2019浙江省杭州市中考数学真题及答案
2019年浙江省杭州市中考数学试卷(答案解析版)

2019年浙江省杭州市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.计算下列各式,值最小的是()A. B. C. D.2.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. ,B. ,C. ,D. ,3.如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若PA=3,则PB=()A. 2B. 3C. 4D. 54.已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A. B.C. D.5.点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A. 平均数B. 中位数C. 方差D. 标准差6.如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.B.C.D.7.在△ABC中,若一个内角等于另外两个内角的差,则()A. 必有一个内角等于B. 必有一个内角等于C. 必有一个内角等于D. 必有一个内角等于8.已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A. B.C. D.9.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.B.C.D.10.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. 或B. 或C. 或D. 或二、填空题(本大题共6小题,共24.0分)11.因式分解:1-x2=______.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于______.13.如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于______cm2(结果精确到个位).14.在直角三角形ABC中,若2AB=AC,则cos C=______.15.某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式______.16.如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于______.三、解答题(本大题共7小题,共66.0分)17.化简:--1圆圆的解答如下:--1=4x-2(x+2)-(x2-4)=-x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.18.称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为甲,乙,写出甲与乙之间的等量关系.②甲,乙两组数据的方差分别为S甲2,S乙2,比较S甲2与S乙2的大小,并说明理由.19.如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.20.方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.21.如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.22.设二次函数y=(x-x1)(x-x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=时,y=-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<.23.如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m-n+2=0.答案和解析1.【答案】A【解析】解:A.2×0+1-9=-8,B.2+0×1-9=-7C.2+0-1×9=-7D.2+0+1-9=-6,故选:A.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.【答案】B【解析】解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=-3,n=2.故选:B.直接利用关于y轴对称点的性质得出答案.此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.3.【答案】B【解析】解:连接OA、OB、OP,∵PA,PB分别切圆O于A,B两点,∴OA⊥PA,OB⊥PB,在Rt△AOP和Rt△BOP中,,∴Rt△AOP≌Rt△BOP(HL),∴PB=PA=3,故选:B.连接OA、OB、OP,根据切线的性质得出OA⊥PA,OB⊥PB,然后证得Rt△AOP≌Rt△BOP,即可求得PB=PA=3.本题考查了切线长定理,三角形全等的判定和性质,作出辅助线根据全等三角形是解题的关键.4.【答案】D【解析】解:设男生有x人,则女生(30-x)人,根据题意可得:3x+2(30-x)=72.故选:D.直接根据题意表示出女生人数,进而利用30位学生种树72棵,得出等式求出答案.此题主要考查了由实际问题抽象出一元一次方程,正确表示出男女生的植树棵树是解题关键.5.【答案】B【解析】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.利用平均数、中位数、方差和标准差的定义对各选项进行判断.本题考查了标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.也考查了中位数、平均数.6.【答案】C【解析】解:∵DN∥BM,∴△ADN∽△ABM,∴=,∵NE∥MC,∴△ANE∽△AMC,∴=,∴=.故选:C.先证明△ADN∽△ABM得到=,再证明△ANE∽△AMC得到=,则=,从而可对各选项进行判断.本题考查了相似三角形的判定与性质:三在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;灵活运用相似三角形的性质表示线段之间的关系.7.【答案】D【解析】解:∵∠A+∠B+∠C=180°,∠A=∠C-∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代入求出∠C即可.本题考查了三角形内角和定理的应用,能求出三角形最大角的度数是解此题的关键,注意:三角形的内角和等于180°.8.【答案】A【解析】解:A、由①可知:a>0,b>0.∴直线②经过一、二、三象限,故A正确;B、由①可知:a<0,b>0.∴直线②经过一、二、三象限,故B错误;C、由①可知:a<0,b>0.∴直线②经过一、二、四象限,交点不对,故C错误;D、由①可知:a<0,b<0,∴直线②经过二、三、四象限,故D错误.故选:A.根据直线①判断出a、b的符号,然后根据a、b的符号判断出直线②经过的象限即可,做出判断.本题主要考查的是一次函数的图象和性质,掌握一次函数的图象和性质是解题的关键.9.【答案】D【解析】解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a•cosx+b•sinx,故选:D.根据题意,作出合适的辅助线,然后利用锐角三角函数即可表示出点A到OC 的距离,本题得以解决.本题考查解直角三角形的应用-坡度坡角问题、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.10.【答案】C【解析】解:∵y=(x+a)(x+b)=x2+(a+b)x+1,∴△=(a+b)2-4ab=(a-b)2>0,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2-4ab=(a-b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x轴有一个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x轴的交点个数,若一次函数,则与x轴只有一个交点,据此解答.本题主要考查一次函数与二次函数与x轴的交点问题,关键是根据根的判别式的取值确定抛物线与x轴的交点个数,二次项系数为字母的代数式时,要根据系数是否为0,确定它是什么函数,进而确定与x轴的交点个数.11.【答案】(1-x)(1+x)【解析】解:∵1-x2=(1-x)(1+x),故答案为:(1-x)(1+x).根据平方差公式可以将题目中的式子进行因式分解.本题考查因式分解-运用公式法,解题的关键是明确平方差公式,会运用平方差公式进行因式分解.12.【答案】【解析】解:∵某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于:.故答案为:.直接利用已知表示出两组数据的总和,进而求出平均数.此题主要考查了加权平均数,正确得出两组数据的总和是解题关键.13.【答案】113【解析】解:这个冰淇淋外壳的侧面积=×2π×3×12=36π≈113(cm2).故答案为113.利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【答案】或【解析】解:若∠B=90°,设AB=x,则AC=2x,所以BC==x,所以cosC===;若∠A=90°,设AB=x,则AC=2x,所以BC==x,所以cosC===;综上所述,cosC的值为或.故答案为或.讨论:若∠B=90°,设AB=x,则AC=2x,利用勾股定理计算出BC=x,然后根据余弦的定义求cosC的值;若∠A=90°,设AB=x,则AC=2x,利用勾股定理计算出BC=x,然后根据余弦的定义求cosC的值.本题考查了锐角三角函数的定义:熟练掌握锐角三角函数的定义,灵活运用它们进行几何计算.15.【答案】y=-x+1【解析】解:设该函数的解析式为y=kx+b,∵函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,∴解得:,所以函数的解析式为y=-x+1,故答案为:y=-x+1.根据题意写出一个一次函数即可.本题考查了各种函数的性质,题目中x、y均可以取0,故不能是反比例函数.16.【答案】2(5+3)【解析】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴=,∴=,∴x2=4a2,∴x=2a或-2a(舍弃),∴PA′=PD′=2a,∵•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+3).故答案为2(5+3)设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,因为△A′EP的面积为4,△D′PH的面积为1,推出A′E=4D′H,设D′H=a,则A′E=4a,由△A′EP∽△D′PH,推出=,推出=,可得x=2a,再利用三角形的面积公式求出a即可解决问题.本题考查翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.17.【答案】解:圆圆的解答错误,正确解法:--1=--===-.【解析】直接将分式进行通分,进而化简得出答案.此题主要考查了分式的加减运算,正确进行通分运算是解题关键.18.【答案】解:(1)乙组数据的折线统计图如图所示:(2)①甲=50+乙.②S甲2=S乙2.理由:∵S甲2=[(48-50)2+(52-50)2+(47-50)2+(49-50)2+(54-50)2]=6.8.S乙2=[(-2-0)2+(2-0)2+(-3-0)2+(-1-0)2+(4-0)2]=6.8,∴S甲2=S乙2.【解析】(1)利用描点法画出折线图即可.(2)利用方差公式计算即可判断.本题考查折线统计图,算术平均数,方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【答案】解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴PA=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.【解析】(1)根据线段垂直平分线的性质可知PA=PB,根据等腰三角形的性质可得∠B=∠BAP,根据三角形的外角性质即可证得APC=2∠B;(2)根据题意可知BA=BQ,根据等腰三角形的性质可得∠BAQ=∠BQA,再根据三角形的内角和公式即可解答.本题主要考查了等腰三角形的性质、垂直平分线的性质以及三角形的外角性质,难度适中.20.【答案】解:(1)∵vt=480,且全程速度限定为不超过120千米/小时,∴v关于t的函数表达式为:v=,(0≤t≤4).(2)①8点至12点48分时间长为小时,8点至14点时间长为6小时将t=6代入v=得v=80;将t=代入v=得v=100.∴小汽车行驶速度v的范围为:80≤v≤100.②方方不能在当天11点30分前到达B地.理由如下:8点至11点30分时间长为小时,将t=代入v=得v=>120千米/小时,超速了.故方方不能在当天11点30分前到达B地.【解析】(1)由速度乘以时间等于路程,变形即可得速度等于路程比时间,从而得解;(2)①8点至12点48分时间长为小时,8点至14点时间长为6小时,将它们分别代入v关于t的函数表达式,即可得小汽车行驶的速度范围;②8点至11点30分时间长为小时,将其代入v关于t的函数表达式,可得速度大于120千米/时,从而得答案.本题是反比例函数在行程问题中的应用,根据时间速度和路程的关系可以求解,本题属于中档题.21.【答案】解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1-a,∵S1=S2,∴a2=1×(1-a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH=.=,∵CH=0.5,CG=,∴HG=,∴HD=HG.【解析】(1)设出正方形CEFG的边长,然后根据S1=S2,即可求得线段CE的长;(2)根据(1)中的结果可以题目中的条件,可以分别计算出HD和HG的长,即可证明结论成立.本题考查正方形的性质、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】解:(1)当x=0时,y=0;当x=1时,y=0;∴二次函数经过点(0,0),(1,0),∴x1=0,x2=1,∴y═x(x-1)=x2-x,当x=时,y=-,∴乙说点的不对;(2)对称轴为x=,当x=时,y=-是函数的最小值;(3)二次函数的图象经过(0,m)和(1,n)两点,∴m=x1x2,n=1-x1-x2+x1x2,∴mn=[-][-]∵0<x1<x2<1,∴0≤-≤,0≤-≤,∴0<mn<.【解析】(1)将(0,0),(1,0)代入y=(x-x1)(x-x2)求出函数解析式即可求解;(2)对称轴为x=,当x=时,y=-是函数的最小值;(3)将已知两点代入求出m=x1x2,n=1-x1-x2+x1x2,再表示出mn=[-][-],由已知0<x1<x2<1,可求出0≤-≤,0≤-≤,即可求解.本题考查二次函数的性质;函数最值的求法;熟练掌握二次函数的性质,能够将mn准确的用x1和x2表示出来是解题的关键.23.【答案】解:(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,∴∠OBC=30°,∴OD=OB=OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=,△ABC面积的最大值=×BC×AD=×2OB sin60°×=;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°-∠ABC-∠ACB=180°-mx-nx=∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°-mx-nx+2mx=180°+mx-nx,∵OE=OD,∴∠AOD=180°-2x,即:180°+mx-nx=180°-2x,化简得:m-n+2=0.【解析】(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,即可求解;②BC长度为定值,△ABC面积的最大值,要求BC边上的高最大,即可求解;(2)∠BAC=180°-∠ABC-∠ACB=180°-mx-nx=∠BOC=∠DOC,而∠AOD=∠COD+∠AOC=180°-mx-nx+2mx=180°+mx-nx,即可求解.本题为圆的综合运用题,涉及到解直角三角形、三角形内角和公式,其中(2),∠AOD=∠COD+∠AOC是本题容易忽视的地方,本题难度适中.。
2019年浙江省杭州市中考数学试卷及答案解析

2019年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)计算下列各式,值最小的是( )A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣92.(3分)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )A.m=3,n=2B.m=﹣3,n=2C.m=2,n=3D.m=﹣2,n=﹣3 3.(3分)如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若PA=3,则PB=( )A.2B.3C.4D.54.(3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则( )A.2x+3(72﹣x)=30B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72D.3x+2(30﹣x)=725.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( )A.平均数B.中位数C.方差D.标准差6.(3分)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则( )A.=B.=C.=D.=7.(3分)在△ABC中,若一个内角等于另外两个内角的差,则( )A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°8.(3分)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是( )A.B.C.D.9.(3分)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于( )A.a sin x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a cos x+b sin x10.(3分)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则( )A.M=N﹣1或M=N+1B.M=n﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣1二、填空题:本大题有6个小题,每小题4分,共24分;11.(4分)因式分解:1﹣x2= .12.(4分)某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于 .13.(4分)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于 cm2(结果精确到个位).14.(4分)在直角三角形ABC中,若2AB=AC,则cos C= .15.(4分)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式 .16.(4分)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G 在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于 .三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)化简:﹣﹣1圆圆的解答如下:﹣﹣1=4x﹣2(x+2)﹣(x2﹣4)=﹣x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.18.(8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表12345序号数据甲组4852474954乙组﹣22﹣3﹣14(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为,,写出与之间的等量关系.②甲,乙两组数据的方差分别为S甲2,S乙2,比较S甲2与S乙2的大小,并说明理由.19.(8分)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC =3∠B,求∠B的度数.20.(10分)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.21.(10分)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC 边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.22.(12分)设二次函数y=(x﹣x1)(x﹣x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=时,y=﹣.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<.23.(12分)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.2019年浙江省杭州市中考数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.解:A.2×0+1﹣9=﹣8,B.2+0×1﹣9=﹣7C.2+0﹣1×9=﹣7D.2+0+1﹣9=﹣6,故选:A.2.解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=﹣3,n=2.故选:B.3.解:连接OA、OB、OP,∵PA,PB分别切圆O于A,B两点,∴OA⊥PA,OB⊥PB,在Rt△AOP和Rt△BOP中,,∴Rt△AOP≌Rt△BOP(HL),∴PB=PA=3,故选:B.4.解:设男生有x人,则女生(30﹣x)人,根据题意可得:3x+2(30﹣x)=72.故选:D.5.解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.6.解:∵DN∥BM,∴△ADN∽△ABM,∴=,∵NE∥MC,∴△ANE∽△AMC,∴=,∴=.故选:C.7.解:∵∠A+∠B+∠C=180°,∠A=∠C﹣∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.8.解:A、由①可知:a>0,b>0.∴直线②经过一、二、三象限,故A正确;B、由①可知:a<0,b>0.∴直线②经过一、二、三象限,故B错误;C、由①可知:a<0,b>0.∴直线②经过一、二、四象限,交点不对,故C错误;D、由①可知:a<0,b<0,∴直线②经过二、三、四象限,故D错误.故选:A.9.解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a•cos x+b•sin x,故选:D.10.解:∵y=(x+a)(x+b)=x2+(a+b)x+1,∴△=(a+b)2﹣4ab=(a﹣b)2>0,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2﹣4ab=(a﹣b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x轴有一个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.二、填空题:本大题有6个小题,每小题4分,共24分;11.解:∵1﹣x2=(1﹣x)(1+x),故答案为:(1﹣x)(1+x).12.解:∵某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于:.故答案为:.13.解:这个冰淇淋外壳的侧面积=×2π×3×12=36π≈113(cm2).故答案为113.14.解:若∠B=90°,设AB=x,则AC=2x,所以BC==x,所以cos C===;若∠A=90°,设AB=x,则AC=2x,所以BC==x,所以cos C===;综上所述,cos C的值为或.故答案为或.15.解:设该函数的解析式为y=kx+b,∵函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,∴解得:,所以函数的解析式为y=﹣x+1,故答案为:y=﹣x+1.16.解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴=,∴=,∴x2=4a2,∴x=2a或﹣2a(舍弃),∴PA′=PD′=2a,∵•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+3).故答案为2(5+3)三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.解:圆圆的解答错误,正确解法:﹣﹣1=﹣﹣===﹣.18.解:(1)乙组数据的折线统计图如图所示:(2)①=50+.②S甲2=S乙2.理由:∵S甲2=[(48﹣50)2+(52﹣50)2+(47﹣50)2+(49﹣50)2+(54﹣50)2]=6.8.S乙2=[(﹣2﹣0)2+(2﹣0)2+(﹣3﹣0)2+(﹣1﹣0)2+(4﹣0)2]=6.8,∴S甲2=S乙2.19.解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴PA=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.20.解:(1)∵vt=480,且全程速度限定为不超过120千米/小时,∴v关于t的函数表达式为:v=,(0≤t≤4).(2)①8点至12点48分时间长为小时,8点至14点时间长为6小时将t=6代入v=得v=80;将t=代入v=得v=100.∴小汽车行驶速度v的范围为:80≤v≤100.②方方不能在当天11点30分前到达B地.理由如下:8点至11点30分时间长为小时,将t=代入v=得v=>120千米/小时,超速了.故方方不能在当天11点30分前到达B地.21.解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.22.解:(1)当x=0时,y=0;当x=1时,y=0;∴二次函数经过点(0,0),(1,0),∴x1=0,x2=1,∴y═x(x﹣1)=x2﹣x,当x=时,y=﹣,∴乙说点的不对;(2)对称轴为x=,当x=时,y=﹣是函数的最小值;(3)二次函数的图象经过(0,m)和(1,n)两点,∴m=x1x2,n=1﹣x1﹣x2+x1x2,∴mn=[﹣][﹣]∵0<x1<x2<1,∴0≤﹣≤,0≤﹣≤,∴0<mn<.23.解:(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,∴∠OBC=30°,∴OD=OB=OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=,△ABC面积的最大值=×BC×AD=×2OB sin60°×=;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx=∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,∵OE=OD,∴∠AOD=180°﹣2x,即:180°+mx﹣nx=180°﹣2x,化简得:m﹣n+2=0.。
2019浙江省杭州市中考数学试题(含答案)[真题]
![2019浙江省杭州市中考数学试题(含答案)[真题]](https://img.taocdn.com/s3/m/3e4794acbd64783e08122b6f.png)
浙江省杭州市2019年中考数学试题一、选择题:本大题有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项符合题目要求的.1.计算下列各式,值最小的是( )A.9102-+⨯B.2+0×1-9C.2+0-1+9D.2+0+1-92.在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( )A.m=3,n=2B.m= - 3,n=2C.m=2,n=3D.m= - 2,n=33.如图,P 为圆O 外一点,PA ,PB 分别切圆O 于A ,B 两点,若PA=3,则PB=( ) A.2 B.3 C.4 D.54.已知九年级某班30名学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x 人,则( )A.30)72(32=-+x xB.30)72(23=-+x xC.72)30(32=-+x xD.72)30(23=-+x x5.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是( )A.平均数B.中位数C.方差D.标准差6.如图,在△ABC 中,点D,E 分别在AB 和AC 边上,DE ∥BC ,M 为BC 边上一点(不与点B,C 重合),连接AM 交DE 于点N ,则( ) A.AE AN AN AD = B.CE MN MN BD = C. MC NE BM DN = D.BMNE MC DN =7.在△ABC 中,点D,E 分别在ABC 中,若一个内角等于另两个内角的差,则( )A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°8.已知一次函数b ax y +=1和)(2b a a bx y ≠+=,函数1y 和2y 的图象可能是( )9.如图,一块矩形木板ABCD 斜靠在墙边(OC ⊥OB ,点A,B,C,D,O 在同一平面内).已知AB=a ,AD=b ,∠BCO=x ,则点A 到OC 的图象与x 轴有N 个交点,则( )A.x b x a sin sin +B.x b x a cos cos +C.x b x a cos sin +D.x b x a sin cos +10.在平面直角坐标系,已知b a ≠,设函数))((b x a x y ++=的图象与x 轴有M 个交点,函数)1)(1(++=bx ax y 的图象与x 轴有N 个交点,则( )A.M=N-1或M=N+1B.M=N-1或M=N+2C.M=N 或M=N+1D.M=N 或M=N-1二、填空题:本大题有6小题,每小题4分,共24分11.因式分解:=-21x .12.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m+n 个数据的平均数等于 .13.如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm ,底面圆半径为3cm ,则这个冰淇淋外壳的侧面积等于 cm 2(结果精确到个位).14.在直角三角形ABC 中,若2AB=AC ,则cosC= .15.某函数满足当自变量1=x 时,函数值0=y ;当自变量0=x 时,函数值1=y ,写出一个满足条件的函数表达式 .16.如图,把某矩形纸片ABCD 沿EF 、GH 折叠(点E 、H 在AD 边,点E,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点的对称点为D '点,若∠FPG=90°,△A 'EP 的面积为4,△PH D '的面积为1,则矩形ABCD 的面积等于 .三、解答题:本大题有7个小题,共66分.17.(本题6分) 化简:122442----x x x . 圆圆的解答如下:x x x x x x x x 2)4()2(2412244222+-=--+-=---- 圆圆的解答正确吗?如果不正确,写出正确的解答.18.(本题8分)称量五框水果的质量,若每框以50kg 为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:kg ).(1)补充完整乙组数据的折线统计图;(2)①甲、乙两组数据的平均数分别为甲x 、乙x ,写出甲x 和乙x 之间的等量关系;②甲、乙两组数据的方差分别为2甲S 、2乙S ,比较2甲S 和2乙S 的大小,并说明理由.19.(本题8分)如图,在△ABC 中,BC AB AC <<.(1)已知线段AB 的垂直平分线与BC 边交于点P ,连接AP ,求证:∠APC=2∠B ;(2)以点B 为圆心,线段AB 长为半径画弧,与BC 边交于点Q ,连接AQ ,若∠AQC=3∠B ,求∠B 的度数.20.(本题8分)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车行驶时间为t (单位:小时),行驶速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数表达式;(2)方方上午8点驾驶小汽车从A 地出发:①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围; ②方方能否在当天11点30分前到达B 地?说明理由.21.(本题10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为1S ,点E 在DC 边上,点G 在BC 的延长线上,设线段AD 和DE 为邻边的矩形的面积为2S ,且1S =2S .(1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:DH=GH.22.(本题12分)设二次函数2121,)()((x x x x x x y --=是实数).(1)甲求得当0=x 时,0=y ;当1=x 时,0=y ;乙求得当21=x 时,21-=y ,若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含21,x x 的代数式表示).(3)已知二次函数的图象经过(0,m )和(1,n )两点(m,n 是实数),当1021<<<x x 时,求证:1610<<mn .23.(本题12分)如图,已知锐角三角形ABC 内接于圆O ,OD 、BC 交于点D ,连接OA.(1)若∠BAC=60°,①求证:OD=21OA ; ②当OA=1时,求△ABC 面积的最大值.(2)点E 在线段OA 上,OE=OD ,连接DE ,设∠ABC=m ∠OED ,∠ACB=n ∠OED (m,n 是正数),若∠ABC <∠ACB ,求证:02=+-n m .。
2019年浙江省杭州市中考数学试卷及答案解析

2019年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)计算下列各式,值最小的是()A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣9 2.(3分)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2B.m=﹣3,n=2C.m=2,n=3D.m=﹣2,n=﹣3 3.(3分)如图,P为圆O外一点,P A,PB分别切圆O于A,B两点,若P A=3,则PB=()A.2B.3C.4D.54.(3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72﹣x)=30B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72D.3x+2(30﹣x)=725.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差6.(3分)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.=B.=C.=D.=7.(3分)在△ABC中,若一个内角等于另外两个内角的差,则()A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°8.(3分)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.9.(3分)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.a sin x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a cos x+b sin x10.(3分)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M 个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1B.M=n﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣1二、填空题:本大题有6个小题,每小题4分,共24分;11.(4分)因式分解:1﹣x2=.12.(4分)某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于.13.(4分)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于cm2(结果精确到个位).14.(4分)在直角三角形ABC中,若2AB=AC,则cos C=.15.(4分)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式.16.(4分)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)化简:﹣﹣1圆圆的解答如下:﹣﹣1=4x﹣2(x+2)﹣(x2﹣4)=﹣x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.18.(8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号12345数据甲组4852474954乙组﹣22﹣3﹣14(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为,,写出与之间的等量关系.②甲,乙两组数据的方差分别为S甲2,S乙2,比较S甲2与S乙2的大小,并说明理由.19.(8分)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC =3∠B,求∠B的度数.20.(10分)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.21.(10分)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC 边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.22.(12分)设二次函数y=(x﹣x1)(x﹣x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=时,y=﹣.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<.23.(12分)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED (m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.2019年浙江省杭州市中考数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.解:A.2×0+1﹣9=﹣8,B.2+0×1﹣9=﹣7C.2+0﹣1×9=﹣7D.2+0+1﹣9=﹣6,故选:A.2.解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=﹣3,n=2.故选:B.3.解:连接OA、OB、OP,∵P A,PB分别切圆O于A,B两点,∴OA⊥P A,OB⊥PB,在Rt△AOP和Rt△BOP中,,∴Rt△AOP≌Rt△BOP(HL),∴PB=P A=3,故选:B.4.解:设男生有x人,则女生(30﹣x)人,根据题意可得:3x+2(30﹣x)=72.故选:D.5.解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.6.解:∵DN∥BM,∴△ADN∽△ABM,∴=,∵NE∥MC,∴△ANE∽△AMC,∴=,∴=.故选:C.7.解:∵∠A+∠B+∠C=180°,∠A=∠C﹣∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.8.解:A、由①可知:a>0,b>0.∴直线②经过一、二、三象限,故A正确;B、由①可知:a<0,b>0.∴直线②经过一、二、三象限,故B错误;C、由①可知:a<0,b>0.∴直线②经过一、二、四象限,交点不对,故C错误;D、由①可知:a<0,b<0,∴直线②经过二、三、四象限,故D错误.故选:A.9.解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a•cos x+b•sin x,故选:D.10.解:∵y=(x+a)(x+b)=x2+(a+b)x+1,∴△=(a+b)2﹣4ab=(a﹣b)2>0,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2﹣4ab=(a﹣b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x轴有一个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.二、填空题:本大题有6个小题,每小题4分,共24分;11.解:∵1﹣x2=(1﹣x)(1+x),故答案为:(1﹣x)(1+x).12.解:∵某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于:.故答案为:.13.解:这个冰淇淋外壳的侧面积=×2π×3×12=36π≈113(cm2).故答案为113.14.解:若∠B=90°,设AB=x,则AC=2x,所以BC==x,所以cos C ===;若∠A=90°,设AB=x,则AC=2x,所以BC==x,所以cos C===;综上所述,cos C的值为或.故答案为或.15.解:设该函数的解析式为y=kx+b,∵函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,∴解得:,所以函数的解析式为y=﹣x+1,故答案为:y=﹣x+1.16.解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:P A′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴=,∴=,∴x2=4a2,∴x=2a或﹣2a(舍弃),∴P A′=PD′=2a,∵•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+3).故答案为2(5+3)三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.解:圆圆的解答错误,正确解法:﹣﹣1=﹣﹣===﹣.18.解:(1)乙组数据的折线统计图如图所示:(2)①=50+.②S甲2=S乙2.理由:∵S甲2=[(48﹣50)2+(52﹣50)2+(47﹣50)2+(49﹣50)2+(54﹣50)2]=6.8.S乙2=[(﹣2﹣0)2+(2﹣0)2+(﹣3﹣0)2+(﹣1﹣0)2+(4﹣0)2]=6.8,∴S甲2=S乙2.19.解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴P A=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.20.解:(1)∵vt=480,且全程速度限定为不超过120千米/小时,∴v关于t的函数表达式为:v=,(0≤t≤4).(2)①8点至12点48分时间长为小时,8点至14点时间长为6小时将t=6代入v=得v=80;将t=代入v=得v=100.∴小汽车行驶速度v的范围为:80≤v≤100.②方方不能在当天11点30分前到达B地.理由如下:8点至11点30分时间长为小时,将t=代入v=得v=>120千米/小时,超速了.故方方不能在当天11点30分前到达B地.21.解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.22.解:(1)当x=0时,y=0;当x=1时,y=0;∴二次函数经过点(0,0),(1,0),∴x1=0,x2=1,∴y═x(x﹣1)=x2﹣x,当x=时,y=﹣,∴乙说点的不对;(2)对称轴为x=,当x=时,y=﹣是函数的最小值;(3)二次函数的图象经过(0,m)和(1,n)两点,∴m=x1x2,n=1﹣x1﹣x2+x1x2,∴mn=[﹣][﹣]∵0<x1<x2<1,∴0≤﹣≤,0≤﹣≤,∴0<mn<.23.解:(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,∴∠OBC=30°,∴OD=OB=OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=,△ABC面积的最大值=×BC×AD=×2OB sin60°×=;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx=∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,∵OE=OD,∴∠AOD=180°﹣2x,即:180°+mx﹣nx=180°﹣2x,化简得:m﹣n+2=0.。
2019年浙江省杭州市中考数学试卷及答案解析

2019年浙江省杭州市中考数学试卷及答案解析一、选择题:本大题有10个小题,每小题3分,共30分.在每小题綸出的四个迭项中,只有一项是符合题目要求的.1.(2019浙江省杭州市,1,3分)计算下列各式,值最小的是【】A.2×0+1-9 B.2+0×1-9 C.2+0-1×9 D.2+0+1-9【答案】A【解析】有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.A.2×0+1-9=-8,B.2+0×1-9=-7,C.2+0-1×9=-7,D.2+0+1-9=-6,故选:A.【知识点】有理数的混合运算2.(2019浙江省杭州市,2,3分)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y 轴对称,则【】A.m=3,n=2B.m=-3,n=2C.m=2,n=3D.m=-2,n=3【答案】B【解析】A,B关于y轴对称,则横坐标互为相反数,纵坐标相同,故选:B.【知识点】直角坐标系内点的坐标特征3.(2019浙江省杭州市,3,3分)如图,P为⊙O外一点,PA、PB分别切⊙O于A、B两点,若PA=3,则PB=【】A.2 B.3 C.4 D.5【答案】B【解析】因为P A和PB与⊙O相切,根据切线长定理,可知:P A=PB=3,故选:B.【知识点】切线长定理4.(2019浙江省杭州市,4,3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树.设男生有x人,则【】A.2x+3(72-x)=30B.3x+2(72-x)=30C.2x+3(30-x)=72D.3x+2(30-x)=72 【答案】D【解析】设男生有x人,则女生(30-x)人,根据题意可得:3x+2(30-x)=72.故选:D.【知识点】一次方程(组)及应用模型思想应用意识5.(2019浙江省杭州市,5,3分)点点同学对数据26,36,36,46,5█,52进行统计分析.发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是【】A.平均数B.中位数C.方差D.标准差【答案】B【解析】这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.【知识点】统计的应用6.(2019浙江省杭州市,6,3分)如图,在△ABC 中,点D ,E 分别在AB 和AC 边上,DE∥BC ,M 为BC 边上一点(不与点B ,C 重合)连接AM 交DE 干点N ,则 【 】 A.AD AN AN AE = B. BD MN MN CE = C. DN NE BM MC = D. DN NEMC BM=【答案】C【解析】根据DE ∥BC ,可得△ADN ∽△ABM 与△ANE ∽△AMC ,再应用相似三角形的性质可得结论.∵DN ∥BM ,∴△ADN ∽△ABM ,∴DN ANBM AM=,∵NE ∥MC ,∴△ANE ∽△AMC ,∴NE AN MC AM =,∴DN NEBM MC=.故选:C . 【知识点】相似三角形的判定与性质7.(2019浙江省杭州市,7,3分)在△ABC 中,若一个内角等于另两个内角的差,则 【 】A.必有一个内角等干30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90° 【答案】D【解析】∵∠A+∠B+∠C=180°,∠A=∠C-∠B ,∴2∠C=180°,∴∠C=90°,∴△ABC 是直角三角形,故选:D .【知识点】三角形内角和定理 8.(2019浙江省杭州市,8,3分)已知一次函数y 1=ax +b 和y 2=bx +a (a ≠b ),函数y 1和y 2的图象可能是 【 】A B CD【答案】A【解析】根据直线①判断出a 、b 的符号,然后根据a 、b 的符号判断出直线②经过的象限即可,做出判断.A 、由①可知:a >0,b >0,∴直线②经过一、二、三象限,故A 正确;B 、由①可知:a <0,b >0,∴直线②经过一、二、三象限,故B 错误;C 、由①可知:a <0,b >0,∴直线②经过一、二、四象限,交点不对,故C 错误;D 、由①可知:a <0,b <0,∴直线②经过二、三、四象限,故D 错误.故选:A . 【知识点】一次函数的图象和性质B9. (2019浙江省杭州市,9,3分)如图,一块矩形木板ABCD 斜靠在墙边(OC ⊥OB ,点A ,B ,C ,D ,O 在同一平面内),已知AB=a ,AD=b ,∠BCO=x ,则点A 到OC 的距离等于【 】 A .asinx+bsinx B .acosx+bcosx C .asinx+bcosx D .acosx+bsinx【答案】D【解析】作AE ⊥OC 于点E ,作AF ⊥OB 于点F ,∵四边形ABCD 是矩形,∴∠ABC=90°,∵∠ABC=∠AEC ,∠BCO=x ,∴∠EAB=x ,∴∠FBA=x ,∵AB=a ,AD=b ,∴FO=FB+BO=a •cosx+b •sinx ,故选:D .【知识点】三角函数 矩形的性质 10.(2019浙江省杭州市,10,3分)在平面直角坐标系中,已知a ≠b ,设函数y=(x+a )(x+b )的图象与x 轴有M 个交点,函数y=(ax+1)(bx+1)的图象与x 轴有N 个交点,则 【 】A .M=N-1或M=N+1B .M=n-1或M=N+2C .M=N 或M=N+1D .M=N 或M=N-1 【答案】A【解析】先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x 轴的交点个数,若一次函数,则与x 轴只有一个交点,据此解答.∵y=(x+a )(x+b )=x 2+(a+b )x+1,∴(a+b )2-4ab=(a-b )2>0,∴函数y=(x+a )(x+b )的图象与x 轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx 2+(a+b )x+1,∴当ab ≠0时,(a+b )2-4ab=(a-b )2>0,函数y=(ax+1)(bx+1)的图象与x 轴有2个交点,即N=2,此时M=N ;当ab=0时,不妨令a=0,∵a ≠b ,∴b ≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x 轴有一个交点,即N=1,此时M=N+1;综上可知,M=N 或M=N+1.故选:C . 【知识点】二次函数图象及其性质 抛物线与x 轴的交点二、填空题:本大题有6个小题,每小题4分,共24分。
2019年浙江杭州中考数学试卷(含解析)

2019年浙江省杭州市初中毕业、升学考试数学一、选择题:本大题有10个小题,每小题3分,共30分.在每小题綸出的四个迭项中,只有一项是符合题目要求的.1.(2019浙江省杭州市,1,3分)计算下列各式,值最小的是【】A.2×0+1-9 B.2+0×1-9 C.2+0-1×9 D.2+0+1-9【答案】A【解析】有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.A.2×0+1-9=-8,B.2+0×1-9=-7,C.2+0-1×9=-7,D.2+0+1-9=-6,故选:A.【知识点】有理数的混合运算2.(2019浙江省杭州市,2,3分)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则【】A.m=3,n=2B.m=-3,n=2C.m=2,n=3D.m=-2,n=3【答案】B【解析】A,B关于y轴对称,则横坐标互为相反数,纵坐标相同,故选:B.【知识点】直角坐标系内点的坐标特征3.(2019浙江省杭州市,3,3分)如图,P为⊙O外一点,PA、PB分别切⊙O于A、B两点,若PA=3,则PB=【】A.2 B.3 C.4 D.5【答案】B【解析】因为P A和PB与⊙O相切,根据切线长定理,可知:P A=PB=3,故选:B.【知识点】切线长定理4.(2019浙江省杭州市,4,3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树.设男生有x人,则【】A.2x+3(72-x)=30 B.3x+2(72-x)=30 C.2x+3(30-x)=72 D.3x+2(30-x)=72【答案】D【解析】设男生有x人,则女生(30-x)人,根据题意可得:3x+2(30-x)=72.故选:D.【知识点】一次方程(组)及应用模型思想应用意识5.(2019浙江省杭州市,5,3分)点点同学对数据26,36,36,46,5█,52进行统计分析.发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是【】A.平均数 B.中位数 C.方差 D.标准差【答案】B【解析】这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.【知识点】统计的应用6.(2019浙江省杭州市,6,3分)如图,在△ABC中,点D,E分别在AB和AC边上,DE∥BC,M为BC边上一点(不与点B,C重合)连接AM交DE干点N,则【】A.AD ANAN AE= B.BD MNMN CE= C.DN NEBM MC= D.DN NEMC BM=N E A B C D M【答案】C【解析】根据DE ∥BC ,可得△ADN ∽△ABM 与△ANE ∽△AMC ,再应用相似三角形的性质可得结论.∵DN ∥BM ,∴△ADN ∽△ABM ,∴DN AN BM AM =,∵NE ∥MC ,∴△ANE ∽△AMC ,∴NE AN MC AM =,∴DN NE BM MC=.故选:C . 【知识点】相似三角形的判定与性质7.(2019浙江省杭州市,7,3分)在△ABC 中,若一个内角等于另两个内角的差,则 【 】A.必有一个内角等干30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°【答案】D【解析】∵∠A+∠B+∠C=180°,∠A=∠C-∠B ,∴2∠C=180°,∴∠C=90°,∴△ABC 是直角三角形,故选:D .【知识点】三角形内角和定理8.(2019浙江省杭州市,8,3分)已知一次函数y 1=ax +b 和y 2=bx +a (a ≠b ),函数y 1和y 2的图象可能是【 】xy 1O x y 1O x y 1O xy1OA B C D【答案】A【解析】根据直线①判断出a 、b 的符号,然后根据a 、b 的符号判断出直线②经过的象限即可,做出判断.A 、由①可知:a >0,b >0,∴直线②经过一、二、三象限,故A 正确;B 、由①可知:a <0,b >0,∴直线②经过一、二、三象限,故B 错误;C 、由①可知:a <0,b >0,∴直线②经过一、二、四象限,交点不对,故C 错误;D 、由①可知:a <0,b <0,∴直线②经过二、三、四象限,故D 错误.故选:A .【知识点】一次函数的图象和性质9. (2019浙江省杭州市,9,3分)如图,一块矩形木板ABCD 斜靠在墙边(OC ⊥OB ,点A ,B ,C ,D ,O 在同一平面内),已知AB=a ,AD=b ,∠BCO=x ,则点A 到OC 的距离等于【 】A .asinx+bsinxB .acosx+bcosxC .asinx+bcosxD .acosx+bsinx【答案】D【解析】作AE ⊥OC 于点E ,作AF ⊥OB 于点F ,∵四边形ABCD 是矩形,∴∠ABC=90°,∵∠ABC=∠AEC ,∠BCO=x ,∴∠EAB=x ,∴∠FBA=x ,∵AB=a ,AD=b ,∴FO=FB+BO=a •cosx+b •sinx ,故选:D .【知识点】三角函数 矩形的性质10.(2019浙江省杭州市,10,3分)在平面直角坐标系中,已知a ≠b ,设函数y=(x+a )(x+b )的图象与x 轴有M 个交点,函数y=(ax+1)(bx+1)的图象与x 轴有N 个交点,则 【 】 A .M=N-1或M=N+1 B .M=n-1或M=N+2 C .M=N 或M=N+1 D .M=N 或M=N-1【答案】A 【解析】先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x 轴的交点个数,若一次函数,则与x 轴只有一个交点,据此解答.∵y=(x+a )(x+b )=x 2+(a+b )x+1,∴(a+b )2-4ab=(a-b )2>0,∴函数y=(x+a )(x+b )的图象与x 轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx 2+(a+b )x+1,∴当ab ≠0时,(a+b )2-4ab=(a-b )2>0,函数y=(ax+1)(bx+1)的图象与x 轴有2个交点,即N=2,此时M=N ;当ab=0时,不妨令a=0,∵a ≠b ,∴b ≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x 轴有一个交点,即N=1,此时M=N+1;综上可知,M=N 或M=N+1.故选:C .【知识点】二次函数图象及其性质 抛物线与x 轴的交点二、填空题:本大题有6个小题,每小题4分,共24分。
【中考真题】2019年浙江省杭州市中考数学真题试卷(附答案)

2019年浙江省杭州市中考数学真题试卷(附答案)
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
一、单选题
1.计算下列各式,值最小的是( )
A. B. C. D.
2.在平面直角坐标系中,点 与点 关于y轴对称,则( )
A. , B. , C. , D. ,
② ,交点为 ,此时
③ ,交点为 ,此时
综上所述, 或
故选C.
【点睛】
本题考查二次函数与坐标轴的交点,解题的关键是分情况讨论a,b.
10.(1+x)(1-x)
【解析】
【分析】
根据平方差公式即可得到答案.
【详解】
对 用平方差公式,得
【点睛】
本题考查因式分解,解题的关键是熟练掌握因式分解的方法.
11. .
【解析】
【分析】
根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.
【详解】
平均数等于总和除以个数,所以平均数 .
【点睛】
本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.
12.113.
【解析】
【分析】
根据圆锥侧面积公式 ,代入题中数据,即可得到答案.
【详解】
根据题中数据,结合圆锥侧面积公式得:
【解析】
【分析】
(1)根据统计表中的信息即可得出答案;
(2)①先求出甲、乙的平均数,即可得出 与 之间的等量关系;
②先计算 、 ,再对 与 的大小进行比较.
【详解】
(1)补全折线统计图,如图所示.
(2)① .
② ,理由如下:
因为
2019年浙江省杭州市中考数学试卷(word版,含答案解析)

2019年浙江省杭州市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.计算下列各式,值最小的是()A. 2×0+1−9B. 2+0×1−9C. 2+0−1×9D. 2+0+1−92.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. m=3,n=2B. m=−3,n=2C. m=2,n=3D. m=−2,n=−33.如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若PA=3,则PB=()A. 2B. 3C. 4D. 54.已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A. 2x+3(72−x)=30B. 3x+2(72−x)=30C. 2x+3(30−x)=72D. 3x+2(30−x)=725.点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A. 平均数B. 中位数C. 方差D. 标准差6.如图,在△ABC中,点D,E分别在AB和AC上,DE//BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A. ADAN =ANAEB. BDMN =MNCEC. DNBM =NEMCD. DNMC =NEBM7.在△ABC中,若一个内角等于另外两个内角的差,则()A. 必有一个内角等于30°B. 必有一个内角等于45°C. 必有一个内角等于60°D. 必有一个内角等于90°8.已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A. B.C. D.9.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A. asinx+bsinxB. acosx+bcosxC. asinx+bcosxD. acosx+bsinx10.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. M=N−1或M=N+1B. M=N−1或M=N+2C. M=N或M=N+1D. M=N或M=N−1二、填空题(本大题共6小题,共24.0分)11.因式分解:1−x2=______.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于______.13.如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于______cm2(结果精确到个位).14.在直角三角形ABC中,若2AB=AC,则cosC=______.15.某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式______.16.如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD 的面积等于______.三、解答题(本大题共7小题,共66.0分)17.化简:4xx2−4−2x−2−1圆圆的解答如下:4x x2−4−2x−2−1=4x−2(x+2)−(x2−4)=−x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.18.称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号数据12345甲组4852474954乙组−22−3−14(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x甲−,x乙−,写出x甲−与x乙−之间的等量关系.②甲,乙两组数据的方差分别为S甲2,S乙2,比较S甲2与S乙2的大小,并说明理由.19.如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.20.方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.21.如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S 2.(1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD =HG .22. 设二次函数y =(x −x 1)(x −x 2)(x 1,x 2是实数).(1)甲求得当x =0时,y =0;当x =1时,y =0;乙求得当x =12时,y =−12.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x 1,x 2的代数式表示). (3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n 是实数),当0<x 1<x 2<1时,求证:0<mn <116.23. 如图,已知锐角三角形ABC 内接于圆O ,OD ⊥BC 于点D ,连接OA .(1)若∠BAC =60°, ①求证:OD =12OA .②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB= n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m−n+2=0.答案和解析1.【答案】A【解析】解:A.2×0+1−9=−8,B.2+0×1−9=−7C.2+0−1×9=−7D.2+0+1−9=−6,故选:A.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.【答案】B【解析】解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=−3,n=2.故选:B.直接利用关于y轴对称点的性质得出答案.此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.3.【答案】B【解析】解:连接OA、OB、OP,∵PA,PB分别切圆O于A,B两点,∴OA⊥PA,OB⊥PB,在Rt△AOP和Rt△BOP中,{OA=OBOP=OP,∴Rt△AOP≌Rt△BOP(HL),∴PB=PA=3,故选:B.连接OA、OB、OP,根据切线的性质得出OA⊥PA,OB⊥PB,然后证得Rt△AOP≌Rt△BOP,即可求得PB=PA=3.本题考查了切线长定理,三角形全等的判定和性质,作出辅助线根据全等三角形是解题的关键.4.【答案】D【解析】【分析】此题主要考查了由实际问题抽象出一元一次方程,正确表示出男女生的植树棵数是解题关键.直接根据题意表示出女生人数,进而利用30位学生种树72棵,得出等式求出答案.【解答】解:设男生有x人,则女生(30−x)人,根据题意可得:3x+2(30−x)=72.故选D.5.【答案】B【解析】【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.本题考查了标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.也考查了中位数、平均数.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.6.【答案】C【解析】解:∵DN//BM,∴△ADN∽△ABM,∴DNBM =ANAM,∵NE//MC,∴△ANE∽△AMC,∴NEMC =ANAM,∴DNBM =NEMC.故选:C.先证明△ADN∽△ABM得到DNBM =ANAM,再证明△ANE∽△AMC得到NEMC=ANAM,则DNBM=NEMC,从而可对各选项进行判断.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;灵活运用相似三角形的性质表示线段之间的关系.7.【答案】D【解析】【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠A=∠C−∠B代入求出∠C即可.本题考查了三角形内角和定理的应用,能求出三角形最大角的度数是解此题的关键,注意:三角形的内角和等于180°.【解答】解:∵∠A+∠B+∠C=180°,∠A=∠C−∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.8.【答案】A【解析】A、由图可知:直线y1,a>0,b>0.∴直线y2经过一、二、三象限,故A正确;B、由图可知:直线y1,a<0,b>0.∴直线y2经过一、四、三象限,故B错误;C、由图可知:直线y1,a<0,b>0.∴直线y2经过一、二、四象限,交点不对,故C错误;D、由图可知:直线y1,a<0,b<0,∴直线y2经过二、三、四象限,故D错误.故选:A.根据直线判断出a、b的符号,然后根据a、b的符号判断出直线经过的象限即可,做出判断.本题主要考查的是一次函数的图象和性质,掌握一次函数的图象和性质是解题的关键.9.【答案】D【解析】解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a⋅cosx+b⋅sinx,故选:D.根据题意,作出合适的辅助线,然后利用锐角三角函数即可表示出点A到OC的距离,本题得以解决.本题考查解直角三角形的应用−坡度角问题、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.10.【答案】C【解析】解:∵y=(x+a)(x+b)=x2+(a+b)x+ab,∴△=(a+b)2−4ab=(a−b)2>0,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2−4ab=(a−b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x轴有一个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x轴的交点个数,若一次函数,则与x轴只有一个交点,据此解答.本题主要考查一次函数与二次函数与x轴的交点问题,关键是根据根的判别式的取值确定抛物线与x轴的交点个数,二次项系数为字母的代数式时,要根据系数是否为0,确定它是什么函数,进而确定与x轴的交点个数.11.【答案】(1−x)(1+x)【解析】解:∵1−x2=(1−x)(1+x),故答案为:(1−x)(1+x).根据平方差公式可以将题目中的式子进行因式分解.本题考查因式分解−运用公式法,解题的关键是明确平方差公式,会运用平方差公式进行因式分解.12.【答案】mx+nym+n【解析】解:∵某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的总和为:mx+ny,.所以平均数为:mx+nym+n故答案为:mx+ny.m+n直接利用已知表示出两组数据的总和,进而求出平均数.此题主要考查了加权平均数,正确得出两组数据的总和是解题关键.13.【答案】113【解析】解:这个冰淇淋外壳的侧面积=12×2π×3×12=36π≈113(cm 2). 故答案为113.利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【答案】√32或2√55【解析】解:若∠B =90°,设AB =x ,则AC =2x ,所以BC =√(2x)2−x 2=√3x ,所以cosC =BC AC =√3x 2x =√32; 若∠A =90°,设AB =x ,则AC =2x ,所以BC =√(2x)2+x 2=√5x ,所以cosC =AC BC =5x =2√55; 综上所述,cos C 的值为√32或2√55. 故答案为√32或2√55. 讨论:若∠B =90°,设AB =x ,则AC =2x ,利用勾股定理计算出BC =√3x ,然后根据余弦的定义求cos C 的值;若∠A =90°,设AB =x ,则AC =2x ,利用勾股定理计算出BC =√5x ,然后根据余弦的定义求cos C 的值.本题考查了锐角三角函数的定义:熟练掌握锐角三角函数的定义,灵活运用它们进行几何计算.15.【答案】y =−x +1(答案不唯一)【解析】解:设该函数的解析式为y =kx +b ,∵函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1,∴{k +b =0b =1解得:{k =−1b =1, 所以函数的解析式为y =−x +1,故答案为:y =−x +1(答案不唯一).根据题意写出一个一次函数即可.本题考查了各种函数的性质,因为x =0时,y =1,所以不可能是正比例函数. 16.【答案】2(5+3√5)【解析】解:∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,设AB =CD =x ,由翻折可知:PA′=AB =x ,PD′=CD =x ,∵△A′EP 的面积为4,△D′PH 的面积为1,∴A′E =4D′H ,设D′H =a ,则A′E =4a ,∵△A′EP∽△D′PH ,∴D′HPA′=PD′EA′,∴ax =x4a,∴x2=4a2,∴x=2a或−2a(舍弃),∴PA′=PD′=2a,∵12⋅a⋅2a=1,∴a=1,∴x=2,∴AB=CD=2,PE=√22+42=2√5,PH=√12+22=√5,∴AD=4+2√5+√5+1=5+3√5,∴矩形ABCD的面积=2(5+3√5).故答案为2(5+3√5)设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,因为△A′EP的面积为4,△D′PH的面积为1,推出A′E=4D′H,设D′H=a,则A′E=4a,由△A′EP∽△D′PH,推出D′HPA′=PD′EA′,推出ax=x4a,可得x=2a,再利用三角形的面积公式求出a即可解决问题.本题考查翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.17.【答案】解:圆圆的解答错误,正确解法:4xx2−4−2x−2−1=4x(x−2)(x+2)−2(x+2)(x−2)(x+2)−(x−2)(x+2)(x−2)(x+2) =4x−2x−4−x2+4(x−2)(x+2)=2x−x2(x−2)(x+2)=−xx+2.【解析】直接将分式进行通分,进而化简得出答案.此题主要考查了分式的加减运算,正确进行通分运算是解题关键.18.【答案】解:(1)乙组数据的折线统计图如图所示:(2)①x 甲−=50+x 乙−.②S 甲2=S 乙2.理由:∵S 甲2=15[(48−50)2+(52−50)2+(47−50)2+(49−50)2+(54−50)2]=6.8.S 乙2=15[(−2−0)2+(2−0)2+(−3−0)2+(−1−0)2+(4−0)2]=6.8, ∴S 甲2=S 乙2.【解析】(1)利用描点法画出折线图即可.(2)利用平均数和方差公式计算即可判断.本题考查折线统计图,算术平均数,方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【答案】解:(1)证明:∵线段AB 的垂直平分线与BC 边交于点P ,∴PA =PB ,∴∠B =∠BAP ,∵∠APC =∠B +∠BAP ,∴∠APC =2∠B ;(2)根据题意可知BA =BQ ,∴∠BAQ =∠BQA ,∵∠AQC =3∠B ,∠AQC =∠B +∠BAQ ,∴∠BQA =2∠B ,∵∠BAQ +∠BQA +∠B =180°,∴5∠B =180°,∴∠B =36°.【解析】(1)根据线段垂直平分线的性质可知PA =PB ,根据等腰三角形的性质可得∠B =∠BAP ,根据三角形的外角性质即可证得∠APC =2∠B ;(2)根据题意可知BA =BQ ,根据等腰三角形的性质可得∠BAQ =∠BQA ,再根据三角形的内角和公式即可解答.本题主要考查了等腰三角形的性质、垂直平分线的性质以及三角形的外角性质,难度适中.20.【答案】解:(1)∵vt =480,且全程速度限定为不超过120千米/小时, ∴v 关于t 的函数表达式为:v =480t,(t ≥4). (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时,将t =6代入v =480t 得v =80;将t =245代入v =480t 得v =100.∴小汽车行驶速度v 的范围为:80≤v ≤100.②方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480t 得v =9607>120千米/小时,超速了.故方方不能在当天11点30分前到达B 地.【解析】(1)由速度乘以时间等于路程,变形即可得速度等于路程比时间,从而得解;(2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时,将它们分别代入v 关于t 的函数表达式,即可得小汽车行驶的速度范围;②8点至11点30分时间长为72小时,将其代入v 关于t 的函数表达式,可得速度大于120千米/时,从而得答案.本题是反比例函数在行程问题中的应用,根据时间、速度和路程的关系可以求解,本题属于中档题.21.【答案】解:(1)设正方形CEFG 的边长为a ,∵正方形ABCD 的边长为1,∴DE =1−a ,∵S 1=S 2,∴a 2=1×(1−a),解得,a 1=−√52−12(舍去),a 2=√52−12, 即线段CE 的长是√52−12; (2)证明:∵点H 为BC 边的中点,BC =1,∴CH =0.5,∴DH =√12+0.52=√52, ∵CH =0.5,CG =√52−12, ∴HG =√52, ∴HD =HG .【解析】(1)设出正方形CEFG 的边长,然后根据S 1=S 2,即可求得线段CE 的长;(2)根据(1)中的结果和题目中的条件,可以分别计算出HD 和HG 的长,即可证明结论成立.本题考查正方形的性质、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】解:(1)当x =0时,y =0;当x =1时,y =0;∴二次函数经过点(0,0),(1,0),∴x 1=0,x 2=1,∴y =x(x −1)=x 2−x ,当x =12时,y =−14, ∴乙求得的结果不对; (2)对称轴为x =x 1+x 22, 当x =x 1+x 22时,y =−(x 1−x 2)24是函数的最小值;(3)二次函数的图象经过(0,m)和(1,n)两点,∴m =x 1x 2,n =1−x 1−x 2+x 1x 2,∴mn =[−(x 1−12)2+14][−(x 2−12)2+14] ∵0<x 1<x 2<1,∴0<−(x 1−12)2+14≤14,0<−(x 2−12)2+14≤14,且x 1和x 2不可以同时等于12, ∴0<mn <116.【解析】(1)将(0,0),(1,0)代入y =(x −x 1)(x −x 2)求出函数解析式即可求解;(2)对称轴为x =x 1+x 22,当x =x 1+x 22时,y =−(x 1−x 2)24是函数的最小值;(3)将已知两点代入求出m =x 1x 2,n =1−x 1−x 2+x 1x 2,再表示出mn =[−(x 1−12)2+14][−(x 2−12)2+14],由已知0<x 1<x 2<1,可求出0<−(x 1−12)2+14≤14,0<−(x 2−12)2+14≤14,即可求解. 本题考查二次函数的性质;函数最值的求法;熟练掌握二次函数的性质,能够将mn 准确的用x 1和x 2表示出来是解题的关键.23.【答案】解:(1)①连接OB 、OC ,则∠BOD =12∠BOC =∠BAC =60°,∴∠OBC =30°,∴OD=12OB=12OA;②∵BC长度为定值,∴求△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=32,△ABC面积的最大值=12×BC×AD=12×2OBsin60°×32=3√34;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°−∠ABC−∠ACB=180°−mx−nx=12∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°−mx−nx+2mx=180°+mx−nx,∵OE=OD,∴∠AOD=180°−2x,即:180°+mx−nx=180°−2x,化简得:m−n+2=0.【解析】(1)①连接OB、OC,则∠BOD=12∠BOC=∠BAC=60°,即可求解;②BC长度为定值,△ABC面积的最大值,要求BC边上的高最大,即可求解;(2)∠BAC=180°−∠ABC−∠ACB=180°−mx−nx=12∠BOC=∠DOC,而∠AOD=∠COD+∠AOC=180°−mx−nx+2mx=180°+mx−nx,即可求解.本题为圆的综合运用题,涉及到解直角三角形、三角形内角和公式,其中(2)∠AOD=∠COD+∠AOC是本题容易忽视的地方,本题难度适中.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O 12019浙江省杭州市中考数学真题及答案一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算下列各式,值最小的是( )A.2×0+1-9B.2+0×1-9C.2+0-1×9D.2+0+1-9 2.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y 轴对称,则( ) A.m=3,n=2 B.m=-3,n=2 C.m=2,n=3 D.m=-2,n=33.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A,B 两点.若PA=3,则PB=( )A.2B.3C.4D.5 4.已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x 人,则( )A.2x+3(72-x)=30B.3x+2(72-x)=30C.2x+3(30-x)=72D.3x+2(30-x)=725.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到 了,则计算结果与被涂污数字无关的是( )A.平均数B.中位数C.方差D.标准差6.如图,在△ABC 中,点D 、E 分别在AB 和AC 边上,DE ∥BC,M 为BC 边上一点(不与点B,C 重合),连接AM 交DE 于点N,则( )A.AE AN AN AD = B.CE MNMN BD =C.MC NE BM DN =D.BMNE MC DN = 7.在△ABC 中,若一个内角等于另两个内角的差,则( ) A.必有一个内角等于30° B.必有一个内角等于45° C.必有一个内角等于60° D.必有一个内角等于90°8.已知一次函数y 1=ax+b 和y 2=bx+a(a ≠b),函数y 1和y 2的图象可能是( )A B C Dxyxy1 O x y1O xy1O9.如图,一块矩形木板ABCD 斜靠在墙边(OC ⊥OB,点A,B,C,D,O 在同一平面内).已知,,,x BCO b AD a AB =∠==则点A 到OC 的距离等于( ) A. x b x a sin sin + B. x b x a cos cos + C. x b x a cos sin + D. x b x a sin cos +10.在平面直角坐标系中,已知a ≠b,设函数y=(x+a)(x+b)的图象与x 轴有M 个交点,函数y=(ax+1)(bx+1)的图象与x 轴有N 个交点,则( ) A.M=N-1或M=N+1 B.M=N-1或M=N+2 C.M=N 或M=N+1 D.M=N 或M=N-1二、填空题:本大题有6个小题,每小题4分,共24分. 1l.因式分解:1-x 2= .12.某计算机程序第一次算得m 个数据的平均数为x,第二次算得另外n 个数据的平均数为y,则这m+n 个数据的平均数等于 .13.如图是一个圆锥形冰淇淋外壳(不计厚度).已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于 cm 2(结果精确到个位). 14.在直角三角形ABC 中,若AC AB =2,则=C cos .15.某函数满足当自变量x=1时,函数值y=0;当自变量x=0时,函数值y=1.写出一个满足条件的函数表达式 .16. 如图,把某矩形纸片ABCD 沿GH EF ,折叠(点H E ,在AD 边上,点G F ,在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为'A 点,D 点的对称点为'D 点.若︒=∠90FPG ,EP A '△的面积为4,PH D '△的面积为1.则矩形ABCD 的面积等于 .ABCO三、解答题:本大题有7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(本题满分6分) 化简:.122442----x x x 圆圆的解答如下:()().2422412244222x x x x x x x x +-=--+-=---- 圆圆的解答正确吗?如果不正确,写出正确的解答. 18.(本题满分8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数 记为负数.甲组为实际称量读数,乙组为记录数据.并把所得数据整理成如下统计表和未完成的统计图(单 位:千克).(1)补充完整乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为甲x ,乙x ,写出甲x 与乙x 之间的等量关系. ②甲,乙两组数据的方差分别为2甲S ,2乙S ,比较2甲S 与2乙S 的大小,并说明理由.实际称量读数和记录数据统计表序号序号54 53 52 51 50 49 48 47 4 3 2 1 0 -1 -2 -3如图,在ABC △中,BC AB AC <<.(1)已知线段AB 的垂直平分线与BC 边交于点P ,连接AP ,求证:B APC ∠=∠2.(2)以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连接AQ ,若∠AQC =3∠B ,求∠B 的度数.20.(本题满分10分)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时), 行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时. (1)求v 关于t 的函数表达式.(2)方方上午8点驾驶小汽车从A 地出发,①方方需在当天12点48分至14点(含12点8分和14点)间到达B 地,求小汽车行驶速度v 的范围. ②方方能否在当天11点30分前到达B 地?说明理由. 21.(本题满分10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为S 1,点E 在DC 边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为S 2,且S 1=S 2. (1)求线段CE 的长.(2)若点H 为BC 边的中点,连接HD,求证:HD=HG.设二次函数()()()是实数2121,x x x x x x y --=.(1)甲求得当0=x 时,0=y ;当1=x 时,0=y ;乙求得当21=x 时,21-=y .若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含1x ,2x 的代数式表示).(3)已知二次函数的图象经过()m ,0和()n ,1两点()是实数n m ,.当1021<<<x x 时,求证:1610<<mn . 23.(本题满分12分)如图,已知锐角三角形ABC 内接于圆O ,.,OA D BC OD 连结于点⊥ (1)若,60︒=∠BAC ①求证:OA OD 21=. ②当1=OA 时,求ABC △面积的最大值.(2)点E 在线段OA 上,OD OE =,连结DE ,设∠ABC =OED m ∠,()是正数n m OED n ACB ,∠=∠. 若ACB ABC ∠∠<,求证:02=+-n m .参考答案一、选择题(每题3分,共30分)二、填空题(每小题4分,共24分) 11. ()()x x -+11 12.nm nymx ++13. 113 14.55223或 15. 112+-=+-=x y x y 或等16. 5610+(提示:易知.,,长度可求出图中相应线段的设∽△△a DH CDH EAB =)三、解答题(共66分)17. (本题满分6分)圆圆的解答不正确.正确的解答如下:()()[].2424224411224422222+-=-+-=--+--=----x x x x x x x x x x x x 18.(1)如图所示. (2)①甲x =乙x +50.序号4 3 2 1 0②2甲S =2乙S .理由如下: 因为()()()()()[]2222224132251乙乙乙乙乙乙x x x x x S -+--+--+-+--=()()()()()[]222225054504950475052504851乙乙乙乙乙x x x x x --+--+--+--+--= ()()()()()[]22222544947524851甲甲甲甲甲x x x x x -+-+-+-+-= =2甲S .所以2甲S =2乙S .19.(本题满分8分)(1)证明:因为点P 在AB 的垂直平分线上, 所以PA=PB, 所以∠PAB=∠B,所以∠APC=∠PAB+∠B=2∠B . (2)根据题意,得BQ=BA, 所以∠BAQ=∠BQA, 设∠B=x ,所以∠AQC=∠B+∠BAQ=3x, 所以∠BAQ=∠BQA=2x,在△ABQ 中,x+2x+2x=180°, 解得x=36°,即∠B=36°. 20.(本题满分10分) (1)根据题意,得vt=480, 所以v=480/t, 因为480>0,所以当v≤120时,t≥4, 所以v=480/t (t≥4).(2)①根据题意,得4.8≤t≤6, 因为480>0,所以480/6≤v ≤480/4.8, 所以80≤v≤100.②方方不能在11点30分前到达B 地.理由如下: 若方方要在11点30分前到达B 地,则t<3.5,所以v>480/3.5>120,所以方方不能在11点30分前到达B 地. 21.(本题满分10分)根据题意,得AD=BC=CD=1,∠BCD=90°, (1)设CE=x(0<x<1),则DE=1-x,因为S 1=S 2,所以x 2=1-x, 解得x=215-(负根舍去)即CE=215-. (2)因为点H 为BC 边的中点, 所以CH=1/2,所以HD=25, 因为CG=CE=215-,点H,C,G 在同一直线上, 所以HG=HC+CG=21+215-=25,所以HD=HG.22.(本题满分12分)(1)乙求得的结果不正确,理由如下: 根据题意,知图象经过点(0,0),(1,0), 所以()1-=x x y , 所以乙求得的结果不正确. (2)函数图象的对称轴为221x x x +=, 当221x x x +=时,函数有最小值()422221221121x x x x x x x x M --=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=.(3)因为()()21x x x x y --=, 所以21x x m =,()()2111x x n --=,所以()()212111x x x x mn --=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛--•⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛--=412141212221x x ,因为1021<<<x x ,并结合函数()1-=x x y 的图象, 所以4141210,41412102221≤+⎪⎭⎫ ⎝⎛--≤+⎪⎭⎫ ⎝⎛--x x <<,所以1610≤mn <, 因为21x x ≠,所以1610<<mn . 23.(本题满分12分) (1)①证明:连接OB,OC, 因为OB=OC,OD⊥BC,所以∠BOD=∠BOC /2=∠BAC /=60°,所以OD=OB/2=OA/2.②作AF⊥BC,垂足为点F,所以AF≤AD≤AO+OD=3/2,等号当点A,O,D 在同一直线上时取到. 由①知,BC=2BD=3,所以△ABC 的面积3432332121=⨯⨯≤⋅=AF BC , 即△ABC 面积的最大值是343.(2)设∠OED=∠ODE=α,∠COD=∠BOD=β, 因为△ABC 是锐角三角形,所以∠AOC+∠AOB+2∠BOD=360°, 即(m+n)α+β=180°(*) 又因为∠ABC<∠ACB,所以∠EOD=∠AOC+∠DOC =2m α+β, 因为∠OED+∠ODE+∠EOD=180°, 所以2(m+1)α+β=180°.(**) 由(*),(**),得m+n=2(m+1), 即m-n+2=0.。