0 0,10
例 4 R 表示实数域 R 上的全体无限序列组成的
的集合。即
R [a1,a2,a3,]iai 1,F 2,,3,
在 R 中定义加法与数乘:

矩阵分析课件

矩阵分析课件
引理 设 矩阵 A 的左上角元a11 0, 并且 A 中至少有一个元素不能被它整除,那 么一定可以找到一个与 A 等价的矩B , 它的左上角元素也不为零,但是次数比a11
的次数低。
定理 2.1.4 任意一个非零的n阶 矩阵 A
都等价于一个对角矩阵,即
A( )
d1( )
参照例 2.1.2 的方法可把二阶矩阵用初等变换化某一
个元素成常数。
1
A 0
0
1 C2C3 0
0
1 C3 C2 0
0
0
3 2 2 4 3 2
0
3 2 1
4 3 2
0
3 2 2 4 3 2
0
2 1
0
0
0
2
2 1
4 3 2
0
1
0
2
2
3
2 5
3
然后用初等变换把公因子 所在的行、列的
其余元素均化为零。
A( )
2 3
2
2
3
5
23r1
r2
0
2 5
3
(
2
10
3)
( 5)C1C2
0
0
(
2
10
3)
3
3C2 0
0 ( 2 10 3)
例 2.1.2 用初等变换把 矩阵
1 2
A( )
【证明】必要性:设 A()可逆,在式(2.1.1)
的两边求行列式得
A( ) B( ) 1
(2.1.2)
因为 A( ) 和 B( ) 都是 的多项式,所以根
据式(2.1.2)推知,A( ) 和 B( ) 都是零次多
项式,此即 A( ) 是非零的常数.

《矩阵分析》课件


Gauss消元法原理
LU分解求解线性方程组
通过行变换将矩阵化为上三角矩阵, 从而解线性方程组。
将Ax=b转化为LUx=b,通过前向替 换和后向替换求解。
LU分解定义
将矩阵分解为一个下三角矩阵L和一个 上三角矩阵U的乘积。
QR分解原理及实现
QR分解定义
将矩阵分解为一个正交矩阵Q和 一个上三角矩阵R的乘积。
Jordan标准型及其性质
Jordan标准型定义: 设A是n阶方阵,如果 存在一个可逆矩阵P, 使得P^(-1)AP为 Jordan矩阵,则称A 可以相似对角化为 Jordan标准型。
Jordan标准型的性质
Jordan标准型是唯一 的,即对于给定的方 阵A,其Jordan标准 型是唯一的。
Jordan标准型中的每 个Jordan块对应A的 一个特征值。
非零行的首非零元所在列在上一行的 首非零元所在列的右边。
同一行的所有非零元均在首非零元的 右边。
线性无关组与基础解系
线性无关组:一组向量线性无关当且仅当它们不 能由其中的部分向量线性表示出来。换句话说, 只有当这组向量中任何一个向量都不能由其余向 量线性表示时,这组向量才是线性无关的。
基础解系中的解向量线性无关。
初等变换和行阶梯形式
初等变换:对矩阵进行以下三种变换称为初等变 换 对调两行(列)。
以数k≠0乘某一行(列)中的所有元。
初等变换和到另一行(列)的对应元上去。
02
行阶梯形式:一个矩阵经过初等行变换可以化为行阶梯形式,
其特点是
非零行在零行的上面。
03
初等变换和行阶梯形式
方阵
行数和列数相等的矩阵称为方阵。
01
对角矩阵
除主对角线外的元素全为零的方阵称 为对角矩阵。

2024版第5章矩阵分析ppt课件


矩阵函数以及矩阵微分方程等问题时,都可以利用若尔当标准型来简化
计算。
05
二次型及其标准型
二次型定义及性质
二次型定义
对称性
线性变换下的不变性
二次型的值
二次型是n个变量的二次多项式, 其一般形式为$f(x_1, x_2, ..., x_n) = sum_{i=1}^{n}sum_{ j=1}^{n} a_{ij}x_ix_j$,其中$a_{ij}$为常 数,且$a_{ij} = a_{ ji}$。
若尔当标准型简介
01
若尔当标准型定义
对于任意一个n阶方阵A,都存在一个可逆矩阵P,使得$P^{-1}AP=J$
为若尔当标准型,其中J由若干个若尔当块组成。
02
若尔当块
一个若尔当块是一个上三角矩阵,它的对角线上的元素相等,且对角线
上方的元素或者是1,或者是0。
03
若尔当标准型的应用
若尔当标准型在矩阵分析中有着广泛的应用,例如在求解矩阵的高次幂、
矩阵性质总结
结合律 $(AB)C = A(BC)$。
数乘结合律 $(kA)(lB) = kl(AB)$。
分配律
$(A + B)C = AC + BC, C(A + B) = CA + CB$。
数乘分配律
$(k + l)A = kA + lA, k(A + B) = kA + kB$。
02
矩阵变换与等价类
求解过程
先求出矩阵A的特征值,然后将其代 入(A-λE)X=0,解出对应的特征向量。
特征值和特征向量在矩阵分析中的应用
判断矩阵是否可对角化
如果矩阵A有n个线性无关的特征向量,则A可对角化。

矩阵分析_第一章 北京理工大学


(5)
1
(6)
(7)
k (l ) (kl ) (k l ) k l
(8)
k ( ) k k
V中的元素称 为向量
称这样的 V 为数域
F 上的线性空间。
R
例 1 全体实函数集合 R 构成实数域 线性空间。 按函数的加法和数乘函数
R上的
例 2 复数域 C上的全体 m n 型矩阵构成 的集合为 C上的线性空间。
A线性表示, 且表示式是唯一的.
最大(线性)无关向量组
定义3 设有向量组A,如果在A中能选出r个向量
A0 : 1 , 2 ,, r,满足 (1)向量组 A0 : 1 , 2 ,, r 线性无关; (2)向量组A中任意r 1个向量(如果A中有
r 1个向量的话)都线性相关, 那末称向量组A0是
定理:过渡矩阵
P 是可逆的。
提示PX=0 只有零解
任取
V
,设 在两组基下的坐标分别为
T
x1 , x2 ,, xn

y1 , y2 ,, yn ,那么我们有:
T
x1 x 2 (1 , 2 , , n ) xn y1 y1 y y 2 ( , , , ) P 2 ( 1 , 2 , , n ) 1 2 n yn yn
按矩阵的加法和数乘矩阵
ห้องสมุดไป่ตู้
例 3 实数域 R 上全体次数小于或等于 n 的多项 式集合 R[ x ]n 构成实数域 R上的线性空间 例 4 全体正的实数 R 在下面的加法与数乘的 定义下也构成线性空间:

a b : ab, a , b R k a : a , a , k R

矩阵分析_第三章 北京理工大学


(4) ( , ki i ) ki ( , i )
i 1 i 1
t
酉空间的性质:
(1) ( , k ) k ( , ), (k , ) k ( , ) (2) ( , ) ( , ) ( , ) (3) ( ki i , ) ki ( i , )

b
2
a
f ( x) d ( x)

b
2
a
g ( x) d ( x)
定义:设 V 为欧氏空间,两个非零向量 , 的夹角定义为
, : arccos
于是有
( , )

2
0 ,

定理:
,

2
( , ) 0
因此我们引入下面的概念; 定义:在酉空间 V 中,如果 称 与 正交。
(1) ( , ) ( , ) (2) (k , ) k ( , ) (3) ( , ) ( , ) ( , ) (4) ( , ) 0
k 这里 , , 是 V 中任意向量, 为任意复数
,只有当 0 时 ( , ) 0 ,我们称带有 这样内积的 n 维线性空间 V 为酉空间。 欧氏空间与酉空间通称为内积空间。
1 2i 3i 6 1 2i (2) 9 1 i 3i 1 i 7
1 2i 3i 1 2i 3i 6 6 1 2i 1 2i 9 1 i 9 1 i 3i 1 i 7 3i 1 i 7
n
2
维线性空间
n n
酉空间。
内积空间的基本性质:
欧氏空间的性质:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档