高等数学习题册答案华东师大Ch 8 Differential of multivariable functions
2019年数学分析课本(华师大三版)-习题及答案第六章.doc

第六章 微分中值定理及其应用一、填空题1.若0,0>>b a 均为常数,则=⎪⎪⎭⎫ ⎝⎛+→x x x x b a 302lim ________。
2.若21sin cos 1lim 0=-+→x x b x a x ,则=a ______,=b ______。
3.曲线x e y=在0=x 点处的曲率半径=R _________。
4.设2442-+=x x y ,则曲线在拐点处的切线方程为___________。
5.=-+→x e x xx 10)1(lim ___________。
6.设)4)(1()(2--=x x x x f ,则0)(='x f 有_________个根,它们分别位于________ 区间;7.函数x x x f ln )(=在[]2,1上满足拉格朗日定理条件的__________=ξ;8.函数3)(x x f =与21)(x x g +=在区间[]2,0上满足柯西定理条件的_____=ξ;9.函数x y sin =在[]2,0上满足拉格朗日中值定理条件的____=ξ;10.函数2)(xe xf x=的单调减区间是__________; 11.函数x x y 33-=的极大值点是______,极大值是_______。
12.设x xe x f =)(,则函数)()(x f n 在=x _______处取得极小值_________。
13.已知bx ax x x f ++=23)(,在1=x 处取得极小值2-,则=a _______,=b_____。
14.曲线22)3(-=x k y 在拐点处的法线通过原点,则=k________。
15.设)2,1()1()( =-⨯=n x n x f n ,n M 是)(x f 在[]1,0上的最大值,则=∞→n n M lim ___________。
16.设)(x f 在0x 可导,则0)(0='x f 是)(x f 在点0x 处取得极值的______条件;17.函数x bx x a x f ++=2ln )(在1=x 及2=x 取得极值,则______,==b a ;18. 函数3223)(x x x f -=的极小值是_________; 19.函数xx x f ln )(=的单调增区间为__________; 20. 函数x x x f cos 2)(+=在⎥⎦⎤⎢⎣⎡2,0π上的最大值为______,最小值为_____; 21. 设点)2,1(是曲线b a x y +-=3)(的拐点,则___________,==b a ;22. 曲线x e y =的下凹区间为_______,曲线的拐点为________;23. 曲线323x x y -=的上凹区间为________;24. 曲线)1ln(2x y +=的拐点为__________;25.曲线x y ln =在点______处曲率半径最小。
数学分析课本(华师大三版)-习题及答案第八章

数学分析课本(华师大三版)-习题及答案第八章第八章不定积分一. 填空题1.若x e f x+='1)(,则=)(x f ___________2.设)(x f 的一个原函数为xxe ,则='?dx x f x )(_____________ 3.若xe-是)(x f 的一个原函数,则?=dx x xf )(________________4.若[]1)(3='x f ,则=)(x f ____________ 5.?=dx x x ),max(2___________________6.若)(x f 有原函数x x ln ,则?=''dx x f x )(_______________ 7.? =dx xx 2sin)ln(sin ________________8.若?+++=+xdx B xx A x dx cos 21cos 21sin )cos 21(2,则=A __________,=B __________9.设C x dx x xf +=?arcsin )(,则?=)(x f dx _________10.?=-)4(x x dx _________________11.?=-dx xx 21ln _________________12.[]=-?dx xx x a n)cos(ln )sin(ln ________________ 13.[]?='+dxx f x x f )()(________________14.?=+xedx 1_____________15.?=+dx x xex 2)1(_____________________16.=++?dx xx x x cos 2sin cos 3sin 4______________ 17.已知x x x f 22tansin )cos 2(+=+',则=)(x f _______________ 18.[]=+'dx x f x f 2)(1)(______________19. 若?+=C x F dx x f )()(,而),(x u ?=则?=du u f )(___________. 20设函数)(x f 的二阶导数)(x f ''连续,那么?=''__________)(dx x f x . 21设)(x f 的原函数是xx sin ,则?='__________)(dx x f x .22已知曲线)(x f y =上任一点的切线斜率为6332--x x ,且1-=x 时,211=y 是极大值,则)(x f __________=;)(x f 的极小值是__________.23已知一个函数的导数为211)(xx f -=,并且当1=x 时,这个函数值等于π23,则这个函数为__________)(=x F . 24 设)1(cos )(sin22<='x x x f ,则)(x f __________=.25 若)(x f 为连续函数,且)()(x f x f =',则?=__________)(dx x f . 26 若?='x dx x f ln ))((,则)(x f __________=. 27 已知2xe -是)(xf 的一个原函数,则?=__________sec )(tan 2xdx x f .28='__________)2(1dx x f x. 29 设C xxdx x f ++-=?11)(,则)(x f __________=.30 在积分曲线族?dx xx 1中,过(1,1)点的积分曲线是__________=y .二、选择填空题 1.设dx e e I xx+-=11,则=I ( )A.C e x++)1ln( B.C x e x+-+)1ln(2 C.C e x x++-)1ln(2 D.C e x+-)1ln(2.设)(x f 是连续的偶函数,则期原函数)(x F 一定是( ) A.偶函数B.奇函数 C.非奇非偶函数 D.有一个是奇函数3.设?+=++=)1(,)1(121u u du I dx xe x x I x,则存在函数)(x u u =,使( )A.x I I +=21B.x I I -=21C.12I I -=D.12I I = 4.当1-≠n 时,?=xdx x n ln ( ) A.C nx nxn+-)1(ln B.C n x n xn +----)11(ln 11C.C n x xn n ++-++)11(ln 111D.C x n xn +++ln 117.?=+dx x x )2sin2(cos ( )A.C x x +-)2cos2(sin 2 B.C x x +-)2sin2(cos2C.C xx +-2cos 2sin D.C x x +-2sin 2cos8.?=++dx xxx cos 1sin ( )A.C x x +2cotB.C x x +2tanC.C x x+cot 2 D.C x x +2tan 29.若)(x f 的导函数是x e xcos +-,则)(x f 的一个原函数为( )A.x excos -- B.x exsin +-- C.x e xcos --- D.x exsin +-10.若)(x f 是以l 为周期的连续函数,则其原函数( )。
数学分析课本(华师大三版)-习题集与答案解析第十二章资料讲解

数学分析课本(华师大三版)-习题集与答案解析第十二章仅供学习与交流,如有侵权请联系网站删除 谢谢2第十二章 数项级数证明题1. 证明下列级数的收敛性,并求其和: (1) ++-+++1)4)(5n (5n 111.1616.1111.61; (2) +⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+n n 22312131213121; (3) ∑++2)1)(n n(n 1; (4) ∑++-+)n 1n 22n (; (5) ∑-n212n . 2. 证明:若级数∑n u 发散,则∑n Cu 也发散(c ≠0).3. 证明:若数列{a n }收敛于a,则级数a -a )a (a 11n n =+∑+.仅供学习与交流,如有侵权请联系网站删除 谢谢34. 证明: 若数列{b n }有+∞=∞→n n b lim ,则 (1)级数)b (b n 1n ∑-+发散;(2)当b n ≠0时,级数∑=⎪⎪⎭⎫ ⎝⎛-+11n b 1b 1n 15. 证明级数∑n u 收敛的充要条件是:任给正数ε,有某自然数N,对一切n>N 总有|u N +u n+1+…+u n |<ε6. 设∑∑n n v 、u 为正项级数,且存在正数N 0,对一切n>N 0,有n1n n 1n v v u u ++≤ 7. 设正项级数∑n a 收敛,证明级数∑2n a 也收敛;试问反之是否成立?仅供学习与交流,如有侵权请联系网站删除 谢谢48. 设a n ≥0,且数列{na n }有界,证明级数∑2n a 收敛.9. 设正项级数∑n u 收敛,证明级数∑+1n n u u 也收敛.10. 证明下列极限: (1) 0)(n!n lim 2nn =∞→; (2) 1)0(a a )(2n!lim n!n >=∞→. 11. 设{a n }为递减正项数列,证明:级数∑∞=1n n a 与∑∞=0m 2mm a 2同时收敛或同时发散.12. 设a n >0, b n >0, C n =b n 1n n a a +b n+1,证明: (1) 若存在某自然数N 0及常数K,当n>N 0时,有C n ≥k>0,则级数∑∞=1n n a 收敛;仅供学习与交流,如有侵权请联系网站删除 谢谢5(2) 若n>N 0时有C n ≤0,且∑=∞→+∞=n1k k n b 1lim ,则级数∑∞=1n n a发散.13. 设级数∑2n a 收敛,证明级数∑>0)(a n a n n 也收敛. 14. 设a n >0,证明数列{(1+a 1)(1+a 2)…(1+a n )}与级数∑n a 同时收敛或同时发散.15. 应用阿贝耳判别法或狄利克雷判别法判断下列级数的收敛性: (1) ∑>+-0)(x ,x1x n 1)(n nn ; (2) ∑>∈0)(α(0,2π0,x ,n sinnx α; (3) ∑-nn cos 1)(2n . 16. 设a n >0,a n >a n+1(n=1,2,…)且∞→n lim a n =0,证明级数仅供学习与交流,如有侵权请联系网站删除 谢谢6∑+++--n a a a 1)(n 211n 是收敛的.17. 设2u |u |g ,2u |u |p n nn n n n -=+=,证明:若∑n u 条件收敛,则级数∑n p 与∑n q 都是发散的.二、计算题1. 试讨论几何级数(也称为等比级数)a+r+ar 2+…+ar n +…(a ≠0)的敛散性.2. 设级数∑n u 与∑n v 都发散,试问)v (u n n ∑+一定发散吗?又若u n 与v n (n=1,2,…)都是非负数,则能得出什么结论?3.求下列级数的和:仅供学习与交流,如有侵权请联系网站删除 谢谢7 (1)∑+-+n)1)(a n (a 1; (2) ∑++-+1)n(n 12n 1)(1n ; (3) ∑++++1]1)1)[(n (n 12n 22. 4. 应用柯西准则判别下列级数的敛散性: (1) ∑n n 2sin2; (2) ∑+12n n (-1)221-n ; (3) ∑n (-1)n ; (4) ∑+2nn 1. 5. 应用比较原则判别下列级数的敛散性. (1) ∑+22a n 1; (2) ∑n n 3πsin 2; (3) ∑+2n 11;仅供学习与交流,如有侵权请联系网站删除 谢谢8 (4) ∑∞=2n n(lnn)1; (5) ∑⎪⎭⎫ ⎝⎛-n 1cos 1; (6) ∑n n n 1; (7) ∑>⎪⎭⎫ ⎝⎛-+0)(a ,2n 1a n 1a ; (8) ∑∞=2n lnn (lnn)1. 6. 用积分判别法讨论下列级数的敛散性: (1) ∑+1n 12; (2) ∑+1n n 2; (3) ∑∞=3n )nlnnln(lnn 1;仅供学习与交流,如有侵权请联系网站删除 谢谢9 (4) ∑∞=3n qp (lnlnn)n(lnn)1. 7. 判别下列级数的敛散性: (1) ∑n n nn!3; (2) ∑++2n 2n n 2; (3) ∑∞=2n lnn 1; (4) ∑≥-1)(a 1),a (n ; (5) ∑+⋅-⋅12n 12n 421)(2n 31 ; (6) ∑>++0)(x ,n)(x 1)(x n! . 8. 求下列极限(其中P>1): (1) ⎪⎪⎭⎫ ⎝⎛+++++∞→p p p n (2n)12)(n 11)(n 1lim ;仅供学习与交流,如有侵权请联系网站删除 谢谢10 (2) ⎪⎪⎭⎫ ⎝⎛+++++∞→2n 2n 1n n p 1p 1p 1lim . 9. 下列级数哪些是绝对收敛,条件收敛或发散的: (1) ∑n!sinnx ; (2) ∑+-1n n 1)(n ; (3) ∑+-n 1p nn 1)(; (4) ∑-n 2sin1)(n ; (5) ∑+-)n 1n1)((n ; (6) ∑++-1n 1)(n l 1)(n n ; (7) ∑++-n n )13n 1002n (1)(; (8) ∑n )nx (n!;仅供学习与交流,如有侵权请联系网站删除 谢谢11 (9) ∑∞=<<1n )2x (0lnnsinnx π; (10) ∑-n n 11)(.10. 写出下列级数的乘积:(1) ()()∑∑----1n 1n 1n nx 1)(nx ; (2) ⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n 0n n!1)(n!1 三、考研复习题1. 证明:若正项级数∑n u 收敛,且数列{u n }单调,则0u lim n n =∞→.2. 若级数∑n a 与∑n C 都收敛,且成立不等式a n ≤b n ≤C n (n=1,2,…) 证明级数∑n b 也收敛.若级数∑n a ,∑n C 都发散,试问∑n b 一定发散吗?仅供学习与交流,如有侵权请联系网站删除 谢谢123. 若0k b a lim nn n ≠=∞→,且级数∑n b 收敛,证明级数∑n a 也收敛.若上述条件中只知道∑n b 收敛,能推得∑n a 收敛吗?4. (1) 设∑n u 为正项级数,且n 1n u u +<1,能否断定级数∑n u 收敛?(2) 对于级数∑n u 有|n 1n u u +|≥1,能否断定级数∑n u 不绝对收敛,但可能条件收敛.(3) 设∑n u 为收敛的正项级数,能否存在一个正数ε,使得0C n 1u lim ε1n n >=+∞→仅供学习与交流,如有侵权请联系网站删除 谢谢135. 证明: 若级数∑n a 收敛,∑-+)b (b n 1n 绝对收敛,则级数n n b a ∑也收敛.6. 证明级数∑+bna 1是发散的. 7. 讨论级数∑∞=2n p n(lnn)1,(p>0) 的敛散性.8. 设a n >0,证明级数∑+++)a (1)a )(1a (1a n21n是收敛的.9. 证明:若级数∑2n a 与∑2n b 收敛,则级数∑n n b a 和∑+2n n )b (a 也收敛,且仅供学习与交流,如有侵权请联系网站删除 谢谢14 ()∑∑∑⋅≤+2n 2n 2n n b a b a ()()()()212n212n 212n n b a b a ∑∑∑+≤+ 10. 证明:(1)设∑n a 为正项级数,若0,a a u u lim 1n n 1n n n >⎪⎪⎭⎫ ⎝⎛-++∞→ 则正项级数∑n u 收敛,(2)若级数∑na 1发散,且 0a a u u lim 1n n 1n n n <⎪⎪⎭⎫ ⎝⎛-++∞→, 则正项级数∑n u 发散.。
高等数学课后习题及参考答案(第八章)

高等数学课后习题及参考答案(第八章)习题8-11. 判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界. (1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2, 边界为 {(x , y )|x =0或y =0}. (2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集, 导集为 {(x , y )|1≤x 2+y 2≤4}, 边界为 {(x , y )|x 2+y 2=1或x 2+y 2=4}. (3){(x , y )|y >x 2}; 解 开集, 区域, 无界集, 导集为 {(x , y )| y ≥x 2}, 边界为 {(x , y )| y =x 2}.(4){(x , y )|x 2+(y -1)2≥1}⋂{(x , y )|x 2+(y -2)2≤4}. 解 闭集, 有界集, 导集与集合本身相同, 边界为 {(x , y )|x 2+(y -1)2=1}⋃{(x , y )|x 2+(y -2)2=4}.2. 已知函数yx xy y x y x f tan ),(22-+=, 试求f (tx , ty ).解 )(tan )()()()(),(22ty tx ty tx ty tx ty tx f ⋅⋅-+=),()tan (2222y x f t y x xy y x t =-+=.3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v =F (x , u )+F (x , v )+F (y , u )+F (y , v ). 4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x -y , xy ). 解 f (x +y , x -y , xy )=(x +y )xy +(xy )(x +y )+(x -y )=(x +y )xy +(xy )2x .5. 求下列各函数的定义域: (1)z =ln(y 2-2x +1); 解 要使函数有意义, 必须 y 2-2x +1>0, 故函数的定义域为D ={(x , y )|y 2-2x +1>0}. (2)y x y x z -++=11;解 要使函数有意义, 必须 x +y >0, x -y >0, 故函数的定义域为D ={(x , y )|x +y >0, x -y >0}.(3)y x z -=;解 要使函数有意义, 必须 y ≥0,0≥-y x 即y x ≥, 于是有 x ≥0且x 2≥y , 故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }. (4)221)ln(yx x x y z --+-=; 解 要使函数有意义, 必须 y -x >0, x ≥0, 1-x 2-y 2>0, 故函数的定义域为D ={(x , y )| y -x >0, x ≥0, x 2+y 2<1}.(5)222222221r z y x z y x R u -+++---=(R >r >0); 解 要使函数有意义, 必须R 2-x 2-y 2-z 2≥0且x 2+y 2+z 2-r 2>0, 故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}. (6)22arccos y x z u +=.解 要使函数有意义, 必须 x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2, 故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求下列各极限: (1)22)1,0(),(1lim y x xyy x +-→;解110011lim22)1,0(),(=+-=+-→y x xy y x .(2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y yx . (3)xyxy y x 42lim )0,0(),(+-→; 解xy xy y x 42lim)0,0(),(+-→)42()42)(42(lim )0,0(),(+++++-=→xy xy xy xy y x 41)42(1lim )0,0(),(-=++-=→xy y x .(4)11lim )0,0(),(-+→xy xyy x ;解11lim)0,0(),(-+→xy xyy x )11)(11()11(lim)0,0(),(-+++++=→xy xy xy xy y x 2)11lim )11(lim )0,0(),()0,0(),(=++=++=→→xy xyxy xy y x y x . (5)yxy y x )sin(lim)0,2(),(→;解 y xy y x )sin(lim )0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xy xyy x .(6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++-→. 解 2222)()(21lim )()cos(1lim 22222)0,0(),(2222)0,0(),(yx y x y x y x e y x y x e y x y x ++=++-→→ 0lim 212222)0,0(),(=+=→y x y x e y x (用等价无穷小代换). 7. 证明下列极限不存在: (1)yx yx y x -+→)0,0(),(lim;证明 如果动点p (x , y )沿y =0趋向(0, 0), 则1lim lim00 )0,0(),(==-+→=→x x y x yx x y y x ;如果动点p (x , y )沿x =0趋向(0, 0), 则1lim lim00 )0,0(),(-=-=-+→=→y yy x y x y x y x .因此, 极限yx yx y x -+→)0,0(),(lim不存在.(2)22222)0,0(),()(lim y x y x y x y x -+→. 证明 如果动点p (x , y )沿y =x 趋于(0, 0), 则1lim )(lim 44022222 )0,0(),(==-+→=→x x y x y x y x x xy y x ;如果动点p (x , y )沿y =2x 趋向(0, 0), 则044lim )(lim 2440222222 )0,0(),(=+=-+→=→x x x y x y x y x x xy y x .因此, 极限22222)0,0(),()(lim y x y x y x y x -+→不存在.8. 函数xy xy z 2222-+=在何处间断?解 因为当y 2-2x =0时, 函数无意义, 所以在y 2 -2x =0处, 函数xy x y z 2222-+=间断.9. 证明0lim 22)0,0(),(=+→yx xyy x . 证明 因为22||||2222222222y x yx y x y x xy y x xy +=++≤+=+,所以 02lim ||lim 022)0,0(),(22)0,0(),(=+≤+≤→→y x y x xyy x y x .因此 0lim22)0,0(),(=+→yx xyy x . 方法二:证明 因为2||22y x xy +≤, 故22||22222222y x y x y x y x xy +=++=+. 对于任意给定的ε>0, 取δ=2ε, 当δ<+<220y x 时恒有εδ=<+≤-+22|0|2222y x y x xy,所以 0lim22)0,0(),(=+→yx xyy x .10. 设F (x , y )=f (x ), f (x )在x 0处连续, 证明: 对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.证明 由题设知, f (x )在x 0处连续, 故对于任意给定的ε>0, 取δ>0, 当|x -x 0|<δ时, 有|f (x )-f (x 0)|<ε.作(x 0, y 0)的邻域U ((x 0, y 0), δ), 显然当(x , y )∈U ((x 0, y 0), δ)时, |x -x 0|<δ, 从而|F (x , y )-F (x 0, y 0)|=|f (x )-f (x 0)|<ε, 所以F (x , y )在点(x 0, y 0)处连续.又因为y 0是任意的, 所以对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.习题8-21. 求下列函数的偏导数: (1) z =x 3y -y 3x ; 解 323y y x xz -=∂∂,233xy x y z -=∂∂.(2)uvvu s 22+=;解 21)(uv v u v v u u u s -=+∂∂=∂∂,21)(vu u u v v u v v s -=+∂∂=∂∂.(3))ln(xy z =;解 x y x y x x x z 1ln ln 121)ln ln (⋅+⋅=+∂∂=∂∂)ln(21xy x =. 同理 )ln(21xy y y z =∂∂.(4) z =sin(xy )+cos 2(xy );解 y xy xy y xy xz ⋅-⋅+⋅=∂∂)]sin([)cos(2)cos()]2sin()[cos(xy xy y -=根据对称性可知)]2sin()[cos(xy xy x yz -=∂∂.(5)yx z tan ln =;解 yx y y y x yx x z 2csc 21sec tan 12=⋅⋅=∂∂,yx y x y x y x yx y z 2csc 2sec tan 1222-=-⋅⋅=∂∂. (6) z =(1+xy )y ;解 121)1()1(--+=⋅+=∂∂y y xy y y xy y xz ,]1)1[ln()1ln()1ln(xyx y xy e e y y z xy y xy y +⋅++=∂∂=∂∂++]1)1[ln()1(xy xyxy xy y ++++=.(7)zy x u =;解 )1(-=∂∂z y x zy x u ,x x zz x x y u z yz y ln 11ln ⋅=⋅=∂∂,x x zy z y x x z u z yz y ln )(ln 22⋅-=-=∂∂.(8) u =arctan(x -y )z ;解 zz y x y x z x u 21)(1)(-+-=∂∂-, zz y x y x z y u 21)(1)(-+--=∂∂-, zz y x y x y x z u 2)(1)ln()(-+--=∂∂. 2. 设g l T π2=, 试证0=∂∂+∂∂g T g l T l .解 因为lg l T ⋅⋅=∂∂1π,gg g l g T 1)21(223⋅-=⋅-⋅=∂∂-ππ, 所以 0=⋅-⋅=∂∂+∂∂g l g l g T g l T l ππ. 3. 设)11(yx ez +-=, 求证z yz y x z x 222=∂∂+∂∂.解 因为2)11(1x ex z yx ⋅=∂∂+-, 2)11(1y e yz y x ⋅=∂∂+-, 所以 z eeyz y x z x yx yx 2)11()11(22=+=∂∂+∂∂+-+-4. 设y x y x y x f arcsin )1(),(-+=, 求)1 ,(x f x .解 因为x x x x f =-+=1arcsin )11()1 ,(,所以 1)1 ,()1 ,(==x f dx d x f x .5. 曲线⎪⎩⎪⎨⎧=+=4422y y x z 在点(2, 4, 5)处的切线与正向x 轴所成的倾角是多少? 解 因为242x x x z ==∂∂,αtan 1)5,4,2(==∂∂xz ,故 4πα=.6. 求下列函数的22x z ∂∂, 22y z ∂∂, yx z ∂∂∂2. (1) z =x 4+y 4-4x 2y 2;解 2384xy x xz -=∂∂, 2222812y x x z -=∂∂; y x y yz 2384-=∂∂, 2222812x y y z -=∂∂;xy y x y yy x z 16)84(232-=-∂∂=∂∂∂. (2)xyz arctan =;解 22222)(11y x y x y xy x z +-=-⋅+=∂∂,22222)(2y x xy x z +=∂∂; 2222)1(11y x x x xy yz +=⋅+=∂∂, 22222)(2y x xy y z +-=∂∂;22222222222222)()(2)()(y x x y y x y y x y x y y y x z +-=+-+-=+-∂∂=∂∂∂. (3) z =y x .解 y y xz xln =∂∂, y y x z x 222ln =∂∂; 1-=∂∂x xy yz , 222)1(--=∂∂x y x x y z ;)1ln (1ln )ln (112+=⋅+=∂∂=∂∂∂--y x y yy y xy y y y y x z x x x x . 7. 设f (x , y , z )=xy 2+yz 2+zx 2, 求f xx (0, 0, 1), f xz (1, 0, 2), f yz (0, -1, 0)及f zzx (2, 0, 1). 解 因为f x =y 2+2xz , f xx =2z , f xz =2x , f y =2xy +z 2, f yz =2z ,f z =2yz +x 2, f zz =2y , f zzx =0, 所以 f xx (0, 0, 1)=2, f xz (1, 0, 2)=2, f yz (0, -1, 0)=0, f zzx (2, 0, 1)=0.8. 设z =x ln(xy ), 求y x z ∂∂∂23及23y x z ∂∂∂. 解 1)ln()ln(+=⋅+=∂∂xy xyyx xy x z ,x xy y x z 122==∂∂, 023=∂∂∂y x z ,y xy x y x z 12==∂∂∂, 2231y y x z -=∂∂∂. 9. 验证:(1)nx e y tkn sin 2-=满足22xy k t y ∂∂=∂∂;证明 因为nx e kn kn nx e t y t kn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx ne x y tkn cos 2-=∂∂, nx e n x y t kn sin 2222--=∂∂, nx e kn xy k t kn sin 2222--=∂∂,所以 22xyk t y ∂∂=∂∂.(2)222z y x r ++=满足rz r y r x r 2222222=∂∂+∂∂+∂∂. 证明 r x z y x x x r =++=∂∂222, 322222r x r r x r x r xr -=∂∂-=∂∂, 由对称性知32222ry r y r -=∂∂, 32222r z r z r -=∂∂,因此 322322322222222rz r r y r r x r z r y r x r -+-+-=∂∂+∂∂+∂∂ rr r r r z y x r 23)(332232222=-=++-=. 习题8-31. 求下列函数的全微分: (1)yx xy z +=;解 dy y z dx x z dz ∂∂+∂∂=dy y x x dx y y )()1(2-++=.(2)xy e z =;解 xdy e x dx e x y dy y z dx x z dz y x y 12+-=∂∂+∂∂=.(3) 22yx y z +=;解 因为2/3222322)()(21y x xy y x y x z +-=+-=∂∂-, 2/3222222222)(y x x y x y x yy y x y z +=++⋅-+=∂∂, 所以 dy y x x dx y x xy dz 2/32222/322)()(+++-=)()(2/322xdy ydx y x x -+-=.(4)u =x yz . 解 因为1-⋅=∂∂yz x yz x u , x zx yu yz ln =∂∂, x yx z u yz ln =∂∂,所以 xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=-.2. 求函数z =ln(1+x 2+y 2)当x =1, y =2时的全微分. 解 因为2212y x x x z ++=∂∂, 2212y x y y z ++=∂∂, 3121=∂∂==y x xz, 3221=∂∂==y x y z , 所以 dy dx dz y x 323121⋅+===.3. 求函数xyz =当x =2, y =1, ∆x =0.1, ∆y =-0.2时的全增量和全微分. 解 因为xy x x y y z -∆+∆+=∆, y x x x ydz ∆+∆-=12,所以, 当x =2, y =1, ∆x =0.1, ∆y =-0.2时,119.0211.02)2.0(1-=-+-+=∆z , 125.0)2.0(211.041-=-⨯+⨯-=dz .4. 求函数z =e xy 当x =1, y =1, ∆x =0.15, ∆y =0.1时的全微分. 解 因为y xe x ye y yz x x z dz xy xy ∆+∆=∆∂∂+∆∂∂=所以, 当x =1, y =1, ∆x =0.15, ∆y =0.1时, e e e dz 25.01.015.0=⋅+⋅=.*5. 计算33)97.1()102(+的近似值. 解 设33y x z +=, 由于y yz x x z y x y y x x ∆∂∂+∆∂∂++≈∆++∆+3333)()(332233233y x y y x x y x +∆+∆++=, 所以取x =1, y =2, ∆x =0.02, ∆y =-0.03可得95.2212)03.0(2302.0321)97.1()02.1(32333=+-⋅⋅+⋅++≈+. *6. 计算(1.97)1.05的近似值(ln2=0.693). 解 设z =x y , 由于y yz x x z x x x y y y ∆∂∂+∆∂∂+≈∆+∆+)(y x x x yx x y y y ∆+∆+=-ln 1,所以取x =2, y =1, ∆x =-0.03, ∆y =0.05可得(1.97)1.05≈2-0.03+2ln2⋅0.05+1.97+0.0693 ≈2.093.*7. 已知边长为x =6m 与y =8m 的矩形, 如果x 边增加5cm 而y 边减少10cm ,问这个矩形的对角线的近似变化怎样?解 矩形的对角线为22y x z +=,)(122y y x x yx y dy dz x dx dz dz z ∆+∆+=∆+∆=≈∆,当x =6, y =8, ∆x =0.05, ∆y =-0.1时,05.0)1.0805.06(86122-=⋅-⋅+≈∆z .这个矩形的对角线大约减少5cm .*8. 设有一无盖圆柱形容器, 容器的壁与底的厚度均为0.1cm , 内高为20cm ,内半径为4厘米, 求容器外壳体积的近似值.解 圆柱体的体积公式为V =πR 2h , ∆V ≈dV =2πRh ∆R +πR 2∆h , 当R =4, h =20, ∆R =∆h =0.1时,∆V ≈2⨯3.14⨯4⨯20⨯0.1+3.14⨯42⨯0.1≈55.3(cm 3), 这个容器外壳的体积大约是55.3cm 3.*9. 设有直角三角形, 测得其两腰的长分别为7±0.1cm 和24±0.1cm , 试求利用上述二值来计算斜边长度时的绝对误差. 解 设两直角边的长度分别为x 和y , 则斜边的长度为22y x z +=.||||||||||||y y z x x z dz z ∆⋅∂∂+∆⋅∂∂≤≈∆|)|||(122y y x x y x ∆+∆+=.令x =7, y =24, |∆x |≤0.1, |∆y |≤0.1, 则得斜边长度z 的绝对误差约为124.0)1.0241.07(247122=⋅+⋅+=z δcm .*10. 测得一块三角形土地的两边长分别为63±0.1m 和78±0.1m ,这两边的夹角为60︒±1︒, 试求三角形面积的近似值, 并求其绝对误差和相对误差.解 设三角形的两边长为x 和y , 它们的夹角z , 为则三角形面积为z xy s sin 21=.zdz xy zdy x zdx y dS cos 21sin 21sin 21++=||cos 21||sin 21||sin 21||||dz z xy dy z x dx z y dS S ++≤≈∆.令x =63, y =78, 3π=z , |dx |=0.1, |dy |=0.1, 180π=dz , 则55.2718021278631.0232631.023278=⨯⨯⨯+⨯⨯+⨯⨯≈πδs ,82.21273sin 786321=⋅⋅⋅=πS ,%29.182.212755.27==S s δ,所以三角形面积的近似值为2127.82m 2, 绝对误差为27.55m 2, 相对误差为1.29%.*11. 利用全微分证明: 两数之和的绝对误差等于它们各自的绝对误差之和.证明 设u =x +y , 则||||||||||||y x y x y yu x x u du u ∆+∆≤∆+∆=∆∂∂+∆∂∂=≈∆.所以两数之和的绝对误差|∆u |等于它们各自的绝对误差|∆x |与|∆y |的和.*12. 利用全微分证明: 乘积的相对误差等于各因子的相对误差之和; 商的相对误差等于被除数及除数的相对误差之和. 证明 设u =xy , y x v =, 则∆u ≈du =ydx +xdy ,2yxdyydx dv v -=≈∆, 由此可得相对误差;||||||||y dy x dx xy xdy ydx u du u u +=+=≈∆||||||||yyx x y dy x dx ∆+∆=+≤;||||||||2y dy x dx yxy xdy ydx v dv v v -=⋅-==∆||||||||y yx x y dy x dx ∆+∆=+≤.习题8-41. 设z =u 2-v 2, 而u =x +y , v =x -y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅1=2(u +v )=4x ,y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅(-1)=2(u -v )=4y .2. 设z =u 2ln v , 而y x u =, v =3x -2y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂31ln 22⋅+⋅=v u y v u 222)23(3)23ln(2y y x x y x y x -+-=, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂)2()(ln 222-+-⋅=v u y x v u 2232)23(2)23ln(2y y x x y x y x ----=. 3. 设z =e x -2y , 而x =sin t , y =t 3, 求dtdz .解 dt dyy z dt dx x z dt dz ⋅∂∂+⋅∂∂=2223)2(cos t e t e y x y x ⋅-⋅+=--)6(cos )6(cos 22sin 223t t e t t e t t y x -=-=--.4. 设z =arcsin(x - y ), 而x +3t , y =4t 3, 求dtdz .解 dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x ⋅---+⋅--= 232)43(1)41(3t t t ---=. 5. 设z =arctan(xy ), 而y =e x , 求dxdz .解 dx dy y z x z dx dz ⋅∂∂+∂∂=x xxe x x e e y x x y x y 2222221)1(11++=⋅+++=.6. 设1)(2+-=a z y e u ax , 而y =a sin x , z =cos x , 求dxdu .解 dxdz dz u dx dyy u x u dx du ⋅∂+⋅∂∂+∂∂=)sin (1cos 11)(222x a e x a a e a z y ae ax ax ax -⋅+-⋅+++-= )sin cos cos sin (122x x a x a x a a e ax ++-+=x e ax sin =. 7. 设yx z arctan =, 而x =u +v , y =u -v , 验证22v u v uv z u z +-=∂∂+∂∂. 证明)()(vy y z v x x z u y y z u x x z v z u z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂+∂∂)()(111)(11222y x yx y y x -⋅++⋅+=)1()()(111)(11222-⋅-⋅++⋅++y x yx y y x22222v u v u y x y +-=+=. 8. 求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1) u =f (x 2-y 2, e xy );解 将两个中间变量按顺序编为1, 2号, 2122212)()(f ye f x xe f x y x f x u xy xy '+'=∂∂⋅'+∂-∂⋅'=∂∂, 212)2212)((f xe f y y e f y y x f y u xy xy '+'-=∂∂⋅'+∂-∂⋅'=∂∂.(2)) ,(zyy x f u =;解1211)()(f yz y x f y x x f x u '=∂∂⋅'+∂∂⋅'=∂∂, )()(21z yy f y x y f y u ∂∂⋅'+∂∂'=∂∂2121f z f y x '+'-=,)()(21z y z f z x z f z u ∂∂⋅'+∂∂'=∂∂22f zy'⋅-=.(3) u =f (x , xy , xyz ).解 yz f y f f x u ⋅'+⋅'+⋅'=∂∂3211321f yz f y f '+'+'=,3232f xz f x xz f x f y u '+'=⋅'+⋅'=∂∂,33f xy xy f zu '=⋅'=∂∂.9. 设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z yz y x z x +=∂∂+∂∂⋅. 证明 y z y x z x ∂∂⋅+∂∂⋅])([])()([y u u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .10. 设)(22y x f yz -=, 其中f (u )为可导函数, 验证211y z y z y x z x =∂∂+∂∂.证明 ()()u f f xy u f x f y x z 2222'-=⋅'⋅-=∂∂, ()()u f f y u f u f y f y u f y z 2222)(1)2()('-+=-⋅'⋅-=∂∂, 所以 )(11221122u f y u f f y u f f y y z y x z x ⋅+'+'-=∂∂⋅+∂∂⋅211yz zy y =⋅. 11. 设z =f (x 2+y 2), 其中f 具有二阶导数, 求22x z ∂∂, y x z ∂∂∂2, 22yz ∂∂. 解 令u =x 2+y 2, 则z =f (u ), f x xu u f x z '=∂∂'=∂∂2)(,f y yu u f y z '=∂∂'=∂∂2)(,f x f x u f x f x z ''+'=∂∂⋅''+'=∂∂2224222,f xy yu f x y x z ''=∂∂⋅''=∂∂∂422, f y f yu f y f y z ''+'=∂∂⋅''+'=∂∂422222. 12. 求下列函数的22x z ∂∂,y x z ∂∂∂2,22y z ∂∂(其中f 具有二阶连续偏导数):(1) z =f (xy , y );解 令u =xy , v =y , 则z =f (u , v ).ufy v f y u f x v v f x u u f x z ∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂0,vfu f x v f x u f y v v f y u u f y z ∂∂+∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂1.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )()()(22uf x y u f y x x z x x z ∂∂∂∂=∂∂∂∂=∂∂∂∂=∂∂222222222)0()(u f y v u f y u f y x v v u f x u u f y ∂∂=⋅∂∂∂+⋅∂∂=∂∂⋅∂∂∂+∂∂⋅∂∂=,)(1)()(2uf y y u f u f y y x z y y x z ∂∂∂∂+∂∂⋅=∂∂∂∂=∂∂∂∂=∂∂∂ )(222yvv u f y u u f y u f ∂∂⋅∂∂∂+∂∂⋅∂∂+∂∂=v u fy u f xy u f v u f x u f y u f ∂∂∂+∂∂+∂∂=⋅∂∂∂+⋅∂∂+∂∂=222222)1(,)()()()(22vf y u f y x v f u f x y y z y y z∂∂∂∂+∂∂∂∂=∂∂+∂∂∂∂=∂∂∂∂=∂∂ y vv f y u u v f y v v u f y u u f x ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂=222222)(1)1(222222⋅∂∂+⋅∂∂∂+⋅∂∂∂+⋅∂∂=v fx u v f v u f x u f x 2222222vf v u f x u f x ∂∂+∂∂∂+∂∂=. (2)) ,(yx x f z =;解 令u =x ,yx v =, 则z =f (u , v ).v fy u f x v v f dx du u f x z ∂∂⋅+∂∂=∂∂⋅∂∂+⋅∂∂=∂∂1,vfy x dy dv v f y z ∂∂⋅-=⋅∂∂=∂∂2.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和v f ∂∂是以u 和v 为中间变量的x 和y 的函数. )(1)()1()(22vf x y u f x v f y u f x x z x x z ∂∂∂∂⋅+∂∂∂∂=∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂ )(1)(222222xvv f dx du u v f y x v v u f dx du u f ∂∂⋅∂∂+⋅∂∂∂+∂∂⋅∂∂∂+⋅∂∂=22222212vfy v u f y u f ∂∂⋅+∂∂∂⋅+∂∂=,)1()(2vf y u f y x z y y x z ∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂∂ )(1)1()(vfy y v f y dy d u f y ∂∂∂∂⋅+∂∂⋅+∂∂∂∂=y vv f y v f y y v v u f ∂∂⋅∂∂⋅+∂∂⋅-∂∂⋅∂∂∂=222112232221v f y x v f y v u f y x ∂∂⋅-∂∂⋅-∂∂∂⋅-= )()()(2222vf y y x v f y x y y z y y z ∂∂∂∂⋅-∂∂⋅-∂∂=∂∂∂∂=∂∂ 22423222322v f y x v f y x y v v f y x v f y x ∂∂⋅+∂∂⋅=∂∂⋅∂∂⋅-∂∂⋅=. (3) z =f (xy 2, x 2y );解 z x =f 1'⋅y 2+f 2'⋅2xy =y 2f 1'+2xyf 2',z y=f1'⋅2xy+f2'⋅x2=2xyf1'+x2f2';z xx=y2[f11''⋅y2+f12''⋅2xy]+2yf2''+2xy[f21''⋅y2+f22''⋅2xy]=y4f11''+2xy3f12''+2yf2''+2xy3f21''+4x2y2 f22''=y4f11''+4xy3f12''+2yf2''+4x2y2 f22'',z xy=2y f1'+y2[f11''⋅2xy+f12''⋅x2]+2xf2'+2xy[f21''⋅2xy+f22''⋅x2]=2y f1'+2xy3f11''+x2y2f12''+2xf2'+4x2y2f21''+2x3yf22''=2y f1'+2xy3f11''+5x2y2f12''+2xf2'+2x3yf22'',z yy=2xf1'+2xy[f11''⋅2xy+f12''⋅x2]+x2[f21''⋅2xy+f22''⋅x2]=2xf1'+4x2y2f11''+2x3y f12''+2x3yf21''+x4f22''=2xf1'+4x2y2f11''+4x3y f12''+x4f22''.(4) z=f(sin x, cos y,e x+y).解z x=f1'⋅cos x+ f3'⋅e x+y=cos x f1'+e x+y f3',z y=f2'⋅(-sin y)+ f3'⋅e x+y=-sin y f2'+e x+y f3',z xx=-sin x f1'+cos x⋅(f11''⋅cos x+ f13''⋅e x+y)+e x+y f3'+e x+y(f31''⋅cos x+ f33''⋅e x+y)=-sin x f1'+cos2x f11''+e x+y cos x f13''+e x+y f3'+e x+y cos x f31''+e2(x+y) f33''=-sin x f1'+cos2x f11''+2e x+y cos x f13''+e x+y f3'+e2(x+y) f33'', z xy=cos x[f12''⋅(-sin y)+ f13''⋅e x+y]+e x+y f3'+e x+y [f32''⋅(-sin y)+ f33''⋅e x+y]=-sin y cos x f12''+e x+y cos x f13'+e x+y f3'-e x+y sin y f32'+e2(x+y)f33'=-sin y cos x f12''+e x+y cos x f13''+e x+y f3'-e x+y sin y f32''+e2(x+y)f33'',z yy=-cos y f2'-sin y[f22''⋅(-sin y)+ f23''⋅e x+y]+e x+y f3'+e x+y[f32''⋅(-sin y)+ f33''⋅e x+y]=-cos y f 2'+sin 2y f 22''-e x +y sin y f 23'' +e x +y f 3'-e x +y sin y f 32''+ f 33''⋅e 2(x +y )=-cos y f 2'+sin 2y f 22''-2e x +y sin y f 23''+e x +y f 3'+f 33''⋅e 2(x +y ). 13. 设u =f (x , y )的所有二阶偏导数连续, 而23t s x -=,23ts y +=, 证明2222)()()()(tu s u y u x u ∂∂+∂∂=∂∂+∂∂及22222222t u s u y u x u ∂∂+∂∂=∂∂+∂∂.证明 因为y u x u s yy u s x x u s u ∂∂⋅+∂∂⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2321yu x u t yy u t x x u t u ∂∂⋅+∂∂⋅-=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2123所以2222)2123()2321()()(y u x u y u x u t u s u ∂∂+∂∂-+∂∂+∂∂=∂∂+∂∂22)()(yu x u ∂∂+∂∂=.又因为)2321()(22yu x u s s u s s u∂∂⋅+∂∂⋅∂∂=∂∂∂∂=∂∂ )(23)(21222222s y y u s x x y u s y y x u s x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂= )2321(23)2321(21222222yu x y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂∂⋅+∂∂⋅=22222432341y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂⋅=, )2123()(22yu x u t t u t t u ∂∂⋅+∂∂⋅-∂∂=∂∂∂∂=∂∂ )(21)(23222222t y y u t x x y u t y y x u t x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂-= )2123(21)2123(23222222y u x y u y x u x u ∂∂⋅+∂∂∂⋅-+∂∂∂⋅+∂∂⋅--= 22222412343yu y x u x u ∂∂⋅+∂∂∂⋅-∂∂⋅=, 所以 22222222yu x u t u s u ∂∂+∂∂=∂∂+∂∂. 习题8-51. 设sin y +e x-xy 2=0, 求dxdy.解 令F (x , y )=sin y +e x -xy 2, 则F x =e x -y 2, F y =cos y -2xy , xy y e y xy y y e F F dx dy xy x 2cos 2cos 222--=---=-=. 2. 设xy y x arctan ln 22=+, 求dx dy.解 令xy y x y x F arctan ln ),(22-+=, 则22222222)()(11221y x y x x y xy y x x y x F x ++=-⋅+-+⋅+=, 22222221)(11221yx x y x xy y x y y x F y +-=⋅+-+⋅+=, y x y x F F dx dyy x -+=-=. 3. 设022=-++xyz z y x , 求x z ∂∂及y z ∂∂.解 令xyz z y x z y x F 22),,(-++=, 则 xyz yz F x -=1, xyzxz F y -=2, xyz xyF z -=1, xy xyz xyz yz F F x z z x --=-=∂∂, xy xyz xyz xz F F y z z y --=-=∂∂2. 4. 设y z z x ln =, 求x z ∂∂及y z ∂∂,解 令yz z x z y x F ln ),,(-=, 则 z F x 1=, y y z y z F y 1)(12=-⋅-=, 2211z z x y yz z x F z +-=⋅--=, 所以 z x z F F x z z x +=-=∂∂, )(2z x y z F F yz z y +=-=∂∂.5. 设2sin(x +2y -3z )=x +2y -3z , 证明1=∂∂+∂∂y z x z证明 设F (x , y , z )=2sin(x +2y -3z )-x -2y +3z , 则F x =2cos(x +2y -3z )-1, F y =2cos(x +2y -3z )⋅2-2=2F x ,F z =2cos(x +2y -3z )⋅(-3)+3=-3F x ,313=--=-=∂∂x x z x F F F F x z ,3232=--=-=∂∂x x z y F F F F y z , 于是 13231=+=--=∂∂+∂∂z z z x F FF F y z x z .6. 设x =x (y , z ), y =y (x , z ), z =z (x , y )都是由方程F (x , y , z )=0所确定的具有连续偏导数的函数, 证明1-=∂∂⋅∂∂⋅∂∂x z z yy x .解 因为x y F F y x -=∂∂, y z F F z y -=∂∂, zx F F x z -=∂∂, 所以 1)()()(-=-⋅-⋅-=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x z z y y x . 7. 设ϕ(u , v )具有连续偏导数, 证明由方程ϕ(cx -az , cy -bz )=0 所确定的函数z =f (x , y )满足 c y z b x z a =∂∂+∂∂.证明 因为vu u v u u b a c b a c x z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂,vu vv u v b a c b a c y z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂,所以 c b a c b b a c a y z b x z a vu v v u u =+++⋅=∂∂+∂∂ϕϕϕϕϕϕ.8. 设e z-xyz =0, 求22x z ∂∂. 解 设F (x , y , z )=e z -xyz , 则F x =-yz , F z =e z-xy , xye yz F F x z zz x -=-=∂∂, 222)()()()(xy e y x z e yz xy e x z y x z x x z z z z --∂∂--∂∂=∂∂∂∂=∂∂ 222)()(xy e xye yzyze xy ye z y zz z z ----+=32232)(22xy e e z y z xy ze y z zz ---=. 9. 设z 3-3xyz =a 3, 求yx z ∂∂∂2. 解 令F (x , y , z )=z 3-3xyz -a 3, 则 xy z yzxy z yz F F x z z x -=---=-=∂∂22333,xyz xz xy z xz F F y z z y -=---=-=∂∂22333, )()(22xyz yz y x z y y x z -∂∂=∂∂∂∂=∂∂∂ 222)()2())((xy z x yz z yz xy z y z y z --∂∂--∂∂+=22222)()2()()(xy z x xyz xz z yz xy z xy z xz yz -----⋅-+=322224)()2(xy z y x xyz z z ---=. 10. 求由下列方程组所确定的函数的导数或偏导数: (1)设⎩⎨⎧=+++=203222222z y x y x z , 求dx dy , dx dz ; 解 视y =y (x ), z =z (x ), 方程两边对x 求导得 ⎪⎩⎪⎨⎧=+++=064222dx dz z dx dy y x dx dy y x dx dz , 即⎪⎩⎪⎨⎧-=+-=-xdx dzz dxdy y x dx dz dx dy y 3222.解方程组得 )13(2)16(++-=∂∂z y z x x y , 13+=z x dx dz.(2)设⎩⎨⎧=++=++10222z y x z y x , 求dz dx ,dz dy ; 解 视x =x (z ), y =y (z ), 方程两边对z 求导得 ⎪⎩⎪⎨⎧=++=++022201z dz dy y dz dx x dz dy dz dx , 即⎪⎩⎪⎨⎧-=+-=+zdz dy y dzdxx dz dy dz dx 2221.解方程组得y x z y z x --=∂∂, yx xz z y --=∂∂.(3)设⎩⎨⎧-=+=),(),(2y v x u g v y v ux f u , 其中f , g 具有一阶连续偏导数, 求x u ∂∂,xv ∂∂; 解 视u =u (x , y ), v =v (x , y ), 方程两边对x 求偏导得⎪⎩⎪⎨⎧∂∂⋅'+-∂∂⋅'=∂∂∂∂⋅'+∂∂+⋅'=∂∂x v yv g x u g xv x vf x u x u f x u 21212)1()( , 即 ⎪⎩⎪⎨⎧'=∂∂⋅⋅-'+∂∂'''-=∂∂⋅'+∂∂-'121121)12()1(g x v g yv xu g f u x v f x u f x . 解之得1221221)12)(1()12(g f g yv f x g f g yv f u x u ''--'-'''--''-=∂∂, 1221111)12)(1()1(g f g yv f x f u f x g x v ''--'-'-'+''=∂∂.(4)设⎩⎨⎧-=+=vu e y v u e x u u cos sin , 求x u ∂∂, y u ∂∂, x v ∂∂, y v ∂∂. 解 视u =u (x , y ), v =v (x , y ), 方程两边微分得⎩⎨⎧+-=++=vdv u vdu du e dy vdv u vdu du e dx u u sin cos cos sin , 即 ⎩⎨⎧=+-=++dy vdv u du v e dx vdv u du v e u u sin )cos (cos )sin (, 从中解出du , dv 得dy v v e v dx v v e v du u u 1)cos (sin cos 1)cos (sin sin +--++-=, dy v v e u e v dx v v e u e v dv u u u u ]1)cos (sin [sin ]1)cos (sin [cos +-+++--=, 从而 1)cos (sin sin +-=∂∂v v e v x u u , 1)cos (sin cos +--=∂∂v v e v y u u , ]1)cos (sin [cos +--=∂∂v v e u e v x v u u , ]1)cos (sin [sin +-+=∂∂v v e u e v y v u u . 11. 设y =f (x , t ), 而t 是由方程F (x , y , t )=0所确定的x , y 的函数, 其中f , F 都具有一阶连续偏导数, 试证明:tFy F t f x F t f t F x f dx dy ∂∂+∂∂⋅∂∂∂∂⋅∂∂-∂∂⋅∂∂=. 证明 由方程组⎩⎨⎧==0),,(),(t y x F t x f y 可确定两个一元隐函数⎩⎨⎧==)()(x t t x y y , 方程两边对x 求导可得 ⎪⎩⎪⎨⎧=⋅∂∂+⋅∂∂+∂∂⋅∂∂+∂∂=0dxdt t F dx dy y F x F dx dt t f x f dx dy , 移项得 ⎪⎩⎪⎨⎧∂∂-=∂∂+⋅∂∂∂∂=⋅∂∂-x F dxdt t F dx dy y F x f dx dt t f dx dy ,在01≠∂∂⋅∂∂+∂∂=∂∂∂∂∂∂-=y F t f t F t F y F t fD 的条件下 yF t f t F x F t f t F x f t F x F t f x f D dx dy ∂∂⋅∂∂+∂∂∂∂⋅∂∂-∂∂⋅∂∂=∂∂∂∂-∂∂-∂∂⋅=1.习题8-61. 求曲线x =t -sin t , y =1-cos t , 2sin 4t z =在点)22 ,1 ,12 (-π处的切线及法平面方程.解 x '(t )=1-cos t , y '(t )=sin t , 2cos 2)(t t z ='. 因为点)22 ,1 ,12 (-π所对应的参数为2π=t , 故在点)22 ,1 ,12(-π处的切向量为)2 ,1 ,1(=T . 因此在点)22 ,1 ,12(-π处, 切线方程为 22211121-=-=-+z y x π, 法平面方程为0)22(2)1(1)12(1=-+-⋅++-⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程.解 2)1(1)(t t x +=', 21)(t t y -=', z '(t )=2t . 在t =1所对应的点处, 切向量)2 ,1 ,41(-=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为 21124121-=--=-z y x , 即8142121-=--=-z y x ; 法平面方程为0)1(2)2()21(41=-+---z y x , 即2x -8y +16z -1=0. 3. 求曲线y 2=2mx , z 2=m -x 在点(x 0, y 0, z 0)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m -x 的两边对x 求导, 得m dx dy y 22=, 12-=dxdz z , 所以y m dx dy =, z dxdz 21-=. 曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m -=T , 所求的切线方程为0000211z z z y m y y x x --=-=-, 法平面方程为0)(21)()(00000=---+-z z z y y y m x x . 4. 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点(1, 1, 1)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 对x 求导得,⎪⎩⎪⎨⎧=+-=-++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=-+-=+2533222dxdz dx dy x dx dz z dx dy y . 解此方程组得z y z x dx dy 61015410----=, zy y x dx dz 610946---+=. 因为169)1,1,1(=dx dy , 161)1,1,1(-=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111--=-=-z y x , 即1191161--=-=-z y x ; 法平面方程为0)1(161)1(169)1(=---+-z y x , 即16x +9y -z -24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4.解 已知平面的法线向量为n =(1, 2, 1).因为x '=1, y '=2t , z '=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =-1, 31-=t . 于是所求点的坐标为(-1, 1, -1)和)271 ,91 ,31(--. 6. 求曲面e z -z +xy =3在点(2,1,0)处的切平面及法线方程. 解 令F (x , y , z )=e z -z +xy -3, 则n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z -1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x -2)+2(y -1)+0⋅(z -0)=0, 即x +2y -4=0,法线方程为02112-=-=-z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程.解 令F (x , y , z )=ax 2+by 2+cz 2-1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为 ax 0(x -x 0)+by 0(y -y 0)+cz 0(z -z 0)=0,即 202020000cz by ax z cz y by x ax ++=++,法线方程为00000cz z z by y y ax x x -=-=-.8. 求椭球面x 2+2y 2+z 2=1上平行于平面x -y +2z =0的切平面方程.解 设F (x , y , z )=x 2+2y 2+z 2-1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, -1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =-=, 即z x 21=, z y 41-=, 代入椭球面方程得1)4(2)2(222=+-+z z z ,解得1122±=z , 则1122±=x , 11221 =y . 所以切点坐标为)1122,11221,112(±± . 所求切平面方程为0)1122(2)11221()112(=±+-±z y x , 即 2112±=+-z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2-16, 则点(-1, -2, 3)处的法向量为 n 2=(F x , F y , F z )|(-1, -2, 3)=(6x , 2y , 2z )|(-1, -2, 3)=(-6, -4, 6). 点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F -++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为0)(1)(1)(1000000=-+-+-z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为a z y x a az ay ax =++=++)(000000.习题8-71. 求函数z =x 2+y 2在点(1, 2)处沿从点(1, 2)到点)32 ,2(+的方向的方向导数.解 因为从点(1, 2)到点)32 ,2(+的向量为)3 ,1(=l , 故 )cos ,(cos )23 ,21(||βα===l l e l . 又因为22)2,1()2,1(==∂∂x x z , 42)2,1()2,1(==∂∂y y z , 故所求方向导数为321234212cos cos +=⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 2. 求函数z =ln(x +y )在抛物线y 2=4x 上点(1, 2)处, 沿这抛物线在该点处偏向x 轴正向的切线方向的方向导数.解 方程y 2=4x 两边对x 求导得2yy '=4, 解得y y 2='.。
高等数学课后答案 第八章 习题详细解答

习 题 8-11.设有一个面薄板(不计其厚度),占有xOy 面上的闭区域D ,薄板上分布有面密度为(,)x y μμ=的电荷,且(,)x y μ在D 上连续,试用二重积分表达该板上的全部电荷Q .解 用一组曲线将D 分成n 个小闭区域i σ∆,其面积也记为(1,2,,)i i n σ∆= .任取一点(,)i i i ξησ∈∆,则i σ∆上分布的电量(,)i i i Q μξησ∆≈∆.通过求和、取极限,便得到该板上的全部电荷为1lim (,)(,)d ,ni i i i DQ x y λμξησμσ→==∆=∑⎰⎰其中1max{i i nλσ≤≤=∆的直径}.2. 设12231()d D I x y σ=+⎰⎰其中1{(,)11,22}D x y x y =-≤≤-≤≤;又22232()d D I x y σ=+⎰⎰其中2{(,)01,02}D x y x y =≤≤≤≤.试利用二重积分的几何意义说明1I 与2I 之间的关系.解 由二重积分的几何意义知,1I 表示底为1D 、顶为曲面223()z x y =+的曲顶柱体1Ω的体积;2I 表示底为2D 、顶为曲面223()z x y =+的曲顶柱体2Ω的体积.由于位于1D 上方的曲面223()z x y =+关于yOz 面和zOx 面均对称,故yOz 面和zOx 面将1Ω分成四个等积的部分,其中位于第一卦限的部分即为2Ω.由此可知124I I =.3. 利用二重积分定义证明: (1) d ()DD σσσ=⎰⎰其中为的面积;(2) (,)d (,)d ()DDkf x y k f x y k σσ=⎰⎰⎰⎰其中为常数;(3)12(,)d (,)d (,)d ,DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰其中12D D D= ,1D 、2D 为两个无公共内点的闭区域.证 (1) 由于被积函数(,)1f x y ≡,故由二重积分定义得11d lim (,)lim lim .nniiii i i Df λλλσξησσσσ→→→===∆=∆==∑∑⎰⎰(2) 011(,)d lim (,)lim (,)(,)d .nni i i i i i i i DDkf x y kf k f k f x y λλσξησξησσ→→===∆=∆=∑∑⎰⎰⎰⎰(3) 因为函数(,)f x y 在闭区域D 上可积,故不论把D 怎样分割,积分和的极限总是不变的,因此在分割D 时,可以使1D 和2D 的公共边界永远是一条分割线。
华东师大数学分析答案完整版

华东师大数学分析答案完整版一、填空题1. 极限的定义是当自变量趋近于某个值时,函数的值趋近于另一个确定的值。
2. 函数在某一点连续的充分必要条件是左极限、右极限和函数值在该点相等。
3. 无穷小量与无穷大量的关系是无穷小量的倒数是无穷大量,无穷大量的倒数是无穷小量。
4. 函数的导数表示函数在某一点的瞬时变化率。
5. 微分表示函数在某一点的微小变化量。
6. 函数的积分表示函数在某个区间上的累积变化量。
7. 变限积分的导数是原函数的导数。
8. 无穷级数的收敛性可以通过比较判别法、比值判别法等方法进行判断。
9. 函数的泰勒级数表示函数在某一点的幂级数展开。
10. 傅里叶级数表示周期函数的三角级数展开。
二、选择题1. 下列函数中,连续的是(A)。
A. f(x) = x^2B. f(x) = 1/xC. f(x) = sin(x)D. f(x) = |x|2. 下列极限中,存在的是(B)。
A. lim(x→0) 1/xB. lim(x→∞) x^2C. lim(x→0) sin(x)/xD. lim(x→∞) e^(x)3. 下列函数中,可导的是(A)。
A. f(x) = x^3B. f(x) = |x|C. f(x) = sin(1/x)D. f(x) = x^(1/3)4. 下列积分中,收敛的是(C)。
A. ∫(1/x) dxB. ∫(1/x^2) dxC. ∫(e^(x)) dxD. ∫(1/x^3) dx5. 下列级数中,收敛的是(B)。
A. ∑(1/n)B. ∑(1/n^2)C. ∑(1/n^3)D. ∑(1/n^4)三、解答题1. 求函数 f(x) = x^3 3x + 2 在 x = 1 处的导数。
解答:f'(x) = 3x^2 3,代入 x = 1,得 f'(1) = 0。
2. 求不定积分∫(e^x) dx。
解答:∫(e^x) dx = e^x + C,其中 C 为任意常数。
华东师大数学分析答案完整版

又
是’
的
最
小
上
界
!
这 两种定义是等价的!!$$中的!(#相当于!!$中的"!在上述定义中可以限定#%###其中
## 为充分小的正数!定义!$$在某些证明题中使用起来更方便些 !
*" 确界原理)设 ’ 是非空数集#若 ’ 有上界#则 ’ 必有上确界*若 ’ 有下界#则 ’ 必有下确界!
确界原理是实数系完备性的几个等价定理中的一个!
3" 单调性
设 -%,!$$#$#.#若 对 ,$! #$$ #.#$! %$$ #有
!!$,!$!$$,!$$$#则称 , 在. 上是递增函数! !$$,!$!$%,!$$$#则称 , 在. 上是严格递增函数!
类似可定义递减函数与严格递减函数!
4" 奇偶性
设 . 是对称于原点的数集#-%,!$$#$#.! !!$若,$#.#都有 ,!($$%,!$$#则称,!$$是偶函数! !$$若 ,$#.#都 有 ,!($$% (,!$$#则 称 ,!$$是 奇 函 数 !
分析 !本题主要考察函数 的 有 界 性#要 充 分 利 用 已 知 条 件 给 出 的 不 等 式 #积 极 构 造 出 类 似 的 不 等
%$ %
第一章!实数集与函数
式 #以 证 出 结 论 !
证 明 ! , (%#;’.:#,$# !%#;$#则 存 在’# !##!$#使 $%%&’!;(%$
再
取
中
点%!&;! $
#又
可
得
区
间
(%$
#;$’#使
,!$$在
其
上
无
界
#这
样
继
数学分析课本(华师大三版)-习题及答案第十一章

第十一章 反常积分一、填空题 1.⎰+∞-++131xx ee dx= 2.⎰-+-31)3()1(x x dx =3.⎰+∞2)(ln kx x dx其中k 为常数,当1≤k 时,这积分 ,当1<k 时,这积分当这积分收敛时,其值为4.=++⎰+∞284x x dx5.=-+⎰∞+22)7(x x dx___________6.=+⎰∞---02)1(dx e xe x x____________二、选择填空 1. ⎰--=1121xxdx I 则( )A 可以令t x sin =求得⎰-=22sin ππtdt I 之值B 可从凑微分求得⎰----=11221)1(21xx d I 之值C 因被积函数在]1 ,1[-内不连续,不能直接换元D 因被积函数在]1 ,1[-内不连续,I 之值不存在 2.)(x f 在] ,[∞+a 连续c a <,则( ) A)(dx x f a⎰+∞收敛, )(dx x f c⎰+∞也必收敛,但 )(dx x f a⎰+∞发散, )(dx x f c⎰+∞不一定发散。
B)(dx x f a⎰+∞发散, )(dx x f c⎰+∞也必发散,但 )(dx x f a⎰+∞收敛, )(dx x f c⎰+∞不一定收敛。
C )(dx x f a ⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散。
D)(dx x f a⎰+∞收敛, )(dx x f c⎰+∞必发散。
3.若xx x f 104)5(2-=-,则积分=+⎰40)12(dx x f ( ) A.0 B.4πC.是发散的广义积分D.是收敛的广义积分 4.=+⎰-222)1(x dx( )A.34-B.34C.32- D. 不存在 5.下列广义积分发散的是( )A.⎰-11sin x dx B.⎰--1121x dxC.⎰+∞-02dx e xD.⎰∞+22ln x x dx 三.计算题1.计算下列无究限积分:(1)⎰∞+12x dx ; (2)()⎰∞++12x 1x dx; (3)⎰∞+∞-++1x 2x 2dx2; (4)⎰∞+0x e dx ; (5)⎰+∞-0x dx xe 22.讨论下列无穷限积分的敛散性:(1)⎰∞++0341x dx ;(2)⎰∞+-axdx e 1x; (3)⎰∞++0x1dx ;(4)⎰∞++13dx x 1xarctgx;(5)()⎰∞+->+01a 1a dx x1x ;(6)()⎰∞+≥+0nm0n ,m dx x 1x ; (7)()⎰∞++1ndx xx 1ln ; (8)()⎰∞+3x ln ln x dx3.讨论下列非正常积分的绝对收敛与条件收敛:(1)⎰+∞02dx x sin ;(2)()dx x 1x sin sgn 02⎰∞++; (3)⎰∞++0dx x 100xcos x ;(4)()⎰∞+3xdx sin xln x ln ln 4.计算下列瑕积分的值:(1)⎰1xdx ln ; (2)⎰-1dx x1x; (3)()()()⎰≠--bab a x b a x dx5.判别下列非正常积分的敛散性:(1)()⎰-221x dx;(2)⎰123dx xx sin ;(3)⎰-104dx x1x ;(4)⎰-10dx x 1xln ; (5)⎰-103dx x 1arctgx; (6)⎰∞-0x dx x ln e ;(7)⎰1xln x dx ;(8)⎰π-20mdx xxcos 1 6.仿照无究限积分的阿贝耳判别法和狄利克雷判别法,写出瑕积分的相应判别法,并用来讨论下列非正常积分的绝对收或条件收敛:(1)⎰10dx xx 1cos ;(2)dx x x2sin e 02x sin ⎰∞+;7.计算下列瑕积分的值(其中n 为自然数): (1)()⎰10ndx x ln ; (2)dx x1x 1n ⎰-8.求()⎰-2211dx x9.求dx ex x x-+∞∞-+⎰)(10.求⎰+∞-11x x dx11.求dx xx ⎰-2322cos 1sin ππ12.求⎰+∞∞--++dx e x x x 2)1(213.求dx x⎰-312lnπ14.判断下列广义积分的敛散性(1)dx x⎰20sin 1π(2)⎰-+-1122)1)(1(1dx x x15.判别广义积分dx x x xx ⎰∞+-03421ln 的敛散性16.计算积分⎰--23212xx dx四、证明题 1.假定⎰∞)(dx xx f 对a 取任何正值时收敛,且)(x f 为连续函数,L f =)0(,证明αββαln )()(⋅=-⎰∞L dx x x f x f a2.证明无穷限积分的性质3:若f 在任何有限区间[a ,A]上可积,且⎰+∞af 收敛,则⎰+∞af 也收敛,且⎰⎰+∞+∞≤aaf f3.证明定理10.22:设定义在[]+∞,a 上的非负函数f 与g 在任何有限区间[a ,A]上都可积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故 在 点处连续;
(2) ,
;
故 在 点处的两个偏导数均存在;
(3)
而
,
故 ,因此
即
因此, 在 点处可微。
(4) 时,求出 的两个偏导数,结合(2)的结果,得
,
,
尽管函数 和 在 点处的极限均存在,但函数 和 在 点处的极限均不存在(因为根据两路径判别法, 和 均不存在),故极限
和
均不存在。因此, 和 在 点处不连续!
9、设 具有一阶连续偏导数,求函数 的一阶偏导数。
解: ,
10、设 具有两阶连续偏导数, ,求z的各种二阶偏导数。
解:
(注意到 )
11、设二元函数 由方程 所确定,求 。
解:方程 两边关于x求偏导,得 ,故得 ;又方程两边关于y求偏导,得 ,故得 。
在方程 两边关于x求偏导,得 ,于是得
或直接根据 得
解:若以x为参数,则两个方程两边各关于x求偏导数(将y和z看作x的函数),得
解得
很遗憾,在 处, 不存在!因此,可重新考虑以y为参数,则两个方程两边各关于y求偏导数(将x和z看作y的函数),得
解得
故曲线在点 处的切线的方向向量为
故得切线方程为 (或即 ),法平面方程为 。
15、求曲面 在点 处的切平面与法线方程。
4、讨论下列函数在 点处的连续性:
(1)
解:
故原函数在 点处连续。
(2)
解: 与k有关,故原函数在 点处的极限不存在,因而在该点不连续。
5、求下列函数的偏导数:
(2)
其余诸小题略。
6、求函数 的各种二阶偏导数。
解: ,
,
7、略。
8、讨论函数 在 点处:(1)是否连续;(2)是否存在偏导数;(3)是否可微;(4)偏导数是否连续。
,
由链式法则,得
23、求由方程组 所确定的隐函数点 在点 处的偏导数 , 。
解:由方程组 分别可得:
, ,
解得
,
于是由 ,得
,
24、设 ,且当 时 。求 。
解:易知 ,故 ,于是
25、在椭圆 上求一点,使其到直线 的距离最短。
解:本题即求目标函数 在约束条件 下的极值。构造Lagrange函数
由 关于x,y和λ的偏导数为零,得方程组
第8章多元函数微分学及其应用
参考解答
1、设 ,求 , 。
解: ,故得
,
2、求下列各极限:
注意:在利用极坐标变换 来求极限时,θ也是变量。本题中, 时, 为无穷小量,而 为有界变量,故所求极限为零。
3、证明极限 不存在。
证明:当 时, ,故 与k有关。可见, 沿不同的路径趋于 时,函数极限不同,故极限不存在。(两路径判别法)
又因 , ,
故在驻点 处,
, ,
,
因此,函数在驻点 处取得极大值 。
在驻点 处,
, ,
,
因此,驻点 并不是函数的极值点,亦即
不是函数的极值!
19、求函数 在闭区域D: 上的最值。
解:由 , 得
,
即
注意到 ,故知上述方程在区域D的内部没有解。因此,函数在D内部没有驻点。由此可知,函数的最值必在D的边界上取得(否则区域内部必有驻点)。
。
12、设方程组 确定函数 , ,求 , , 和 。
解:方程两边分别关, , 。
13、求曲线 在 处的切线和法平面方程。
解: , , 。点 所对应的参数 。故曲线在点 处的切线的方向向量为 ,故切线方程为 (或即 ),法平面方程为 。
14、求曲线 在点 处的切线与法平面方程。
在 上, ,最大值为3,最小值为1;
在 上, ,最大值为3,最小值为1;
在 上, ,最大值为 ,最小值为1;
在 上, ,最大值为 ,最小值为1。
因此,函数在区域D上的最大值为3,最小值为1。
20、设 ,讨论 在点 处是否连续、存在偏导数、可微。
解:(1)
或由
而 ,故得 ,因此, 在 点处连续;
(2) ,
解得 , ,或 , 。故所求点为 或 。
26、证明:曲面 的所有切平面都经过坐标原点。
证明:设 ,则
, , 。
于是曲面在点 处的切平面方程为
或
即
因点 满足方程 ,故上述方程变为
显然,这是一个过原点的平面方程。
如有错误,敬请指正;如有疑问,欢迎讨论!
解:设 ,则 , , 。故得所求切平面的法向量为
于是得切平面方程为 ,法线方程为 。
16、求函数 在点 处沿从点 到点 的方向导数。
解:因 , , , ,故得
17、求函数 在点 处的最大方向导数。
解: 在点 处沿梯度方向的方向导数最大,最大值即为梯度向量的大小。因 ,故得 。
18、求 的极值。
解:由 ,得 (k为整数),即驻点为 和 ,其中 。
;
故 在 点处的两个偏导数均存在;
(3) ,而 不存在(两路径判别法),故知 ,因此, 在 点处不可微。
21、设 在点 处可微,且 , , , ,求 。
解: ,故
22、设 由连续的一阶偏导数,又函数 及 分别由 和 确定,求 。
解:分别在方程 和 两边关于x求偏导数(y和z为x的函数),得 , ,解得: