苏教版数学高一-必修4导学案 弧度制 学生版

合集下载

苏教版高中数学必修四任意角、弧度弧度学案

苏教版高中数学必修四任意角、弧度弧度学案

弧度制导学案一、学习目标1.理解弧度制的意义;2.能正确的应用弧度与角度之间的换算;3.记住公式||lrα=(l 为以.α作为圆心角时所对圆弧的长,r 为圆半径); 4.熟练掌握弧度制下的弧长公式、扇形面积公式及其应用。

二、学习重、难点弧度与角度之间的换算;弧长公式、扇形面积公式的应用。

三、预习导引 (一)问题情境复习:初中时所学的角度制,是怎么规定1o角的?(初中时把一个周角的1360记为1o) 1.在本章引言中,考虑用(r , l )来表示点P,那么r , l , α之间具有怎样的关系。

2.在本章将学习三角函数,函数自变量必须为实数,而我们学习的角用度来表示,显然不能作为三角函数的自变量,如何用实数来表示角。

(二)研讨新知 1.弧度制的定义:规定:我们把长度等于半径的弧所对的圆心角叫做1弧度的角,记此角为1rad . 练习:圆的半径为r ,圆弧长为2r 、3r 、2r的弧所对的圆心角分别为多少? 说明:一个角的弧度由该角的大小来确定,与求比值时所取的圆的半径大小无关。

思考:什么π弧度角?一个周角的弧度是多少?一个平角、直角的弧度分别又是多少?归纳:把角从弧度化为度的方法是:把角从度化为弧度的方法是: 2.弧度的推广及角的弧度数的计算:规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;角α的弧度的绝对值是rl =||α,(其中l 是以角α作为圆心角时所对弧的长,r 是圆的半径)。

说明:我们用弧度制表示角的时候,“弧度”或rad 经常省略,即只写一实数表示角的度量。

例如:当弧长4l r π=且所对的圆心角表示负角时,这个圆心角的弧度数是4||4l r r rπαπ-=-=-=-. 3.角度与弧度的换算3602π=orad 180π=orad1801π=︒rad 0.01745≈rad 1rad =︒)180(π5718'≈o4.弧长公式:在弧度制下,弧长公式又如何表示?因为||l rα=(其中l 表示α所对的弧长),所以,弧长公式为||l r α=⋅.5.扇形面积公式:扇形面积公式为:22||1222lr S r r lr αππππ=⋅==.说明:①弧度制下的公式要显得简洁的多了;②以上公式中的α必须为弧度单位.四、典例练讲------数学应用(一)角的角度制与弧度的相互转化 例1把下列各角从弧度化为度:(1)35π (2) 3.5 (3) 2 (4)4π例2把下列各角从度化为弧度:(1)0252 (2)0/1115 (3) 030 (4)'3067︒(二) 用弧度制分别表示轴线角、象限角、终边相同的角等角的集合 例3 用弧度制分别表示轴线角、象限角的集合。

高一数学苏教版必修4教学案:第1章2弧度制

高一数学苏教版必修4教学案:第1章2弧度制

江苏省泰兴中学高一数学教学案(38)必修4_01 弧度制班级姓名目标要求1.理解弧度的意义;2.掌握弧度制与角度制互化公式,能熟练地进行弧度与角度的互化;3.理解角的集合与实数集R是一一对应的.重点难点重点:弧度与角度的互化难点:弧度制的理解教学过程:一、问题情境:在本章引言中,我们曾考虑用(r, l)来表示点P,那么r, l与α之间具有怎样的关系呢?二、数学建构1、角度制:2、弧度制:3、度与弧度的换算公式:4、弧长公式:扇形面积公式:一、 典例剖析例1 将下列弧度数化为角度数:(1)35π; (2)3.5例2 将下列角度数化为弧度数:(1)252°; (2)11°15’例3 把下列各角化为2k πα+()02,k Z απ≤<∈的形式,并指出它们是第几象限角.(1)-1500°; (2)2008π; (3)-6例4 已知扇形的周长为8cm ,圆心角为2弧度,求该扇形的面积.引申:扇形的周长为a ,当扇形的圆心角α和半经r 各取何值时,扇形的面积最大.例 5 如图,已知圆上一点A(1,0)按逆时针方向作匀速圆周运动,1秒钟时间转过θ角)0(πθ≤<,经过2秒种到达第三象限,经过14秒钟又转到与最初位置重合,求角θ的弧度数.四、课堂练习1、用弧度制表示:(1)终边在x 轴上的角的集合_____________________(2)第二象限的角的集合_______________________________2、若α=1rad ,则角α终边在第____象限,若α=2,则角α终边在第____象限,若α=3,则角α终边在第____象,限若α=4,则角α终边在第____象限,若α=6,则角α终边在第____象限.3、已知扇形周长为6cm ,面积为2cm 2 , 则扇形圆心角的弧度数为__________.4、把下列各角化成2(02,)k k Z απαπ+≤<∈的形式,并指出它们是第几象限角:(1)236π; (2)1500-o五、课堂小结1. 弧度的定义、弧度与角度之间的转化,以及弧度制下弧长公式及扇形的面积公式.2. 会应用所学的知识来处理实际问题,同时,要注重方程思想及消元思想的应用.江苏省泰兴中学高一数学作业(38)班级 姓名 得分1、若α是第四象限角,则απ-一定在第 象限。

高中数学 第四课时 弧度制教案(2) 苏教版必修4

高中数学 第四课时 弧度制教案(2) 苏教版必修4

第四课时 弧度制(二)教学目标:理解角的集合与实数集R 之间的一一对应关系,掌握弧度制下的弧长公式、扇形面积公式,运用弧长公式、扇形面积公式解、证一些题目;使学生通过总结引入弧度制的好处,学会归纳、整理并认识到任何新知识的学习,都会为我们解决实际问题带来方便,从而激发学生的学习兴趣、求知欲望,培养良好的学习品质.教学重点:角的集合与实数集R 之间的一一对应关系,弧度制的简单应用.教学难点:弧度制的简单应用教学过程:角的集合与实数集R 之间是一一对应的,即正角对应正实数,负角对应负实数,零角对应0.在弧度制下,弧长公式是怎样的呢?l =|α|r ,其中l 表示弧长,r 表示圆半径,α表示圆心角的弧度数.扇形的面积公式S =12l R.其中l 是扇形的弧长,R 是圆的半径,在弧度制下证明,同学们是否想过在角度制下的证明,比较之,哪个方法更简便些?能够写出弧度制下扇形的面积公式吗?即用角的弧度数α与圆的半径R 表示扇形的面积.S =12|α|R2. 引入弧度制有什么好处呢?弧度制下的弧长公式比角度制下的弧长公式简单,弧度制下的扇形面积公式比角度制下的扇形面积公式简单,还有一点,弧度表示角时,找与角对应的实数相当方便,而角度表示角时,找与角对应的实数还须进行一番计算.[例1]已知一扇形的周长为c (c >0),当扇形的弧长为何值时,它有最大面积?并求出面积的最大值.解:设扇形的半径为R ,弧长为l ,面积为S∵c =2R +l ,∴R =c -l 2(l <c ) 则S =12 Rl =12 ×c -l 2 ·l =14(cl -l 2) =-14 (l 2-cl )=-14 (l -c 2 )2+c 216∴当l =c 2 时,S max =c 216答:当扇形的弧长为 c 2 时,扇形有最大面积,扇形面积的最大值是c 216. [例2]一个扇形OAB 的面积是1平方厘米,它的周长是4厘米,求∠AOB 和弦AB 的长.分析:欲求∠AOB ,需要知道的长和半径OA 的长,用弧度制下的弧长公式和扇形面积公式,结合已知条件,能比较容易地求得,之后在△AOB 中求弦AB 的长.作OM ⊥AB 交AB于M ,则AM =BM =12 AB ,在Rt △AMO 中求AM .解:设扇形的半径为R cm.∠AOB =α rad. 据题意⎪⎩⎪⎨⎧==+121422αR aR R 解之得⎩⎨⎧==21αR 过O 作OM ⊥AB 交AB 于M .则AM =BM =12A B. 在Rt △AMO 中,AM =sin1,∴AB =2sin1故∠AOB =2 rad.该AB 的长为2sin1厘米.Ⅱ.课堂练习课本P 10练习 5、6Ⅲ.课时小结这节课,同学们自己找到了角的集合与实数集R 的一一对应关系,对弧度制下的弧长公式、扇形面积公式有了深刻的理解,要把这两个公式记下来,并在解决实际问题中灵活运用,大家能总结出引入弧度制的好处,这点很好,以后的学习中,我们就是要随着学习内容的增加、知识的丰富,不断总结,不断归纳,梳理知识,编织知识的网络,使易记、好用.特别是生丙、生戊善于联想、积极探索的学习品质,更是我们大家学习的榜样,同学们这样持之以恒的坚持下去,我们的数学学习效果将会是非常出色的.Ⅳ.课后作业(一)课本P 10习题 8、9、13.(二)1.预习内容:任意角的三角函数(P 12~P 15)2.预习提纲:锐角三角函数是用边的比来定义的,任意角的三角函数是怎样定义的?弧度制(二)1.一钟表的分针长10 cm ,经过25分钟,分针的端点所转过的长为__________cm. ( )A.70B. 706C. 25π3-4 3 D. 25π32.如果弓形的弧所对的圆心角为π3,弓形的弦长为4 cm ,则弓形的面积是_____cm 2.( )A. 4π9 -4 3B. 4π3-4 3 C. 8π3 -4 3 D. 8π3-2 3 3.设集合M ={α|α=k π±π6 ,k ∈Z },N ={α|α=k π+(-1)k π6,k ∈Z }那么下列结论中正确的是 ( )A.M =NB.M NC.N MD.M N 且N M4.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为 ( )A. π3B. 2π3C. 3D.25.已知扇形的圆心角为2 rad ,扇形的周长为8 cm ,则扇形的面积为_________cm 2.6.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的 倍.7.若角α的终边与85 π角的终边相同,则在[0,2π]上,终边与α4角的终边相同的角是 .8.已知扇形AOB 的圆心角α=120°,半径r =3,求扇形的面积.9.1弧度的圆心角所对的弦长为2,求这个圆心角所对的弧长及圆心角所夹的扇形的面积.10.已知扇形的周长为20 cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?弧度制(二)答案1.D 2.C 3.C 4.C 5.4 6.13 7.25 π 910 π 75 π 1910π 8.已知扇形AOB 的圆心角α=120°,半径r =3,求扇形的面积.解:α=120°=2π3rad ∴S =12 r 2α=12 ×32×2π3=3π(面积单位) 答:扇形的面积为3π面积单位.9.1弧度的圆心角所对的弦长为2,求这个圆心角所对的弧长及圆心角所夹的扇形的面积.解:由已知可得r =21sin 1, ∴l =r ·α=21sin 1S 扇=12 l ·r =12 ·r 2·α=12 ·21sin 12=21sin 21210.已知扇形的周长为20 cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?解:∵l =20-2r∴S =12 lr =12(20-2r )·r =-r 2+10r =-(r -5)2+25 ∴当半径r =5 cm 时,扇形的面积最大为25 cm 2此时,α=l r =20-2×55=2(rad)。

苏教版高中数学必修四弧度制教案

苏教版高中数学必修四弧度制教案

1.1.2 弧度制教学目标:1.理解1弧度的角及弧度的定义;2.掌握角度与弧度的换算公式并熟练进行角度与弧度的换算;3.理解并掌握弧度制下的弧长公式、扇形面积公式,并能灵活运用这两个公式解题.教学重点:理解弧度制的意义,正确进行弧度与角度的换算;熟练进行弧长和面积公式的应用. 教学难点:弧度的概念及与角度的关系;角的集合与实数之间的一一对应关系.教学方法:问题链导学法.教学过程:一、问题情境探究:l 、α、r 三者之间关系. 二、学生活动1.改变α、r ,观察l 的变化 2.改变l ,r ,观察α的变化 3.分析原因 三、建构数学1.弧度角的定义:长度等于半径的圆弧所对的圆心角叫做1弧度的角. 2.记法:1rad . 3.引入弧度制的概念4.通过问题构建弧长,半径,圆心角之间的关系:l = |α| r 5.通过问题引导学生进行角度制与弧度制的互换.A360°=2πrad 180°= πrad1801π=︒rad ≈0.01745rad 1rad =︒)180(π≈57.30°6.通过问题引导学生推导出弧度制下的扇形面积公式. 四、数学应用 1.例题.例1 把下列各角从度化为弧度.(1)135° (2)-75° (3)11°15′例2 把下列各角从弧度化为度. (1)53πrad (2)34πrad例3 已知扇形的周长为8cm ,圆心角为2rad ,求该扇形的面积.2.练习. (1)填表说明:一些特殊角的弧度数,大家要熟记,免得每次遇到都要去进行换算. (2)用弧度制写出终边落在y 轴上和x 轴上的角集合.(3)周长为20的扇形,当圆心角为多少弧度时,其面积最大?五、要点归纳与方法小结 本节课学习了以下内容: 1. 弧度制的定义; 2. 角度与弧度的换算公式; 3. 特殊角的弧度数.。

高中数学 1.1.2 弧度制互动课堂学案 苏教版必修4(2021年整理)

高中数学 1.1.2 弧度制互动课堂学案 苏教版必修4(2021年整理)

高中数学1.1.2 弧度制互动课堂学案苏教版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学1.1.2 弧度制互动课堂学案苏教版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学1.1.2 弧度制互动课堂学案苏教版必修4的全部内容。

高中数学 1.1。

2 弧度制互动课堂学案 苏教版必修4疏导引导1.度量角的单位制:角度制、弧度制 (1)角度制初中学过角度制,它是一种重要的度量角的制度,规定周角的3601为1度角,记作1°,用度作为单位来度量角的单位制叫做角度制。

(2)弧度制规定长度等于半径长的圆弧所对的圆心角叫做1弧度的角.以弧度为单位来度量角的制度叫做弧度制;在弧度制下,1弧度记作1 rad. (3)弧度数 如下图1,的长等于半径r,所对的圆心角∠AOB 就是1弧度的角,即rl=1。

图1 图2在图2中,圆心角∠AOC 所对的的长l=2r ,那么∠AOC 的弧度数就是22==rrr l如果圆心角所对的弧长l=2πr (即弧长是一个整圆),那么这个圆心角的弧度数是rrr l π2==2π.如果圆心角表示一个负数,且它所对的弧的长l=4πr,那么这个角的弧度数的绝对值是rrr l π4==4π,即这个角的弧度数是—4π。

一般地,正确的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是零。

2。

弧长公式与 扇形面积公式(1)设l 是以角α作为圆心角时所对的弧的长,r 是圆的半径,则有l=|α|·r,其中α是角的弧度数.(2)扇形面积公式S=21lr=21α·r 2. 3。

高中数学第2课时弧度制导学案(无答案)苏教版必修4(2021学年)

高中数学第2课时弧度制导学案(无答案)苏教版必修4(2021学年)

江苏省宿迁市高中数学第2课时弧度制导学案(无答案)苏教版必修4 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省宿迁市高中数学第2课时弧度制导学案(无答案)苏教版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省宿迁市高中数学第2课时弧度制导学案(无答案)苏教版必修4的全部内容。

第2课时 弧度制【自主学习】1.我们把用度做单位来度量角的制度叫做角度制,在数学和其他许多科学研究中还要经常用到一种度量角的制度-弧度制,它是如何定义呢?叫做1弧度的角,记作 .用弧度作为角的单位来度量角的单位制称为弧度制.思考:若弧是一个半圆,则其圆心角的弧度数是多少? 若弧是一个整圆呢?2.角度制与弧度制互化:0360= 01= 1rad =角度制与弧度制互化时要抓住180π=弧度这个关键. 3.弧长公式,扇形面积公式如图,设长度为r 的线段OA 绕端点O 旋转形成角α(α为任意角,单位为弧度),若将此旋转过程中点A 所经过的路径看成是圆心角α所对的弧,设弧长为l ,则有l = 若2απ≤,则有圆心角为α的扇形的面积为: S = = .4.如图2所示,六条直径将顶点在圆心的周角等分,试写出在[0,2)π内,终边与各半径重合的角的弧度数和相应的角度数.【典型例题】例1把下列各角从弧度化为度。

A图10rad=0oπrad=180o(1)35π;(2)3.5;(3)712π.例2把下列各角从度化为弧度. (1)0252;(2)0/1115;(3)0/2230.例3 (1)已知扇形的周长为8cm ,圆心角为2rad ,求该扇形的面积。

(2)如图,扇形OAB 的面积是24cm ,它的周长是8cm ,求扇形的中心角及弦AB 的长.【当堂检测】1. 1500-= 弧度,18645'= 弧度. 2.95π-= 度,83rad= 度. OAB3.若3α=rad,则α的终边在第 象限. 7弧度的角是第 象限角,与7弧度角终边相同的最小正角为 .4.将分针拨快10分钟,分针转过的弧度数为 .5. 半径为1的圆中,弧长为x 的弧所对圆心角的弧度数为 . 6.若56παπ<<,且角α的终边与23π-的终边互相垂直,则α= 。

苏教版高中数学必修4《弧度制(第2课时)》参考教案

苏教版高中数学必修4《弧度制(第2课时)》参考教案

课 题:1.1.2弧度制(二) 教学目的:1.巩固弧度制的理解,熟练掌握角度弧度的换算;掌握用弧度制表示的弧长公式、扇形面积公式.2.培养运用弧度制解决具体的问题的意识和能力3.通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辩证统一的,而不是孤立、割裂的关系. 教学重点:运用弧度制解决具体的问题. 教学难点:运用弧度制解决具体的问题. 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 教学过程: 一、复习引入:1. 定义:长度等于半径长的弧所对的圆心角称为1弧度的角。

它的单位是rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制. 如下图,依次是1rad , 2rad , 3rad ,αrad探究:⑴平角、周角的弧度数,(平角=π rad 、周角=2π rad )⑵正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0 ⑶角α的弧度数的绝对值 rl=α(l 为弧长,r 为半径) ⑷角度制、弧度制度量角的两种不同的方法,单位、进制不同,就像度量长度一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同。

⑸用角度制和弧度制来度量零角,单位不同,但数量相同(都是0)用角度制和弧度制来度量任一非零角,单位不同,量数也不同。

2. 角度制与弧度制的换算: ∵ 360︒=2π rad ∴180︒=π rad ∴ 1︒=rad rad 01745.0180≈π'185730.571801=≈⎪⎭⎫ ⎝⎛=πrad在具体运算时,“弧度”二字和单位符号“rad”可以省略3.一些特殊角的度数与弧度数的对应值应该记住: 角度 0° 30° 45° 60° 90° 120° 135° 150° 180° 弧度 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 角度 210° 225° 240° 270° 300° 315° 330° 360° 弧度7π/65π/44π/33π/25π/37π/411π/62π4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。

高中数学 弧度制教案 苏教版必修4

高中数学 弧度制教案 苏教版必修4

第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

2、了解我国书法发展的历史。

3、掌握基本笔画的书写特点。

重点:基本笔画的书写。

难点:运笔的技法。

教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。

2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。

二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。

换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。

三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。

2、教师边书写边讲解。

3、学生练习,教师指导。

(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。

在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。

5、学生练习,教师指导。

(发现问题及时指正)四、作业:完成一张基本笔画的练习。

板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。

这是书写的起步,让学生了解书写工具及保养的基本常识。

基本笔画书写是整个字书写的基础,必须认真书写。

课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。

总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。

2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。

重点:正确书写6个字。

难点:注意字的结构和笔画的书写。

教学过程:一、小结课堂内容,评价上次作业。

二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。

2、书写方法是:写一个字看一眼黑板。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:§1.1.2 弧度制总第____课时班级_______________姓名_______________【学习目标】
1.理解弧度制的意义,正确地进行弧度制与角度制的换算,熟记特殊角的弧度数;
2.了解角的集合与实数集R之间可以建立起一一对应关系;
3.掌握弧度制下的弧长公式,会利用弧度制解决某些简单的实际问题.
【重点难点】
学习重点:在理解弧度制意义的前提下,能正确地进行弧度制与角度制的换算;
学习难点:在弄清1弧度角的含义基础上建立弧度制的概念.
【学习过程】
一、自主学习与交流反馈
问题1:如何规定1度的角:__________________________________________;
什么叫角度制:______________________________________________.
1° = ______′;1′=________’’.
问题2:在半径为r的圆中,n°的圆心角所对的弧长为___________;
在半径为r的圆中,含n°圆心角扇形的面积为___________.
问题3:在半径为r的圆中,圆心角θ所对的弧长为l,θ = _______,若l、r的值确定,则θ的是否发生变化?
二、知识建构与应用:
1.(1)弧度制的定义:所对的圆心角称为1弧度的角.
弧度制是另一种度量角的单位制。

它的单位是,读作.
(2)正角的弧度数是,负角的弧度数是,零角的弧度数是;
2.角度制与弧度制的换算:360︒=2πrad ,180︒=π rad ,
角度化弧度:1 = rad;弧度化角度:1rad= 度≈ .
3.角α的弧度数的绝对值与弧长和半径的关系:
(1)求圆心角:;(2)求弧长:;
(3)求扇形的周长与面积:.
4:在弧度制下, 角的集合与实数集R 之间就建立起一一对应关系:
每一个角都对应惟一的一个实数; 反过来, 每一个实数也都对应惟一的一个角。

三、例题
例1 把下列各角从弧度化为度:
(1)53π (2)3.5
例2 把下列各角从度化为弧度:
(1)252 (2)11 15‘
扇形的弧长公式、扇形的面积公式:
如图,设长度为r 的线段OA 绕端点O 旋转形成角α(α为任意角,
单位为弧度),若将此旋转过程中点A 所经过的路径看成是圆心角α
所对的弧,设弧长为l ,则l =
若πα2≤,则有圆心角为α的扇形面积为
例3 已知扇形的周长为8cm,圆心角为2rad,求该扇形的面积.
例4 用弧度制表示下列角的集合:
(1)终边落在x 轴上的角的集合________________________________________;
(2)终边落在y 轴上的角的集合________________________________________;
(3)终边落在坐标轴上的角的集合______________________________________________;
(4)终边落在第一象限的角平分线上角的集合____________________________________;
(5)终边落在第三象限的角的集合______________________________________________.
四、巩固练习
1.(口答)把下列各角从度化为弧度:
(1)180°;
(2)90°; (3)45°; (4)30°; (5)120°;
(6)270°;
(7) 75; (8) 210-; (9) 135; (10)22°30 ′ .
2.(口答)把下列各角从弧度化为度:
(1)2π;
(2)π2; (3)π6; (4)2π3;
(5)
12π; (6)52π; (7)34π-; (8)π12-.
3.写出与下面的角终边相同的角的集合:
(1)
4π; (2)6

4.分别用弧度制表示下列角的集合:
(1)终边落在x 轴负半轴上的角: ;
(2)终边落在直线y=x 上的角: ;
(3)终边落在第二象限的角: ;
5.若6-=α,则角α的终边在第_________象限
6.已知半径为240mm 的圆上,有一段弧的长是500mm,求此弧所对的圆心角的弧度数。

7.一个半径为r 的扇形,若它的周长等于弧所在的半圆的长,那么扇形的圆心角是多少 弧度?是多少度?扇形的面积是多少?。

相关文档
最新文档