钢结构原理 第四章 轴心受压构件
合集下载
第4章 钢结构轴心受力构件——格构式

载力的影响。
4.5 格构式轴心受压构件计算
二、 格构式轴心受压构件的整体稳定承载力
2. 对虚轴的整体稳定承载力
N f x A
双肢格构式轴心受压构件对虚轴的换算长细比的计算公式是:
2 缀条构件: ox x 27 A A
1x
λx —— 整个构件对虚轴的长细比; A ——各分肢横截面的毛面积之和; A1x ——一个节间内两侧斜缀条的毛截面面积和:
(一)缀条的设计: 1、斜缀条的设计 2、横缀条的设计: (二)缀板的设计
4.5 格构式轴心受压构件计算 五、缀件(缀条、缀板)的设计 (一)缀条设计: 1 、斜缀条的设计: 缀条的布置一般采用单系缀条或交叉缀 条。缀条可看做以分肢为弦杆的平行弦桁架 的腹杆,与结构力学计算桁架腹杆的方法相 同。
4.5 格构式轴心受压构件计算 五、缀件(缀条、缀板)的设计 (一)缀条设计: 1 、斜缀条的设计: 按铰接桁架计算一个斜缀条 的内力为: N1=V1/(n cosθ)
缀条一般采用单角钢,与柱单面连接,考虑到
受力时的偏心和受压时的弯扭,当按轴心受力
构件设计时,应将钢材强度设计值乘以下列折
减系数η:
4.5 格构式轴心受压构件计算 五、缀件(缀条、缀板)的设计 (一)缀条设计: 1、斜缀条的设计: (1)按轴心受压计算构件的稳定性时: (2)按轴心受压计算构件的强度和(与分肢 的)连接时:
4.5 格构式轴心受压构件计算 二、 格构式轴心受压构件的整体稳定承载力 2、对虚轴的整体稳定承载力 对格构式构件来说,当绕虚轴失稳时,因肢件之 间不连续,只采用缀条或缀板联系,剪切变形较
大,剪力引起的附加影响不能忽略,通常采用换
算长细比λ0x来替代实际长细比λx,以考虑缀材
4.5 格构式轴心受压构件计算
二、 格构式轴心受压构件的整体稳定承载力
2. 对虚轴的整体稳定承载力
N f x A
双肢格构式轴心受压构件对虚轴的换算长细比的计算公式是:
2 缀条构件: ox x 27 A A
1x
λx —— 整个构件对虚轴的长细比; A ——各分肢横截面的毛面积之和; A1x ——一个节间内两侧斜缀条的毛截面面积和:
(一)缀条的设计: 1、斜缀条的设计 2、横缀条的设计: (二)缀板的设计
4.5 格构式轴心受压构件计算 五、缀件(缀条、缀板)的设计 (一)缀条设计: 1 、斜缀条的设计: 缀条的布置一般采用单系缀条或交叉缀 条。缀条可看做以分肢为弦杆的平行弦桁架 的腹杆,与结构力学计算桁架腹杆的方法相 同。
4.5 格构式轴心受压构件计算 五、缀件(缀条、缀板)的设计 (一)缀条设计: 1 、斜缀条的设计: 按铰接桁架计算一个斜缀条 的内力为: N1=V1/(n cosθ)
缀条一般采用单角钢,与柱单面连接,考虑到
受力时的偏心和受压时的弯扭,当按轴心受力
构件设计时,应将钢材强度设计值乘以下列折
减系数η:
4.5 格构式轴心受压构件计算 五、缀件(缀条、缀板)的设计 (一)缀条设计: 1、斜缀条的设计: (1)按轴心受压计算构件的稳定性时: (2)按轴心受压计算构件的强度和(与分肢 的)连接时:
4.5 格构式轴心受压构件计算 二、 格构式轴心受压构件的整体稳定承载力 2、对虚轴的整体稳定承载力 对格构式构件来说,当绕虚轴失稳时,因肢件之 间不连续,只采用缀条或缀板联系,剪切变形较
大,剪力引起的附加影响不能忽略,通常采用换
算长细比λ0x来替代实际长细比λx,以考虑缀材
钢结构稳定计算

----构件的计算长度系数
E ——欧拉临界应力, A ——压杆的截面面积 i ——回转半径( i2=I/A) l----构件的几何长度
1、理想轴心受压构件弯曲屈曲临界力随抗弯刚度的增加和构件长度 的减小而增大; 2、当构件两端为其它支承情况时,通过杆件计算长度的方法考虑。
钢结构设计原理 Design Principles of Steel Structure
长度l0x=6m ,l0y=3m,翼缘钢板为火焰切割边,钢材为Q345, f=315N/mm2,截面无削弱,试计算该轴心受压构件的整体稳
定性。
y
-250×8
x
x
y -250×12
钢结构设计原理 Design Principles of Steel Structure
第四章 构件稳定
1、截面及构件几何性质计算
钢结构设计原理 Design Principles of Steel Structure
第四章 构件稳定
§4.2 实腹式轴心受压构件的截面设计
轴心受压构件设计时应满足强度、刚度、整体稳定和局部稳定的要 求。设计时为取得安全、经济的效果应遵循以下原则。
截面设计原则
1.等稳定性原则
杆件在两个主轴方向上的整体稳定承载力尽量接近。因此尽可能 使两个方向的稳定系数或长细比相等,以达到经济效果。
截面关于x轴和y轴都属于b类,
x y
x
f y 50.4 235
345 61.1 235
查表得: 0.802
N 2000 103 311 .9N / mm 2 f 315 N / mm 2 A 0.802 8000
满足整体稳定性要求。
其整体稳定承载力为:
Nc Af 0.802 8000 315 2020000 N 2020 kN
E ——欧拉临界应力, A ——压杆的截面面积 i ——回转半径( i2=I/A) l----构件的几何长度
1、理想轴心受压构件弯曲屈曲临界力随抗弯刚度的增加和构件长度 的减小而增大; 2、当构件两端为其它支承情况时,通过杆件计算长度的方法考虑。
钢结构设计原理 Design Principles of Steel Structure
长度l0x=6m ,l0y=3m,翼缘钢板为火焰切割边,钢材为Q345, f=315N/mm2,截面无削弱,试计算该轴心受压构件的整体稳
定性。
y
-250×8
x
x
y -250×12
钢结构设计原理 Design Principles of Steel Structure
第四章 构件稳定
1、截面及构件几何性质计算
钢结构设计原理 Design Principles of Steel Structure
第四章 构件稳定
§4.2 实腹式轴心受压构件的截面设计
轴心受压构件设计时应满足强度、刚度、整体稳定和局部稳定的要 求。设计时为取得安全、经济的效果应遵循以下原则。
截面设计原则
1.等稳定性原则
杆件在两个主轴方向上的整体稳定承载力尽量接近。因此尽可能 使两个方向的稳定系数或长细比相等,以达到经济效果。
截面关于x轴和y轴都属于b类,
x y
x
f y 50.4 235
345 61.1 235
查表得: 0.802
N 2000 103 311 .9N / mm 2 f 315 N / mm 2 A 0.802 8000
满足整体稳定性要求。
其整体稳定承载力为:
Nc Af 0.802 8000 315 2020000 N 2020 kN
钢结构设计原理 第四章-轴心受力构件

因此,失稳时杆件的整个截面都处于加载的过 程中,应力-应变关系假定遵循同一个切线模量 Et,此时轴心受压杆件的屈曲临界力为:
N cr ,t
2 Et I
2 二、实际的轴心受压构件的受力性能
在钢结构中,实际的轴压杆与理想的直杆受力性能之间差别很大,实 际上,轴心受压杆的屈曲性能受许多因素影响,主要的影响因素有:
一、理想轴压构件的受力性能 理想轴压构件是指满足下列4个条件: o杆件本身绝对直杆; o材料均质且各向同性; o无荷载偏心且在荷载作用之前无初始应力; o杆端为两端铰接。 在轴心压力作用下,理想的压杆可能发生三种形式的屈曲: 弯曲屈曲、扭转屈曲、弯扭屈曲——见教科书P97图4–6 轴心受压构件具体以何种形式失稳,主要取决于截面的形式 和尺寸、杆的长度以及杆端的支撑条件。
l N 2 EI 对一无残余应力仅存在初弯曲的轴压杆,杆件中点截面边缘开始 式中 N l2 NE 屈服的条件为:
0
1
经过简化为:
N N vm v0 v0 fy v m v0 v 1 1 N NE A W N N v0 N E fy A W NE N
An—构件的净截面面积_
N fy r f R An
P94式4-2
(1)当轴力构件采用普通螺栓连接时 螺栓为并列布置:
n1 n2 n3
按最危险的截面Ⅰ-Ⅰ 计算,3个截面净截面面积 相同,但 Ⅰ-Ⅰ截面受力最大。
N n
Ⅰ-Ⅰ:N Ⅱ-Ⅱ:N-Nn1/n Ⅲ-Ⅲ:N-N(n1+n2)/n
Ⅰ Ⅱ Ⅲ
2 2
从上面两式我们可以看出,绕不同轴屈曲时,不仅临界力不同,且残余 应力对临界应力的影响程度也不同。因为k1,所以残余应力对弱轴的 影响比对强轴的影响严重的多。
第4章轴心受力构件1211

轴 心 受 力 构 件
强度 (承载能力极限状态) 轴心受拉构件 刚度 (正常使用极限状态) 强度 轴心受压构件 稳定 刚度 (正常使用极限状态)
(承载能力极限状态)
设计轴心受拉构件时,应根据结构用途、构件受 力大小和材料供应情况选用合理的截面形式,并对所 选截面进行强度和刚度计算。 设计轴心受压构件时,除使截面满足强度和刚度 要求外尚应满足构件整体稳定和局部稳定要求。实际
结构构件,稳定计算比强度计算更为重要。强度问题与 稳定问题虽然均属第一极限状态问题,但两者之间概念 不同。强度问题关注在结构构件截面上产生的最大内力 或最大应力是否达到该截面的承载力或材料的强度,强 度问题是应力问题;而稳定问题是要找出作用与结构内 部抵抗力之间的不稳定平衡状态,即变形开始急剧增长
的状态,属于变形问题。
N f An ,1 其中:An ,1 b n1 d 0 t ;
f 钢材强度设计值 ; d 0 螺栓孔直径; b 主板宽度;t 主板厚度。
拼接板的危险截面为2-2截面。
考虑孔前传力50%得: 2-2截面的内力为:
2
t1 t b
N
b1
N
0.5n2 N 0.5 N 1 n 2 n2 计算截面上的螺栓数; n 连接一侧的螺栓总数。 N f 其中:An , 2 b1 n2 d 0 t 1 ; An , 2
上,只有长细比很小及有孔洞削弱的轴心受压构件,
才可能发生强度破坏。一般情况下,由整体稳定控制 其承载力。 轴心受压构件丧失整体稳定常常是突发性的,容 易造成严重后果,应予以特别重视。
§4-2 轴心受力构件的强度和刚度
一、强度计算(承载能力极限状态)
钢结构原理-第4章轴心受力构件

柱子曲线: 由于各种缺陷同时
存在,且都是变量,再 加上材料的弹塑性,轴 压构件属于极值点失稳, 其极限承载力Nu很难用 解析法计算,只能借助 计算机采用数值法求解。
《钢结构原理》 第4章 轴心受力构件
缺陷通常只考虑影响最大的残余应力和初弯曲(l/1000)。 采用数值法可以计算出轴压构件在某个方向(绕 x 或 y 轴)的 柱子曲线,如下图,纵坐标为截面平均应力与屈服强度的比值, 横坐标为正则化长细比。
《钢结构原理》 第4章 轴心受力构件
4.1 概述
4.1.1 定义:构件只承受轴心力的作用。 承受轴心压力时称为轴心受压构件。 承受轴心拉力时称为轴心受拉构件。
N
N
N
N
《钢结构原理》 第4章 轴心受力构件
4.1.2 轴心受力构件的应用 平面及空间桁架(钢屋架、管桁架、塔桅、网架等); 工业及民用建筑结构中的一些柱; 支撑系统;等等。
(a) N
(b) N
Hale Waihona Puke (c) NNN
N
《钢结构原理》 第4章 轴心受力构件
4.4.3 理想轴心受压构件的弯曲屈曲 4.4.3.1 弹性弯曲屈曲
取隔离体,建立平衡微分方程
EyIN y0
用数学方法解得:N 的最 小值即分岔屈曲荷载 Ncr,又称 为欧拉荷载 NE 。
Ncr2EI/l2
对应的临界应力为:
《钢结构原理》 第4章 轴心受力构件
4.4 轴心受压构件的整体稳定
概念:在压力作用下,构件的外力必须和内力相平衡。 平衡有稳定、不稳定之分。当为不稳定平衡时,轻微的扰 动就会使构件产生很大的变形而最后丧失承载能力,这种 现象称为丧失稳定性,简称失稳,也称屈曲。 特点:与强度破坏不同,构件整体失稳时会导致完全 丧失承载能力,甚至整体结构倒塌。失稳属于承载能力极 限状态。与混凝土构件相比,钢构件截面尺寸小、构件细 长,稳定问题非常突出。只有受压才有稳定问题。
存在,且都是变量,再 加上材料的弹塑性,轴 压构件属于极值点失稳, 其极限承载力Nu很难用 解析法计算,只能借助 计算机采用数值法求解。
《钢结构原理》 第4章 轴心受力构件
缺陷通常只考虑影响最大的残余应力和初弯曲(l/1000)。 采用数值法可以计算出轴压构件在某个方向(绕 x 或 y 轴)的 柱子曲线,如下图,纵坐标为截面平均应力与屈服强度的比值, 横坐标为正则化长细比。
《钢结构原理》 第4章 轴心受力构件
4.1 概述
4.1.1 定义:构件只承受轴心力的作用。 承受轴心压力时称为轴心受压构件。 承受轴心拉力时称为轴心受拉构件。
N
N
N
N
《钢结构原理》 第4章 轴心受力构件
4.1.2 轴心受力构件的应用 平面及空间桁架(钢屋架、管桁架、塔桅、网架等); 工业及民用建筑结构中的一些柱; 支撑系统;等等。
(a) N
(b) N
Hale Waihona Puke (c) NNN
N
《钢结构原理》 第4章 轴心受力构件
4.4.3 理想轴心受压构件的弯曲屈曲 4.4.3.1 弹性弯曲屈曲
取隔离体,建立平衡微分方程
EyIN y0
用数学方法解得:N 的最 小值即分岔屈曲荷载 Ncr,又称 为欧拉荷载 NE 。
Ncr2EI/l2
对应的临界应力为:
《钢结构原理》 第4章 轴心受力构件
4.4 轴心受压构件的整体稳定
概念:在压力作用下,构件的外力必须和内力相平衡。 平衡有稳定、不稳定之分。当为不稳定平衡时,轻微的扰 动就会使构件产生很大的变形而最后丧失承载能力,这种 现象称为丧失稳定性,简称失稳,也称屈曲。 特点:与强度破坏不同,构件整体失稳时会导致完全 丧失承载能力,甚至整体结构倒塌。失稳属于承载能力极 限状态。与混凝土构件相比,钢构件截面尺寸小、构件细 长,稳定问题非常突出。只有受压才有稳定问题。
钢结构第四章习题答案

2
λx = 6000 / 167.936 = 35.7, λ y = 3000 / 56.93 = 52.7 ,均小于 [λ ] = 150 ,刚度满足。
根据 λ
345 查表 4.5(b)和 4.5(c)得绕 X 轴受压稳定系数 φx = 0.9151 235
1
算得绕 Y 轴受压稳定系数 φy = 0.7569
iy:30.6786 mm,
则长细比 λx = 6000 / 197.676 = 30.4, λ y = 3000 / 30.6786 = 97.8 ,刚度满足。 根据 λ
345 查表 4.5(b)得 ϕx 235
= 0.9622,ϕ y = 0.5694
1300 × 103 = 191.9 MPa < f = 205 N / mm 2 ,整体稳定满足。 0.5694 × 11900 型钢截面壁厚较大,局部稳定一般均能满足,此处不再验算。
2
2 4
绕 y 轴名义回转半径: iy =
I y / A = 15849 132
91.20
= 13.2cm ,
绕 y 轴名义长细比: λy = l0y / iy = 7200 绕 y 轴换算长细比: λ0y = 查 ϕ y = 0.785
= 54.5 ,
λy2 + λ12 = 54.52 + 342 = 64.2 < [λ ] = 12
图 4.32 缀板受力
/2
缀板柱所受最大剪力:
V=
Af 85
fy 235
=
9120 × 215 235 = 23068 N 85 235 V1l1 23068 / 2 × 960 = = 42653N a (259.6)
作用于缀板一侧的剪力:
λx = 6000 / 167.936 = 35.7, λ y = 3000 / 56.93 = 52.7 ,均小于 [λ ] = 150 ,刚度满足。
根据 λ
345 查表 4.5(b)和 4.5(c)得绕 X 轴受压稳定系数 φx = 0.9151 235
1
算得绕 Y 轴受压稳定系数 φy = 0.7569
iy:30.6786 mm,
则长细比 λx = 6000 / 197.676 = 30.4, λ y = 3000 / 30.6786 = 97.8 ,刚度满足。 根据 λ
345 查表 4.5(b)得 ϕx 235
= 0.9622,ϕ y = 0.5694
1300 × 103 = 191.9 MPa < f = 205 N / mm 2 ,整体稳定满足。 0.5694 × 11900 型钢截面壁厚较大,局部稳定一般均能满足,此处不再验算。
2
2 4
绕 y 轴名义回转半径: iy =
I y / A = 15849 132
91.20
= 13.2cm ,
绕 y 轴名义长细比: λy = l0y / iy = 7200 绕 y 轴换算长细比: λ0y = 查 ϕ y = 0.785
= 54.5 ,
λy2 + λ12 = 54.52 + 342 = 64.2 < [λ ] = 12
图 4.32 缀板受力
/2
缀板柱所受最大剪力:
V=
Af 85
fy 235
=
9120 × 215 235 = 23068 N 85 235 V1l1 23068 / 2 × 960 = = 42653N a (259.6)
作用于缀板一侧的剪力:
钢结构轴心受压答案

;
;
(2)强度验算:
查表5.1,
由于 可正、可负,故由 产生的应力可使翼缘压应力增大(或减少)、也可使腹板压应力增大(或减少)。即:
所以,强度满足要求且腹板边缘起控制作用。
(3)弯矩作用平面内稳定验算:
查附表4.2得:
有端弯矩和横向荷载共同作用且产生同向曲率,故 。
由前可知,腹板起控制作用,所以:
还应验算腹板是否可能拉屈:
,b类截面,按 查表得
,承载力无太明显的提高。
(3)如果轴心压力为330KN(设计值),I16能否满足要求?如不满足,从构造上采取什么措施就能满足要求?
8距uuuuuuuuuuuujuu因为 ,所以整体稳定不满足。
在侧向加一支撑,重新计算。
,b类截面,查表得
,整体稳定满足。
4.6 设某工业平台柱承受轴心压力5000KN(设计值),柱高8m,两端铰接。要求设计一H型钢或焊接工字形截面柱。
(1)截面几何特征
强度验算:
因为: ,故可以考虑截面塑性发展。
(3)弯矩作用平面内的稳定验算:
, 查附表4.2得
对x轴为悬臂构件,故
(4)弯矩作用面外的稳定验算:
因上半段和下半段支撑条件和荷载条件一致,故:
查附表4.2得
构件对y轴无论是上半段、还是下半段均为两端支撑,在弯矩作用平面内有端弯矩且端弯矩相等而无横向荷载,故 ,
(4)验算弯矩作用平面外的稳定:
绕对称轴的长细比应取计入扭转效应的换算长细比 ,可采用简化计算方法确定:
根据教材85页,有:
因此:
属于b类截面,查附表4.2得:
①弯矩使翼缘受压时:
与对x轴相同,取
②弯矩使翼缘受拉时:
由于腹板的宽厚比
;
(2)强度验算:
查表5.1,
由于 可正、可负,故由 产生的应力可使翼缘压应力增大(或减少)、也可使腹板压应力增大(或减少)。即:
所以,强度满足要求且腹板边缘起控制作用。
(3)弯矩作用平面内稳定验算:
查附表4.2得:
有端弯矩和横向荷载共同作用且产生同向曲率,故 。
由前可知,腹板起控制作用,所以:
还应验算腹板是否可能拉屈:
,b类截面,按 查表得
,承载力无太明显的提高。
(3)如果轴心压力为330KN(设计值),I16能否满足要求?如不满足,从构造上采取什么措施就能满足要求?
8距uuuuuuuuuuuujuu因为 ,所以整体稳定不满足。
在侧向加一支撑,重新计算。
,b类截面,查表得
,整体稳定满足。
4.6 设某工业平台柱承受轴心压力5000KN(设计值),柱高8m,两端铰接。要求设计一H型钢或焊接工字形截面柱。
(1)截面几何特征
强度验算:
因为: ,故可以考虑截面塑性发展。
(3)弯矩作用平面内的稳定验算:
, 查附表4.2得
对x轴为悬臂构件,故
(4)弯矩作用面外的稳定验算:
因上半段和下半段支撑条件和荷载条件一致,故:
查附表4.2得
构件对y轴无论是上半段、还是下半段均为两端支撑,在弯矩作用平面内有端弯矩且端弯矩相等而无横向荷载,故 ,
(4)验算弯矩作用平面外的稳定:
绕对称轴的长细比应取计入扭转效应的换算长细比 ,可采用简化计算方法确定:
根据教材85页,有:
因此:
属于b类截面,查附表4.2得:
①弯矩使翼缘受压时:
与对x轴相同,取
②弯矩使翼缘受拉时:
由于腹板的宽厚比
4-钢结构设计原理-轴心受力构件1 钢结构设计原理

第四章 轴心受力构件
4 轴
主要内容:
心
受 力
1、轴心受拉构件的强度和刚度
构
件 设
2、轴心受压构件的强度
计
3、轴心受压实腹式构件的整体稳定
4、轴心受压格构式构件的整体稳定
5、轴心受压实腹式构件的局部稳定
6、轴心受压格构式构件的局部稳定
7、轴心受力构件的刚度
学习目标
1.掌握轴心受拉构件强度的计算方法、净截面的概念;
4
轴
心 受
所谓分支点失稳,是指当荷载逐渐增加到某一数值
力 构
时,结构除了按原有变形形式可能维持平衡之外,还可
件 设
能以其他变形形式维持平衡,这种情况称为出现平衡的
计
分支。出现平衡的分支是此种结构失稳的标志。
对于受偏心压力的细长直杆,当荷载逐渐增大而趋
于某一数值时,其原有变形形式急剧增大,致使结构丧
失承载能力。这种失稳现象称为极值点失稳。
结构或构件在外力增加到某一数值时,稳定的平衡
状态开始丧失,稍有扰动,结构变形迅速增大,使结构 丧失正常工作的能力,称为失稳。
在桥梁结构中,总是要求沿各个方向保持稳定的平
衡,也即沿各个方向都是稳定的,避免不稳定的平衡或 随遇平衡。
结构稳定问题的两种形式:
第一类稳定问题,分支点失稳问题; 第二类稳定问题,极值点失稳问题。
4
轴 心 受 力 构 件 设 计
4.3.3轴压稳定理论的沿革——具有初始缺陷的实际轴心压杆的稳 定问题
有关轴心压杆的整体稳定问题的理论经历了由理想状态杆件的
单曲线函数关系到实际状态杆件多曲线函数关系的沿革。传统的
理想状态压杆的单曲线稳定理论认为轴压杆是理想状态的,它在
4 轴
主要内容:
心
受 力
1、轴心受拉构件的强度和刚度
构
件 设
2、轴心受压构件的强度
计
3、轴心受压实腹式构件的整体稳定
4、轴心受压格构式构件的整体稳定
5、轴心受压实腹式构件的局部稳定
6、轴心受压格构式构件的局部稳定
7、轴心受力构件的刚度
学习目标
1.掌握轴心受拉构件强度的计算方法、净截面的概念;
4
轴
心 受
所谓分支点失稳,是指当荷载逐渐增加到某一数值
力 构
时,结构除了按原有变形形式可能维持平衡之外,还可
件 设
能以其他变形形式维持平衡,这种情况称为出现平衡的
计
分支。出现平衡的分支是此种结构失稳的标志。
对于受偏心压力的细长直杆,当荷载逐渐增大而趋
于某一数值时,其原有变形形式急剧增大,致使结构丧
失承载能力。这种失稳现象称为极值点失稳。
结构或构件在外力增加到某一数值时,稳定的平衡
状态开始丧失,稍有扰动,结构变形迅速增大,使结构 丧失正常工作的能力,称为失稳。
在桥梁结构中,总是要求沿各个方向保持稳定的平
衡,也即沿各个方向都是稳定的,避免不稳定的平衡或 随遇平衡。
结构稳定问题的两种形式:
第一类稳定问题,分支点失稳问题; 第二类稳定问题,极值点失稳问题。
4
轴 心 受 力 构 件 设 计
4.3.3轴压稳定理论的沿革——具有初始缺陷的实际轴心压杆的稳 定问题
有关轴心压杆的整体稳定问题的理论经历了由理想状态杆件的
单曲线函数关系到实际状态杆件多曲线函数关系的沿革。传统的
理想状态压杆的单曲线稳定理论认为轴压杆是理想状态的,它在
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冷弯型钢截面
钢结构设计原理
第四章 轴心受压构件
格构式组合截面
2、格构式截面 截面由两个或多个 型钢肢件通过缀材 连接而成。
钢结构设计原理
第四章 轴心受压构件
钢结构设计原理
第四章 轴心受压构件
轴心受力构件的计算内容
承载 能力 极限 状态 强度 整体稳定
实腹式
稳定 局部稳定
格构式
正常 使用 极限 状态 刚度
(d)焰切边焊接
(e)焊接
( f )热扎等边角钢
钢结构设计原理
第四章 轴心受压构件
残余应力影响下短柱的σ-ε曲线 以热扎H型钢短柱为例:
0.3fy (A) 0.3fy 0.3fy (B)
fy σ=0.7fy fy 0.7fy<σ<fy
fy fp
σ=N/A fy-σrc σrc ε
C B A
σrc=0.3fy
第四章 轴心受压构件
12
t1 t b
1 1’
t1 t
b1
c4
c1
N
12
并列布置
N
N
b
c3 c2
N
1 1’
错列布置
◆ An应取1—1和2—2截面的较小面积计算。
高强度螺栓摩擦型连接 ◆验算净截面强度时应考虑截面上每个螺栓所传之 力的一部分已经由摩擦力在孔前传走,净截面上 所受内力应扣除已传走的力。
钢结构设计原理
σ
a
σ
m ax
fy
N
N
N
N
弹性状态应力
极限状态应力
◆弹性阶段,孔壁边缘的最大应力max可能达到构件毛
截面平均应力的3倍。 ◆当孔壁边缘的最大应力达到材料的屈服强度以后, 应力不再继续增加而只发展塑性变形,截面上应力产 生重分布,应力渐趋于均匀。
钢结构设计原理
第四章 轴心受压构件 ◆对于有孔洞削弱的轴心受压构件,仍以其净截面
第四章 轴心受压构件
(2)扭转失稳--失稳时除杆件的支撑端外,各截面
均绕纵轴扭转,是某些双轴对称截面可能发生的失稳形 式;
钢结构设计原理
第四章 轴心受压构件
(3)弯扭失稳—单轴对称截面绕对称轴屈曲时,杆
件发生弯曲变形的同时必然伴随着扭转。
钢结构设计原理
第四章 轴心受压构件
轴心受压杆件的弹性弯曲屈曲
N A 稳 定 F 平 衡 状 态 B 随 遇 平 衡 状 态 N Ncr Ncr C 临 界 F 状 态
F
l
N
N
Ncr
钢结构设计原理
第四章 轴心受压构件
下面推导临界力Ncr 设M作用下引起的变形为y1,剪力作用下引起的变形 为y2,总变形y=y1+y2。 由材料力学知: Ncr
d y1 dx
2 2
钢结构设计原理
第四章 轴心受压构件
实际轴心受压构件
实际轴心受压构件存在初始缺陷 ---- 初弯曲、初偏心、残余应力
Nk
e0
N
Nu
A
B
v0 v
Nk
O
e0
图4.14 有初弯曲的轴心压杆及其压力挠度曲线
v
钢结构设计原理
第四章 轴心受压构件
(1)初弯曲和初偏心的影响
① 有初弯曲(初偏心)时,一开始就产生挠曲,荷载↑,v↑, 当N→ NE时,v →∞ ② 初弯曲(初偏心)越大,同样压力下变形越大。 ③ 初弯曲(初偏心)即使很小,也有 N N cr E
截面),并引入了稳定系数。
a曲线包括的截面残余应力影响最小,相同的λ值, 承载力大, 稳定系数大; c曲线包括的截面残余应力影响较大; d曲线承载力最低。
cr
fy
钢结构设计原理
第四章 轴心受压构件
钢结构设计原理
第四章 轴心受压构件
3、实际轴心受压构件的整体稳定计算
轴心受压构件不发生整体失稳的条件为,截面 应力不大于临界应力,并考虑抗力分项系数γR后, 即为:
N cr ,t
Et I
2
l
2
(4 8)
cr ,t
Et
2
2
(4 9)
钢结构设计原理
第四章 轴心受压构件
4.2.2
影响轴心受压构件稳定承载力的主要因素
影响轴心受压构件稳定承载力的主要因素;如构件的截面形 状和尺寸、材料的力学性能、构件的失稳方向、杆端的约束条 件,构件的初弯曲和初偏心,钢结构的焊接、加工过程中产生 的残余应力等,也对构件的稳定有很大的影响。
2
l
2
EI
2
l0
2
式中:l 0 杆件计算长度, 0 l; l
计算长度系数,取值如 下表。
对于框架柱和厂房阶梯柱的计算长度取值,详 见有关章节。
钢结构设计原理
第四章 轴心受压构件
理想轴心压杆与实际轴心压杆承载能力比较
1-欧拉临界力 2-切线摸量临界力 3-有初弯曲临界力
实测的残余应力分布较复杂而离散,分析时常采用
其简化分布图(计算简图):
钢结构设计原理
第四章 轴心受压构件 0.361fy
+
0.3fy 0.3fy
fy
β1fy 0.3fy
+
0.805fy
0.3fy
(a)热扎工字钢
fy 0.75fy
(b)热扎H型钢
fy
(c)扎制边焊接
β2fy β2fy
0.2fy
0.53fy
的平均应力达到其强度限值作为设计时的控制值。
N An f (4 1)
N—轴心拉力或压力设计值; An—构件的净截面面积; f—钢材的抗拉强度设计值。
轴心受压 构件,当 截面无削 弱时,强 度不必计 算。
An的计算 采用普通螺栓(或铆钉)连接时,可采用并列布置 和错列布置。
钢结构设计原理
钢结构设计原理
第四章 轴心受压构件
轴心受压构件是指承受通过构件截面形心轴线的 轴向压力作用的构件,简称轴心压杆。 轴心受力构件的应用 3.塔架 2.网架 1.桁架
钢结构设计原理
第四章 轴心受压构件 3.轴心受压柱
钢结构设计原理
第四章 轴心受压构件
轴心受力构件的分类
实腹式轴压柱与格构式轴压柱
柱头 柱头
时,构件 达到强度极限承载力。但当构件应力达到钢材的屈服 强度 时,由于塑性变形的发展,变形过大以至于达 到不适合继续承载的状态。 ◆轴心受压构件的强度承载力是以截面的平均应力达 到钢材的屈服应力fy。
钢构设计原理
第四章 轴心受压构件 ◆当构件的截面有孔洞等局部削弱时,截面上的应力
分布不再是均匀的,而出现应力集中现象。
第四章 轴心受压构件
第四章 轴心受压构件
Axially Compression Members
钢结构设计原理
第四章 轴心受压构件
大纲要求
1、了解“轴心受力构件”的应用和截面形式; 2、掌握轴心受拉构件设计计算;
3、了解“轴心受压构件”稳定理论的基本概念和
分析方法; 4、掌握现行规范关于“轴心受压构件”设计计算 方法,重点及难点是构件的整体稳定和局部稳定; 5、掌握格构式轴心受压构件设计方法。
缀 板
缀
柱身 柱身 柱脚 柱脚
x y x
(a )
实腹式柱
y
y
x( 虚 轴 ) y y
(实轴)
x (虚轴) y
(实轴)
x
(b )
格构式柱
x
(c )
格构式柱 (缀条式)
(缀板式)
l =l
01
l l
条
01
1
1
钢结构设计原理
第四章 轴心受压构件
截面形式可分为:实腹式和格构式两大类。
1、实腹式截面
热轧型钢截面
钢结构设计原理
第四章 轴心受压构件
2、实际轴心受压构件的柱子曲线
我国规范给定的临界应力σcr,是按最大强度准则,并通过 数值分析确定的。
由于各种缺陷对不同截面、不同对称轴的影响不同,所以
σcr-λ曲线(柱子曲线),呈相当宽的带状分布,为减小误差 以及简化计算,规范在试验的基础上,给出了四条曲线(四类
4.2.1理想轴心受压构件的整体稳定性 理想的轴心受压构件(杆件挺直、荷载无偏心、 无初始应力、无初弯曲、无初偏心、截面均匀等) 的失稳形式分为:
钢结构设计原理
第四章 轴心受压构件
(1)弯曲失稳--只发生弯曲变形,截面只绕一个主
轴旋转,杆纵轴由直线变为曲线,是双轴对称截面常见 的失稳形式;
钢结构设计原理
M EI
y y1 y2 Ncr
M=Ncr·y
剪力V产生的轴线转角为:
dy 2 dx
GA
V
GA
dM dx
A、I 杆件截面积和惯性矩; E、G 材料弹性模量和剪变模 量;
x
与截面形状有关的系数 。
Ncr
钢结构设计原理
l
Ncr
第四章 轴心受压构件
通常剪切变形的影响较小,可忽略不计,即得欧 拉临界力和临界应力:
变形。
l0 i
[ ]
( 4 2)
l 0 构件的计算长度;
i
I A
截面的回转半径;
[ ] 构件的容许长细比,其
取值详见规范或教材。
钢结构设计原理
第四章 轴心受压构件
4.2 轴心受压构件的整体稳定
◆ 细长的轴向受压构件,当压力达到一定大小时,会突然 发生侧向弯曲(或扭曲),改变原来的受力性质,从而丧失 承载力。 ◆ 构件横截面上的应力还远小于材料的极限应力,甚至小 于比例极限。这种失效不是强度不足,而是由于受压构件不 能保持其原有的直线形状平衡。这种现象称为丧失整体稳定 性,或称屈曲。