一元一次不等式(组)及应用题精选培优题

合集下载

一元一次不等式组 能力培优训练(含答案)

一元一次不等式组 能力培优训练(含答案)

一元一次不等式组能力提升专题一 求一元一次不等式组中未知系数 1.若关于x 的一元一次不等式组-01-2-2x a x x >⎧⎨>⎩无解,则a 的取值范围是( )A. a ≥1B. a >1C. a ≤—1D. a <-13.若关于x 的不等式⎪⎪⎩⎪⎪⎨⎧<++>+022234a x x x 的解集为x <2,则a 的取值范围是 .4.若关于x 的不等式组有实数解,则a 的取值范围是 .专题二 一元一次不等式组的特殊解 5.已知关于x 的不等式组221x a b x a b -≥⎧⎨-<+⎩的解集是35x ≤<,则ba 的值是( )A .-2B .12-C .-4D .14-6. 按如下程序进行运算:并规定:程序运行到“结果是否大于65”为一次运算,且运算进行4次才停止,则可输入的整数x 的个数是 . 7. 已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩的整数解3个,则a 的取值范围是 .8. 对于整数a 、b 、c 、d ,对于符号a b d c表示运算ac bd -,已知1134b d <<,则b d +的值是 .9. 已知a a -=-33,当a 为何整数时,方程组⎩⎨⎧=-=-a y x y x 115163的解都是负数?3x -a >5 2x >3x -3专题三 一元一次不等式组的应用10.某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.不同的组建方案有( ) A .4种 B .3种 C .2种 D .1种11. 一辆公共汽车上有(5a -4)名乘客,到某一车站有(9-2a )名乘客下车,车上原来有 _________名乘客.12.已知0x >,符号[]x 表示大于或者等于......x 的最小正整数......,如[]0.31=;[]3.24=;[]55=⋅⋅⋅.(1)填空:1711⎡⎤⎢⎥⎣⎦=_____________,若[]6x =,则x 的取值范围是____________; (2)某市出租车收费标准规定如下:3千米以内(包括3千米)收费6元;超过3千米的,每超过1千米,加收1.2元(不足1千米按1千米计算).用x 表示所行的千米数,y 表示应付车费,则乘车费可按如下公式计算:当03x <≤(单位:千米)时,6y =(元);当3x >(单位:千米)时,[]6 1.23y x =+-(元).某乘客乘车付费18元,则该乘客所行的路程x (千米)的取值范围为__________. 13. 在我市开展城乡综合治理的活动中,需要将A 、B 、C 三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D 、E 两地进行处理.已知运往D 地的数量比运往E 地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A 地运往D 地a 立方米(a 为整数),B 地运往D 地30立方米,C 地运往D 地的数量小于A 地运往D 地的2倍.其余全部运往E 地,且C 地运往E 地不超过12立方米,则A 、C 两地运往D 、E 两地有哪几种方案?(3)已知从A 、B 、C 三地把垃圾运往D 、E 两地处理所需费用如下表:在(2)的条件下,请说明哪种方案的总费用最少?【知识要点】1.一元一次不等式组的解集:几个一元一次不等式的解集的公共部分叫做它们的解集. 2.一元一次不等式组的解集规律:①同大取大,同小取小;②大小小大取中间,大大小小是空集.3.解一元一次不等式组的应用题的步骤:①审清题意;②设未知数;③找不等关系组;④列不等式组;⑤解不等式组;⑥检验解的合理性;⑦作答.【温馨提示】1.解集的规律要记准确,异号不等式要特别注意.2.求不等式组中未知系数的值时要注意是否带上“=”号.3. 注意求整数解时不要漏解和多解.4.在数轴上表示不等式组的解集同样要注意有等号用实心圆点,无等号用空心圆圈.5. 解应用题时要注意解要符合实际.【方法技巧】1.求不等式组中某个字母的值时:①一般是先分别求出每个不等式的解集,再借助数轴找出它们的公共部分,再根据题意求出式子中某一系数的取值;②不等式组无解即没有公共部分,常采用逆向思维,写出有解的取值范围,然后进行思考;③不等式组有几个整数解,常借助数轴对照进行解决.2.根据题中最关键的语句(“超过”、“不大于”、“不小于”、“最多”、“不足”等字眼),写出不等关系组是解不等式组应用题的关键.3.方案问题通常设一元不等式(组),先将其转化为数学问题,即求一种的数量和另一种的数量,然后设一种的数量为x,则另一种数量用关于x的代数式表示,再根据题意构建不等式组模型,求整数解,有多少个整数解,就能求出多少种方案.1. A 解析:若不等式组有解集,则解集为a <x <1,则a <1.所以不等式组无解时,a ≥1.2. D 解析:A 选项,所给不等式组的解集为﹣2<x <2,那么a ,b 为一正一负,设a >0,则b <0,解得x >,x <,∴原不等式组无解,同理得到把2个数的符号全部改变后也无解,故错误,不符合题意;B 选项,所给不等式组的解集为﹣2<x <2,那么a ,b 同号,设a >0,则b >0,解得x >,x <,解集都是正数;若同为负数可得到解集都是负数;故错误,不符合题意;C 选项,理由同上,故错误,不符合题意;D 选项,所给不等式组的解集为-2<x <2,那么a ,b 为一正一负,设a >0,则b <0,解得x <,x >,∴原不等式组有解,可能为-2<x <2,把2个数的符号全部改变后也如此,故正确,符合题意;故选D .3. a ≤-2 解析:先解不等式组得,,因为解集为x <2,根据同小取小的原则可知,2≤-a ,则a ≤-2.4. a <4 解析:解不等式2x >3x -3,得x <3.解不等式3x -a >5,得x >5+a 3.这两个不等式解集的公共部分是5+a3<x <3.即a <4.故答案为a <4.5. A 解析:由题意得:212a b a b x +++≤<,所以32152a b a b +=⎧⎪⎨++=⎪⎩,解得36a b =-⎧⎨=⎩,所以2ba=-. 6. 3 解析:根据题意得:()[]{}()[]⎩⎨⎧<--->----651112226511112222x x 解得:5<x <9.则x 的整数值是: 6,7,8.共有3个.故答案是: 3. 7. 10<≤a 解析:解不等式组,得⎩⎨⎧>≤ax x 3,因为不等式组的整数解有3个,所以10<≤a .8. ±3 解析:由1134b d <<得143bd <-<,所以13bd <<,所以2bd =,所以b d +=±3.9. 解:解方程组⎩⎨⎧=-=-a y x y x 115163,得1163533a x ay -⎧=⎪⎪⎨-⎪=⎪⎩,因为方程组⎩⎨⎧=-=-a y x y x 115163的解都是负数,所以00x y <⎧⎨<⎩,即:116035303a a -⎧<⎪⎪⎨-⎪<⎪⎩,解得116a >.又因为a a -=-33,所以30a -≥,所以3a ≤. 所以1136a <≤,所以整数2a =或3. 10. B 解析:设组建中型图书角x 个,则组建小型图书角为(30-x )个.由题意,得⎩⎨⎧≤-+≤-+,1620)30(6050,1900)30(3080x x x x 解这个不等式组,得18≤x ≤20.∴x 的取值是18,19,20.所以12. 解:(1) 8 56x <≤(2)因为[]186 1.23x =+⨯-, 所以[]310x -=, 即9310x <-≤, 所以1213x <≤.13. 解:(1)设运往E 地x 立方米,由题意得,x +2x ﹣10=140, 解得:x =50, ∴2x ﹣10=90,答:共运往D 地90立方米,运往E 地50立方米. (2)由题意可得,[]⎩⎨⎧≤+--<+-12)30(90502)30(90a aa , 解得:20<a ≤22, ∵a 是整数, ∴a =21或22, ∴有如下两种方案:第一种:A 地运往D 地21立方米,运往E 地29立方米; C 地运往D 地39立方米,运往E 地11立方米; 第二种:A 地运往D 地22立方米,运往E 地28立方米; C 地运往D 地38立方米,运往E 地12立方米. (3)第一种方案共需费用:22×21+20×29+39×20+11×21+30×20+10×22=2873(元), 第二种方案共需费用:22×22+28×20+38×20+12×21+30×20+10×22=2876(元), 所以,第一种方案的总费用最少.。

解一元一次不等式(组)(真题10道+模拟30道)-中考数学重难题型押题培优导练案【解析版】

解一元一次不等式(组)(真题10道+模拟30道)-中考数学重难题型押题培优导练案【解析版】

解一元一次不等式(组)(真题10道+模拟30道)【方法归纳】题型概述,方法小结,有的放矢1.解一元一次不等式(组)是近几年北京中考的第二道大题,属于基本计算找中的容易题,常见的考法有:解一元一次不等式、解一元一次不等式组、不等式或不等式组的整数解、在数轴上表示不等式或不等式组的解集.在平时要熟练掌握不等式或不等式组的解法步骤.2.根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.注意:符号“≥”和“≤”分别比“>”和“<”各多了一层相等的含义,它们是不等号与等号合写形式.3.一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【典例剖析】典例精讲,方法提炼,精准提分【例1】(2021·北京·中考真题)解不等式组:{4x −5>x +13x−42<x【答案】2<x <4【解析】【分析】根据一元一次不等式组的解法可直接进行求解.【详解】解:{4x −5>x +1①3x−42<x② 由①可得:x >2,由②可得:x <4,∴原不等式组的解集为2<x <4.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键.【例2】(2022·北京·中考真题)解不等式组:{2+x >7−4x,x <4+x 2. 【答案】1<x <4【解析】【分析】分别解两个一元一次不等式,再求交集即可.【详解】解:{2+x >7−4x①x <4+x2②解不等式①得x >1,解不等式②得x <4,故所给不等式组的解集为:1<x <4.【点睛】本题考查解一元一次不等式组,属于基础题,正确计算是解题的关键.【真题再现】必刷真题,关注素养,把握核心1.(2013·北京·中考真题)解不等式组:{3x >x −2x+13>2x【答案】−1<x <15【解析】【分析】求出每个不等式的解集,再求出解集的公共部分即可.【详解】由3x >x −2解得,x >−1; 由x+13>2x 解得,x <15. ∴原不等式组的解集为:−1<x <15.【点睛】本题考查了解一元一次不等式组,求出不等式组中每一个不等式的解集是关键,常常利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).2.(2014·北京·中考真题)解不等式12x −1≤23x −12,并把它的解集在数轴上表示出来.【答案】x≥-3,数轴见解析.【解析】【分析】去分母得:3x -6≤4x -3,移项合并得x≥-3,正确在数轴上表示即可.【详解】解:3x -6≤4x -3∴x≥-3【点睛】本题考查解一元一次不等式.3.(2015·北京·中考真题)解不等式组:{4(x +1)≤7x +10x −5<x−83,并写出它的所有非负整数解. 【答案】不等式组的所有非负整数解为:0,1,2,3.【解析】【分析】先解不等式组求出x 的取值范围,然后找出符合范围的非负整数解.【详解】解:{4(x +1)≤7x +10①x −5<x−83 ② 由不等式①得:x ≥-2,由不等式②得:,x <72,∴不等式组的解集为:−2≤x <72,∴x 的非负整数解为:0,1,2,3.【点睛】 本题考查的是解一元一次不等式组及求一元一次不等式组的非负整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.(2016·北京·中考真题)解不等式组:{2x +5>3(x −1)4x >x+72. 【答案】1<x <8.【解析】【详解】试题分析:根据不等式性质分别求出每一个不等式的解集,再根据口诀:大小小大中间找可得不等式组的解集.试题解析:解不等式2x+5>3(x ﹣1),得:x <8,解不等式4x >x+72,得:x >1,∴不等式组的解集为:1<x <8.考点:解一元一次不等式组.5.(2017·北京·中考真题)解不等式组: {2(x +1)>5x −7x+103>2x . 【答案】x<2.【解析】【详解】试题分析 :由不等式性质分别求出每一个不等式的解集,找出它们的公共部分即可.试题解析:{2(x +1)>5x −7①x+103>2x② , 由①得:x<3,由②得:x<2,∴不等式组的解集为:x<2.6.(2018·北京·中考真题)解不等式组:{3(x +1)>x −1x+92>2x . 【答案】−2<x <3.【解析】【详解】分析:分别解不等式,找出解集的公共部分即可.详解:{3(x +1)>x −1①x+92>2x② 由①得,x >−2,由②得,x <3,∴不等式的解集为−2<x <3.点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.7.(2019·北京·中考真题)解不等式组:{4(x −1)<x +2,x+73>x. 【答案】不等式组的解集为x <2.【解析】【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:解不等式①得:4x −4<x +2,4x −x <4+2,3x <6,∴x <2解不等式②得:x +7>3x,x −3x >−7,−2x >−7,∴x <72∴不等式组的解集为x <2【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(2020·北京·中考真题)解不等式组:{5x −3>2x 2x−13<x 2【答案】1<x <2【解析】【分析】分别解每一个不等式,然后即可得出解集.【详解】解:{5x −3>2x①2x−13<x 2② 解不等式①得:x >1,解不等式②得:x <2,∴此不等式组的解集为1<x <2.【点睛】本题考查了解一元一次不等式组,掌握不等式的解法是解题关键.【模拟精练】押题必刷,巅峰冲刺,提分培优一、解答题1.(2022·北京朝阳·二模)解不等式x −5<x−123,并写出它的所有非负整数解. 【答案】x <32,不等式的所有非负整数解为0,1【解析】【分析】去分母,移项、合并同类项,系数化为1即可,根据不等式的解集即可求得所有非负整数解.【详解】解:3(x −5)<x −12,3x −15<x −12,2x <3,x <32.∴原不等式的所有非负整数解为0,1.【点睛】本题考查了解一元一次不等式及求其非负整数解,正确求解不等式是解题的关键.2.(2022·北京东城·二模)解不等式6−4x ≥3x −8,并写出其正整数解.【答案】x ≤2,正整数解为1,2.【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数解即可.【详解】解:6−4x ≥3x −8,移项得:−4x −3x ≥−8−6,合并同类项得:−7x ≥−14,系数化为1得:x ≤2,∴不等式的正整数解为1,2.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.3.(2022·北京平谷·二模)解不等式组:{5x +3>4x 6−x 2≥x .【解析】【分析】先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集.【详解】解:{5x +3>4x①6−x 2≥x② , 解不等式①得:x >−3,解不等式②得:x ≤2,则不等式组的解集为−3<x ≤2.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.4.(2022·北京北京·二模)解不等式组:{5x +3>2x x−22<6−3x .【答案】−1<x <2【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:{5x +3>2x①x−22<6−3x② 解不等式①,得x >−1.解不等式②,得x <2.∴原不等式组的解集为−1<x <2.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(2022·北京丰台·二模)解不等式组:{2x −3>x −23x−22<x +1 .【解析】【分析】先求出每个不等式的解集,然后取公共部分即可得到答案.【详解】解:原不等式组为{2x −3>x −2①3x−22<x +1② , 由①得:x >1,由②得:x <4,所以原不等式组的解集为:1<x <4.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解不等式6.(2022·北京密云·二模)解不等式组:{2x −1≤−x +2x−12<1+2x 3,并写出它的非负整数解.【答案】−5<x ≤1;非负整数解为:0,1【解析】【分析】首先解两个一元一次不等式,然后求两个不等式解集的公共部分,最后写出不等式组的整数解.【详解】解不等式2x -1≤-x +2,得,x ≤1, 解不等式x−12<1+2x3,得,x >-5,∴该不等式组的解集为-5<x ≤1,∴该不等式组的非负整数解是:0,1.【点睛】本题主要考查了解一元一次不等式组,解决问题的关键是熟练解答一元一次不等式和确定一元一次不等式组的解集,在一元一次不等式组解集里确定非负整数解.7.(2022·北京西城·二模)解不等式:5x−26<x2+1,并写出它的正整数解. 【答案】x =1,2,3,【解析】【分析】先解不等式,求出不等式解集,再根据解集,写出正整数解即可.【详解】 解:5x−26<x2+1, 5x -2<3x +6,5x -3x <6+2,2x <8,x <4,∵x 为正整数,∴x =1,2,3,【点睛】本题考查求不等式正整数解,熟练掌握解不等式是解题的关键.8.(2022·北京顺义·二模)解不等式组:{5x +2≥4x −1,x+14>x−32+1. 【答案】−3≤x <3【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】{5x +2≥4x −1①x +14>x −32+1② 解不等式①得:x ≥−3解不等式②得:x <3∴不等式的解集为:−3≤x <3【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.9.(2022·北京市十一学校模拟预测)解不等式组:{4(x +1)≥x +73x+24<x ,并将不等式组的解集在数轴上表示出来.【答案】x >2,见解析【解析】【分析】先解不等式组中的每一个不等式,再取其解集的公共部分即得不等式组的解集,然后即可在数轴上表示其解集.【详解】对不等式:{4(x +1)≥x +7①3x+24<x② 解不等式①得:x ≥1解不等式②得:x >2所以不等式的解集为:x >2【点睛】本题考查了一元一次不等式组的解法,属于基本题型,熟练掌握解一元一次不等式组的方法是解题的关键.10.(2022·北京海淀·二模)解不等式组:{5x −2>2x +4,x−12>x 3. 【答案】原不等式组的解集为x >3【解析】【分析】分别解不等式组中的两个不等式,再确定两个不等式解集的公共部分即可.【详解】解:原不等式组为{5x −2>2x +4,①x−12>x 3.② 解不等式①,得x >2.解不等式②,得x >3.∴ 原不等式组的解集为x >3.【点睛】本题考查的是不等式组的解法,掌握“解一元一次不等式组的步骤”是解本题的关键.11.(2022·北京东城·一模)解不等式组{x−32<1,2(x+1)≥x−1.【答案】−3≤x<5【解析】【分析】先分别求出不等式的解集,然后求出不等式组的解集即可.【详解】解:{x−32<12(x+1)≥x−1,解不等式x−32<1得,x<5;解不等式2(x+1)≥x−1得,x≥−3;∴不等式组的解集为−3≤x<5.【点睛】本题考查了解一元一次不等式组.解题的关键在于正确的计算.12.(2022·北京市十一学校二模)在平面直角坐标系xOy中,已知点P(1,2),Q(−2,2),函数y=mx.(1)当函数y=mx的图象经过点Q时,求m的值并画出直线y=-x-m.(2)若P,Q两点中恰有一个点的坐标(x,y)满足不等式组{y>mxy<−x−m(m<0),求m的取值范围.【答案】(1)m=-4,画图见解析(2)-3≤m<0或m≤-4【解析】【分析】(1)根据待定系数法,将Q点坐标代入y=mx即可求值,进而画出直线的图象;(2)不等式组表达含义为P、Q中的一点位于反比例函数图象上方,位于一次函数图象下方,根据m<0的条件,数形结合即可求出m的取值范围.(1)解:∵函数y=mx的图象经过点Q,∴m=-2×2=-4,一次函数的解析式为:y=-x+4,图象如下.(2)解:由题意知,P、Q中的一点位于反比例函数图象上方,位于一次函数图象下方,∵m<0,∴反比例函数经过二、四象限,故P点在反比例函数图象上方,∴存在两种情况,①Q在反比例函数图象上方,在一次函数图象下方,P在一次函数图象上或上方,即:{2>m−2 2<2−m−1−m≤2,解得:-3≤m<0;②Q在反比例函数图象上或下方,P在一次函数图象下方,即:{2≤m−2−1−m>2,解得:m≤-4;综上所述,m 的取值范围为:-3≤m <0或m ≤-4.【点睛】本题考查了待定系数法求反比例函数解析式,解决本题难点是分析出反比例函数、一次函数的图象与P 、Q 两点的位置关系,得到关于m 的不等式组.13.(2022·北京市十一学校二模)解不等式组:{x −3(x −1)≥11+3x 2>x −1 ,并把它的解集在数轴上表示出来. 【答案】−3<x ≤1,数轴见解析【解析】【分析】分别求出两个不等式的解集,即可求解.【详解】解:{x −3(x −1)≥1①1+3x2>x −1② ,解不等式①得:x ≤1,解不等式②得:x >−3,∴不等式组的解集为−3<x ≤1,把解集在数轴上表示出来,如下:【点睛】本题主要考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法是解题的关键.14.(2022·北京石景山·一模)解不等式组:{3(x +1)<x −1x+92>2x 并写出它的最大整数解.【答案】﹣3【解析】【分析】分别求出每一个不等式的解集,根据口诀同大取大;同小取小;大小小大中间找;大大小小找不到,确定不等式组的解集.【详解】{3(x +1)<x −1①x +92>2x② 由①得,x <﹣2,由②得,x <3,∴不等式组的解集为x <﹣2,最大的整数解是﹣3.【点睛】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(2022·北京房山·二模)解不等式组:{3(x −1)<2x +1x−12≤x +2 . 【答案】−5≤x <4【解析】【分析】分别求出两不等式的解集,根据:“大小小大中间找”确定不等式组解集.【详解】解:{3(x −1)<2x +1①x−12≤x +2② 由①得3x −3<2x +1,即x <4由②得x −1≤2x +4,即x ≥−5∴不等式组的解集为:−5≤x <4【点睛】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.16.(2022·北京平谷·一模)解不等式组:{x +2>2x 5x+32≥x .【答案】−1≤x <2【解析】【分析】先分别求出两个不等式的解集,然后求出不等式组的解集即可.【详解】解:{x+2>2x 5x+32≥x解不等式x+2>2x移项合并得−x>−2系数化为1得x<2∴不等式的解集为x<2;解不等式5x+32≥x去分母得5x+3≥2x移项合并得3x≥−3系数化为1得x≥−1∴不等式的解集为x≥−1;∴不等式组的解集为−1≤x<2.【点睛】本题考查了解一元一次不等式组.解题的关键在于正确的计算.17.(2022·北京·东直门中学模拟预测)解不等式组:{3x>x−2 x+13≥2x【答案】−1<x≤15【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:{3x>x−2①x+13≥2x②,∵解不等式①得:x>-1,解不等式②得:x≤15,∴不等式组的解集是−1<x≤15.【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.18.(2022·北京市第一六一中学分校一模)解不等式组{x+2(−2x)≥-4 3+5x2>x−1【答案】−53<x≤2【解析】【分析】按照解一元一次不等式的方法分别求出各不等式的解,进而得到不等式组的解集.【详解】解:{x+2(1−2x)≥−4⋯①3+5x2>x−1⋯②由①式去括号,得:x+2−4x≥−4移项、合并同类项,得:x≤2由②式去分母,得:3+5x>2x−2移项、合并同类项,得:x>−53所以不等式组的解集为:−53<x≤2.【点睛】本题考查解一元一次不等式组,熟练掌握相关知识是解题的关键.19.(2022·北京房山·一模)解不等式组:{x-2≤1 x+15<x−1【答案】32<x≤3【解析】【分析】先求得每个不等式的解集,后根据口诀确定不等式组的解集.【详解】解:{x-2≤1①x+15<x−1②由①得:x≤3,由②得:x>32,∴不等式组的解集为32<x≤3.【点睛】本题考查了一元一次不等式组的解法,熟练掌握解不等式组的基本步骤是解题的关键.20.(2022·北京朝阳·一模)解不等式组:{x −3(x −2)≥4x −1<1+2x 3【答案】不等式组的解集为x ≤1【解析】【分析】先根据不等式的基本性质分别解两个不等式,再确定不等式组的解集即可.【详解】{x −3(x −2)≥4①x −1<1+2x 3② 解①得x ≤1解②得x <4所以,不等式组的解集为x ≤1.【点睛】本题考查了解不等式组,根据不等式的基本性质解不等式是解题的关键.21.(2022·北京顺义·一模)解不等式组{2(x +1)≤5x +82x −5<x−12,并写出它的所有整数解. 【答案】-2≤x <3,它的整数解为-2、-1、0、1、2.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:{2(x +1)≤5x +82x −5<x−12由第一个不等式得2x +2≤5x +8,解得x ≥-2,由第二个得4x -10<x -1解得x <3∴不等式组的解集为-2≤x <3,它的整数解为-2、-1、0、1、2.【点睛】本题考查解一元一次不等式组,求符合条件的整数解.正确掌握一元一次不等式解集确定方法是解题的关键.22.(2022·北京西城·一模)解不等式组{5x +1>3(x −1)8x+29>x :【答案】−2<x <2【解析】【分析】分别求出两个不等式的解集,即可求解.【详解】解:{5x +1>3(x −1)①8x+29>x② , 解不等式①得:x >−2,解不等式②得:x <2,∴不等式组的解集为−2<x <2.【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.23.(2022·北京通州·一模)解不等式组{3x −1>x +14x−53≤x【答案】1<x ≤5【解析】【分析】先分别解出两个不等式,再确定不等式组解集即可.【详解】{3x −1>x +1①4x −53≤x② 解①得x >1解②得x ≤5所以,不等式组的解集为1<x ≤5.【点睛】本题考查了一元一次不等式组的解法,熟练掌握解题步骤是解题的关键.24.(2022·北京海淀·一模)解不等式组:{4(x −1)<3x,5x+32>x. 【答案】−1<x <4【解析】【分析】先求出各不等式的解集,再求其公共解集即可.【详解】解:解不等式4(x −1)<3x ,得:x <4, 解不等式5x+32>x ,得:x >−1,所以原不等式组的解集是−1<x <4.【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组的基本步骤是解题的关键.25.(2022·北京市第五中学分校模拟预测)解不等式组:{4(x +1)≥x +73x+24<x . 【答案】x >2【解析】【分析】分别求出两个不等式的解集,即可得到不等式组的解集.【详解】解:{4(x +1)≥x +7①3x+24<x②解不等式①得:x ≥1,解不等式②得:x >2,所以不等式组的解集为:x >2.【点睛】本题考查了解一元一次不等式组,熟练掌握一元一次不等式的解法是解题的关键.26.(2022·北京市三帆中学模拟预测)解不等式组{2x−7<3(1−x)43x+3≥1−23x,并写出它的非负整数解.【答案】−1≤x<2,0和1【解析】【分析】首先解每一个不等式,再求不等式组的解集,据此即可解答.【详解】解:{2x−7<3(1−x)①43x+3≥1−23x②由①解得x<2由②解得x≥−1故不等式组的解集为−1≤x<2所以,它的非负整数解有:0和1.【点睛】本题考查了一元一次不等式组的解法及整数解问题,熟练掌握和运用一元一次不等式组的解法及求整数解的方法是解决本题的关键.27.(2022·北京十一学校一分校模拟预测)在平面直角坐标系xOy中,一次函数y=−x+b经过点(0,2).(1)求这个一次函数的解析式:(2)当x<4时,对于x的每一个值,函数y=−x+b的值与函数y=kx−k的值之和都大于0,求k的取值范围.【答案】(1)y=−x+2(2)23≤k<1【解析】【分析】(1)根据待定系数法求解即可;(2)根据题意解不等式组即可.(1)解:∵一次函数y=−x+b经过点(0,2)∴2=b ,∴这个一次函数的解析式为y =−x +2.(2)由y =kx −k =k (x −1)则y =kx −k 过定点(1,0),依题意,kx −k −x +2>0的解集为x <4∴ x <k−2k−1,且k −1<0 ∴k−2k−1≤4,且k <1∴k −2≥4(k −1)即k −2≥4k −4−3k ≥−2当k <0时,k ≤23,则k <0当0≤k <1时,k ≥23,则23≤k <1 综上所述,23≤k <1【点睛】本题考查了待定系数法求一次函数解析式,解不等式组,理解题意是解题的关键.28.(2022·北京昌平·模拟预测)解不等式组{2x +7<3x −1x−25≥0 ,并把解集在数轴上表示出来. 【答案】x >8,作图见解析【解析】【分析】先分别计算不等式,然后求解集,将解集在数轴上表示出来即可.【详解】解:{2x +7<3x −1①x−25≥0②解不等式①得x >8,解不等式②得x ≥2,∴不等式组的解集为x >8,在数轴上表示如图所示:【点睛】本题考查了求不等式组的解集,在数轴上表示解集.解题的关键在于正确的计算.29.(2022·北京朝阳·模拟预测)解下列不等式,并把解在数轴上表示出来.(1)5x﹣5<2(2+x);(2)4x−13−x>1;(3)32>x2−2x−38;(4)x(x+4)≤(x+1)2+9.【答案】(1)x>3,数轴见解析(2)x>4,数轴见解析(3)x≤4.5,数轴见解析(4)x≤5,数轴见解析【解析】【分析】(1)根据去括号、移项、合并同类项和系数化为1即可求出不等式的解集;(2)根据去分母、移项、合并同类项和系数化为1即可求出不等式的解集.(3)根据去分母、去括号、移项、合并同类项和系数化为1即可求出不等式的解集.(4)去括号、移项、合并同类项和系数化为1即可求出不等式的解集.(1)解:5x﹣5<2(2+x)去括号得,5x﹣5<4+2x,移项得,5x﹣2x>4+5,合并同类项,3x>9,∴x>3.在数轴上表示此不等式的解集如下:(2)解:4x−13−x>1去分母,得4x﹣1﹣3x>3,移项,得4x﹣3x>3+1,合并同类项,得x>4,∴x>4.在数轴上表示此不等式的解集如下:(3)解:32>x2−2x−38去分母,得12≥4x﹣(2x﹣3),去括号,得12≥4x﹣2x+3,移项,得﹣4x+2x≥3﹣12,合并同类项,得﹣2x≥﹣9,∴x≤4.5.在数轴上表示此不等式的解集如下:(4)解:x(x+4)≤(x+1)2+9去括号,得x2+4x≤x2+2x+1+9,移项,得x2﹣x2+4x﹣2x≤1+9,合并同类项,得2x≤10,∴x≤5.在数轴上表示此不等式的解集如下:【点睛】本题考查了解一元一次不等式,能正确运用不等式的基本性质进行计算是解此题的关键.30.(2022·北京·二模)解不等式组:{3(x −1)≥2x −5,①2x <x+32,②并写出它的所有整数解. 【答案】−2≤x <1;−2,−1,0【解析】【分析】分别解不等式①,②,进而求得不等式组的解集,根据不等式组的解集写出所有整数解即可.【详解】{3(x −1)≥2x −5,①2x <x +32,② 解不等式①得:x ≥−2解不等式②得:x <1∴不等式组的解集为:−2≤x <1它的所有整数解为:−2,−1,0【点睛】 本题考查了解一元一次不等式组,求不等式组的整数解,正确的计算是解题的关键.。

(完整word)一元一次不等式(组)与二元一次方程(组)结合培优资料

(完整word)一元一次不等式(组)与二元一次方程(组)结合培优资料

一元一次不等式(组)与方程(组)的结合培优资料考点·方法·破译1.进一步熟悉二元一次方程组的解法,以及一元二次不等式组的解法.2.综合运用一元一次不等式组和二元一次方程组解决一些典型的实际问题.经典·考题·赏析【例1】求方程3x +27=17的正整数解.【解法指导】一般地,一个二元一次方程有无数个解,但它的特殊解是有限个,如一个二元一次方程的正整数解,非负整数解都是有限个.求不定方程的正(非负)整数解时,往往借助不等式,整数的奇偶性等相关知识来帮助求解.解:将方程变形为2y =17-3x 即2317x y -= ∵y >0 ∴2317x ->0 ∴x <317即x <325 又∵y 为正整数(即2317x -为整数) ∴17-3x 为偶数∴x 必为奇数∴x =1,3,5当x =1时,7213172317=⨯-=-=x y 当x =3时,4233172317=⨯-=-=x y 当x =5时,1253172317=⨯-=-=x y故原方程的正整数解为错误! 或错误! 或错误!【变式题组】01.求下列各方程的正整数解:⑴2x +y =10(2) 3x +4y =2102.有10个苹果,要分给两个女孩和一个男孩,要求苹果不得切开,且两个女孩所得的苹果数相等,每个孩子都有苹果吃,问有哪几种分法?【例2】足球联赛得分规定如下:胜1场得3分,平1场得1分,负1场得0分•某队在足球联赛的4场比赛中得6分,这个队胜了几场,平了几场,负了几场?【解法指导】本题中,所有的等量关系只有两个,而未知量有三个•因而所列方程的个数少于未知数的个数,即为不定方程组,但每个未知数量的数目必为非负整数•因此,此题的实质就是滶不定方程的非负整数解的问题.此方程组有两个方和,三个未知数,解法仍然是消元,即消去某一个未知数后,变为二元一次方程,再仿照例1的解法施行.解:设该队胜了x场,平了y场 ,负了z场,依题意可得:错误!②-①得:2x-z=2 ③变形得:z=2x-2∵0≤z≤2∴0≤2x-2≤2即1≤x≤2又x为正整数∴x=1,2相应地,y=3,0 z=0,2答:这个队胜了1场,平了3场,或胜了2,负了2场.【变式题组】01.(佳木斯)为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么可能购买甲种笔().A.11支B.9支C.7支D.5支02.一旅游团50人到一旅舍住宿,旅舍的客户有三人间、二人间、单人间三种•其中三人间的客房每人每晚20元,二人间的客房每人每晚30元,单人间的客房每人每晚50元.(1)若旅游团共住满了20间客房,问三种客房各住了几间?怎样住消费最低?(2)若该旅游团中,夫妻住二人间,单身住三人间,小孩随父母住在一起,现已知有小孩4人(每对夫妻最多只带1个小孩),单身30人,其中男性17人,有两名单身心脏病患者要求住单人间,问这一行人共需多少间客房?【例3】已知:关于x、y的方程组错误!若x>y,求a的取值范围.【解法指导】解本题的指导思想就是构建以a为未知数的不等式•解之即得a的取值范围,构建不等式的依据就是x>y,而解方程组即可用a的代数式分别表示x和y,进而可得不等式.解:解方程组错误!得错误!∵x>y∴2a+1>a-2 解得a>-3故a的取值范围是a>-3.【变式题组】01.已知:关于x的方程3x-(2a-3) =5x+(3a+6)的解是负数,则a的取值范围是_____.02.已知:关于x、y的方程组错误!的解为非负数.(1)求a的取值范围;(2)化简|4a+5|-|a-4|.03.当m 为何值时,关于x 的方程2153166--=--m x m x 的解大于1?4.已知方程组错误! 的解x 、y 都是正数,且x 的值小于y 的值,求m 的取值范围.【例4】(凉州)若不等式{x -a >2,b -2x >0 的解集是-1<x <1,求(a +b )2009的值. 【解法指导】解此不等式组得a +2<x <2b ,而依题意,该不等式的解集又是-1<x <1,而解集是唯一的,因此两解集的边界点分别“吻合”,从而得两等式即得方程组,解之可得a 、b 之值.解:解不等式组错误! 得a +2<x <2b 又∵此不等式组的解集是-1<x <1∴ 错误! 解设错误!∴(a +b )2009=(-1)2009=-1【变式题组】 01.若错误! 的解集为-1<x <2,则a =___________,b =_____________.02.已知:关于x 的不等式组错误!的解集为3≤x <5,则a b 的值为( ) A .-2 B .21- C .-4 D . 41- 03.若关于x 的不等式组错误! 的解集为x <2,则a 的取值范围是___________.04.已知:不等式组错误! 的解庥为-1<x <2,求(a +b )2008的值.【例5】(永春)商场正在销售“福娃"玩具和徽章两种奥运商品,已知购买1盒“福娃”玩具和2盒徽章共需145元;购买2盒“福娃”玩具和3盒徽章共需280元•(1)一盒“福娃"玩具和一盒徽章的价格各是多少元?(2)某公司准备购买这两种奥运商品共20盒送给幼儿园(要求每种商品都要购买),且购买金额不能超过450元,请你帮该公司设计购买方案•【解法指导】本题属材料选择类的方程与不等式结合的实际应用题,但方程组与不等式组是分开的•分析可知:第(1)问只需依照题目主干所提供的两个等量关系即可列出二元一次方程组•第(2)问由题目所给不等关系“购买金额不能超过450元”及第(1)问所求出的数据列出不等式,从而求解•解:(1)设一盒“福娃"玩具和一盒徽章的价格分别为x元和y元.依题意,得错误!解得错误!答:一盒“福娃”玩具和一盒徽章的价格分别是125元和10元.(2)设购买“福娃”玩具m盒,则购买徽章(20-m)盒.由题意,得125m+10(20-m)≤450,解得m≤2。

浙教版八年级上册一元一次不等式专题培优(附答案)

浙教版八年级上册一元一次不等式专题培优(附答案)

浙教版八年级上册一元一次不等式专题培优(附答案)八年级上册一元一次不等式专题培优基础巩固1.不等式 $x+1\geq2x-1$ 的解集在数轴上表示为()。

答案:$[2,+\infty)$2.已知$a>b$,$c\neq0$,则下列关系一定成立的是()。

A。

$ac>bc$B。

$\frac{c}{a}>\frac{c}{b}$C。

$c-a>c-b$D。

$c+a>c+b$答案:A3.若实数 $3$ 是不等式 $2x-a-2<0$ 的一个解,则 $a$ 可取的最小正整数为()。

答案:$5$4.下列命题中:①如果 $a1-a$ 的解集是 $x<-1$,则 $a<1$;③若 $\frac{6-x}{3}$ 是自然数,则满足条件的正整数 $x$ 有$4$ 个。

正确的命题有()。

A。

个B。

$1$ 个C。

$2$ 个D。

$3$ 个答案:C5.若关于$x$,$y$ 的二元一次方程组的解满足$x+y<2$,则 $a$ 的取值范围是()。

A。

$a>2$B。

$a<2$C。

$a>4$D。

$a<4$答案:B6.若 $x$ 的 $3$ 倍大于 $5$,且 $x$ 的一半与 $1$ 的差不大于 $2$,则 $x$ 的取值范围是()。

答案:$[\frac{7}{3},+\infty)$7.若 $ab$ 的解集是 $x<\frac{a}{b}$,则 $a$ 的取值范围是()。

答案:$(-\infty,0)\cup(b,+\infty)$8.若在数轴上表示关于 $x$ 的不等式 $x-3>\frac{2}{3}$ 的解集如图所示,则 $a$ 的值是()。

答案:$a=\frac{11}{3}$9.如图,若开始输入的 $x$ 的值为正整数,最后输出的结果为 $144$,则满足条件的 $x$ 的值为()。

答案:$6$10.解下列不等式,并把解集表示在数轴上。

人教版七年级数学下册-一元一次不等式应用题-培优练习(含答案)

人教版七年级数学下册-一元一次不等式应用题-培优练习(含答案)

人教版七年级数学下册-一元一次不等式应用题-培优练习(含答案)1.某公司要运送一批参展货物去参加2011年西安世界园艺博览会,使用几辆载重为8吨的汽车。

如果每辆汽车只装4吨,则剩下20吨货物;如果每辆汽车装满8吨,则最后一辆汽车不空也不满。

求共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,其中西红柿和西兰花的批发价和零售价如下表所示:蔬菜品种 | 批发价(元/kg) | 零售价(元/kg) |西红柿。

| 3.6.| 5.4.|西兰花。

| 8.| 14.|1)第一天该经营户批发了西红柿和西兰花两种蔬菜共300kg,用去了1520元。

这两种蔬菜当天全部售完后,一共能赚多少钱?请列方程组求解。

2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?3.“六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具。

若购进甲种玩具80个,乙种玩具40个,需要800元;若购进甲种玩具50个,乙种玩具30个,需要550元。

1)求益智玩具店购进甲、乙两种玩具每个需要多少元?2)若益智玩具店准备1000元全部用来购进甲、乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?4.XXX为学校购买运动会的奖品后,回学校向后勤XXX 老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元。

”XXX算了一下,说:“你肯定搞错了。

”1)XXX为什么说他搞错了?试用方程的知识给予解释。

2)XXX连忙拿出购物,发现的确弄错了,因为他还买了一个笔记本。

但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元。

一元一次不等式(组)应用题及练习(含答案)

一元一次不等式(组)应用题及练习(含答案)

一元一次不等式组的典型应用题例1.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】本题的关键语句是:“若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人”.理解这句话,有两层不等关系.(1)租用36座客车x辆的座位数小于租用42座客车(x-1)辆的座位数.(2)租用36座客车x辆的座位数大于租用42座客车(x-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车x辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意x应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积(单位:亩)种植B类蔬菜面积(单位:亩)总收入(单位:元)甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.2、某公司为了更好得节约能源,决定购买一批节省能源的10台新机器。

走进重高 培优测试八上 一元一次不等式组及应用

走进重高 培优测试八上 一元一次不等式组及应用

一元一次不等式组及应用(3.4)一、选择题(每题3分,共30分)1.下列各式中,属于一元一次不等式组的是 ( )⎪⎩⎪⎨⎧≥+<+521,23.xx A ⎩⎨⎧<->+6,4.y x y x B ⎩⎨⎧<-≥+126,34.x C ⎩⎨⎧<+->-81,26.x x Q 2.下列说法中,正确的是( )⎩⎨⎧>>5,3.x x A 的解是35<<x ⎩⎨⎧-<->3,2.x x B 的解是23-<<-x ⎩⎨⎧≤≥2,2.x x c 的解是2=x ⎩⎨⎧->-<3,3.x x D 的解是3-=/x 3.不等式组⎪⎩⎪⎨⎧>≤-121,01x x 的最小整数解是( ) 4.=x A 3.=x B 2.=x C 1.=x D4.已知关于x 的不等式组⎩⎨⎧<->+a b x b a x ,的解集是,42<<-x 则a ,b 的值为( ) 1,3.==b a A 3,1.==b a B 1,3.-==b a C 3,1.=-=b a D5.对于任意实数m ,n 定义一种运算:,3.+--=⋅⨯n m mn n m 例如:.6352525.2=+--⨯=⋅⨯请根据上述定义解决问题:725<⨯⋅⋅⋅<x 的整数解为( )4.=x A5.=x B6.=x C7.=x D6.若关于x 的不等式组⎩⎨⎧-≥+<-912:,02x a x 有两个整数解,则a 的取值范围是( )34.-<<-a A 34.-<≤-a B 68.-≤<-a C 68.-<≤-a D7.小明去商店购买A ,B 两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元,若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量,则小明的购买方案有 ( )5.A 种 4.B 种 3.C 种 2.D 种8.已知m 为整数,则解可能为11<<-x 的不等式组是( )⎩⎨⎧>>1,1.x mx A ⎩⎨⎧<<1,1.x mx B ⎩⎨⎧><1,1.x mx C ⎩⎨⎧<>1,1.x mx D 9.将一箱苹果分给若干个小朋友,若每个小朋友分5个苹果,则还剩12个苹果;若每个小朋友分8个苹果,则有一个小朋友所分苹果不到8个,若小朋友的人数为x ,则下列不等式中,正确的是( )8)1(81250.<--+≤x x A 8)1(81250.≤--+<x x B8)1(81251.<--+≤x x c 8)1(81251.≤--+<x x D10.使得关于x 的不等式组⎪⎩⎪⎨⎧-≥+-+-≤-1412,122m x m x 有解,且使得关于y 的方程)2(2)(1-=-+y y m 有非负 整数解的所有的整数m 的个数是( )0.A 1.B 2.C 3.D二、填空题(每题4分,共24分)11.写出一个解为21<≤-x 的一元一次不等式组:_______________.12.不等式3253<-≤-x 的正整数解是__________________.13.输入一个实数z ,按如图所示的程序进行操作,规定:程序运行开始后,每次到“判断结果是否大于190?”为一次操作,如果操作恰好进行二次就停止,那么x 的取值范围是___________.(第13题)14.若一个三角形的三边长分别为,)4(,)2(),(cm x cm x cm x ++它的周长不超过39 cm ,则x 的取值范围是__________. 15.已知关于x ,y 的方程组⎩⎨⎧=--=+,35,43a y x a y x 其中,13≤≤-a 给出下列结论:⎩⎨⎧==1,2y x ①是方程组的解;②当13≤≤-a 时,无论a 取什么实数,y x +的值始终不变;③当1=a 时,方程组的解也是方程 a y x -=+42的解;④x ,y 为自然数的解有4对.其中正确的结论是__________ (填序号).16.若n 为正整数,则使得关于x 的不等式19102111<+<n x n 有唯一的整数解的n 的最大值为________. 三、解答题(共66分) 17.(6分)化简分式,161232--m m 若m 是不等式组⎪⎩⎪⎨⎧>++>-x x x 232,02的整数解,求此分式的值. 18.(8分)对于实数x ,我们规定[x]表示不大于x 的最大整数,例如.1]2.1[==]5.0)[1(_________=-]5.2[;(2)若,5]104[=+x 求x 的取值范围. 19.(8分)对于任意实数a ,b ,定义运算@如下:,2@b a b a -=例如:565@)3(,73103@5--=-=-= .11-=(1)若,53@<x 求x 的取值范围.(2)已知关于x 的方程1)12(2+=-x x 的解满足,5@<a x 求a 的取值范围.20.(10分)某小区决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,已知购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价.(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少元.21.(10分)新定义:对非负数x“四舍五入”到个位的值记为,><x 即当n 为非负整数时,若<≤-x n 21 ,21+n 则.n x >=<例如:,4235.3,22,1495.0,049.00>=>=<<>=<>=>=<<>=>=<<L L …试回答下列问题:(1)填空:>=<6.9①____________.②如果,2>=<x 那么实数x 的取值范围是__________.(2)若关于x 的不等式组⎪⎩⎪⎨⎧>-><-≤-0,1342x m x x 的整数解恰有4个,求><m 的值.(3)求满足x x >=<56的所有非负整数x 的值. 22.(12分)已知方程组⎩⎨⎧+=---=+ay x a y x 31,7的解中,x 为非正数,y 为负数.(1)求a 的取值范围.(2)在a 的取值范围内,当a 为何整数时,不等式122+>+a x ax 的解为1<x ?(3)在(2)的条件下,计算20212020)1(aa +的值. 23.(12分)小王家是水产养殖专业户.他准备购置80只相同规格的网箱,养殖A ,B 两种淡水鱼(两种鱼不能混养).计划用于养鱼的总投资不少于7万元,但不超过7.2万元,其中购置网箱等基础建设需要1.2万元.设他用z 只网箱养殖A 种淡水鱼,目前平均每只网箱养殖A ,B 两种淡水鱼所需投入及产出情况如下表所示:(1)小王有哪几种养殖方式?(2)哪种养殖方案获得的利润最大?(3)根据市场调查分析,当这两种鱼上市时,价格会有所变化,A 种鱼价格上涨B a a ),500%(<<种鱼价格下降20%.考虑市场变化,哪种方式获得的利润最大?(利润=收入一支出,收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出)答案。

一元一次不等式组培优)练习题

一元一次不等式组培优)练习题

一元一次不等式组练习题一、选择题1、已知方程⎩⎨⎧-=++=+②①m 1y 2x m 31y x 2满足0y x <+,则()A. 1m ->B. 1m >C. 1m -<D. 1m <2、若不等式组⎩⎨⎧+>+<+1m x 1x 59x 的解集为2x >,则m 的取值范围是( )A. 2m ≤B. 2m ≥C. 1m ≤D. 1m >3、若不等式组⎩⎨⎧>+>-01x 0x a 无解,则a 的取值范围是( )A. 1a -≤B. 1a -≥C. 1a -<D. 1a -> >4、如果不等式组⎩⎨⎧<->-m x x x )2(312的解集是x <2,那么m 的取值范围是( )A 、m=2B 、m >2C 、m <2D 、m≥2 5、如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .6、若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )A .1a >-B .1a -≥C .1a ≤D .1a <7、若不等式组530,0x x m -⎧⎨-⎩≥≥有实数解,则实数m 的取值范围是( )≤53 <53 >53 ≥538、关于x 的不等式组⎩⎪⎨⎪⎧x +152>x -32x +23<x +a 只有4个整数解,则a 的取值范围是 ()$A. -5≤a ≤-143B. -5≤a <-143C. -5<a ≤-143D. -5<a <-143二、填空题1、关于x 的不等式组12x m x m >->+⎧⎨⎩的解集是1x >-,则m = . 2、已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 ____3、已知关于x 的不等式组0321x a x -≥⎧⎨->-⎩有五个整数解,这五个整数是____________,a 的取值范围是________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式与不等式组
一、选择题
1. 如果a 、b 表示两个负数,且a <b ,则( ). (A)1>b a (B)b a <1 (C)b a 11< (D)ab <1
2. a 、b 是有理数,下列各式中成立的是( ).
(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b
(C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b
3. |a |+a 的值一定是( ).
(A)大于零 (B)小于零 (C)不大于零 (D)不小于零
4. 若由x <y 可得到ax >ay ,应满足的条件是( ).
(A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0
5. 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).
(A)a <0 (B)a >-1 (C)a <-1 (D)a <1
6. 九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ).
(A)2人 (B)3人 (C)4人 (D)5人
7. 某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ).
(A)11 (B)8 (C)7 (D)5
8. 若不等式组⎩⎨
⎧>≤<k x x ,21有解,则k 的取值范围是( ). (A)k <2
(B)k ≥2 (C)k <1 (D)1≤k <2 9. 不等式组⎩⎨
⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ). (A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥1
10. 对于整数a ,b ,c ,d ,定义bd ac c d b a -=,已知34
11<<d b ,则b +d 的值为_________. 11. 如果a 2x >a 2y (a ≠0).那么x ______y .
12. 若x 是非负数,则5
231x -≤-的解集是______. 13. 已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______.
14. 6月1日起,某超市开始有偿..
提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..
应付给超市______元. 15. 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.
16. 乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x 页,列出的不等式为______.
17. k 满足______时,方程组⎩⎨
⎧=-=+4,2y x k y x 中的x 大于1,y 小于1. 二、解下列不等式
18. ⋅-->+22531x x ⋅-≥--+6
12131y y y
19. ).1(3
2)]1(21[21-<---x x x x ⋅->+-+2
503.0.02.003.05.09.04.0x x x 三、解不等式组 20. ⎩
⎨⎧≥-≥-.04,012x x ⎩⎨⎧>+≤-.074,03x x 21. ⎪⎩⎪⎨⎧+>-<-.
3342,121x x x x
-5<6-2x <3. 22. ⎪⎩⎪⎨⎧⋅>-<-322,352x x x x ⎪⎩
⎪⎨⎧->---->-.6)2(3)3(2,132x x x x 23. ⎪⎩⎪⎨⎧+>-≤+).
2(28,142x x x .234512x x x -≤-≤- 四、变式练习
24. 若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .
25. .已知关于x ,y 的方程组⎩⎨⎧-=++=+1
34,123p y x p y x 的解满足x >y ,求p 的取值范围.
26. 已知方程组⎩
⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0,求m 的取值范围. 27. 适当选择a 的取值范围,使1.7<x <a 的整数解:
(1) x 只有一个整数解;
(2) x 无解.
28. 当3
10)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集. 29. (类型相同)当k 取何值时,方程组⎩
⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数. 30. (类型相同)已知⎩⎨⎧+=+=+1
22,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.
31. 已知a 是自然数,关于x 的不等式组⎩
⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值. 32. 关于x 的不等式组⎩⎨⎧->-≥-1
23,0x a x 的整数解共有5个,求a 的取值范围.
33. k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10
34. 若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 3
22,3215只有4个整数解,求a 的取值范围.
35. 已知关于x ,y 的方程组⎩⎨⎧-=-+=+3
4,72m y x m y x 的解为正数,求m 的取值范围.
36. 若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 3
22,3215只有4个整数解,求a 的取值范围.
五、解答题
37. 某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产
量,求原来每天最多能生产多少辆汽车?
38. 某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣
分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?
39. 某工人加工300个零件,若每小时加工50个就可按时完成;但他加工2小时后,因事停工40分钟.那么这个工
人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?
40. 一个工程队原定在10天内至少要挖掘600m 3的土方.在前两天共完成了120m 3后,接到要求要提前2天完成掘土
任务.问以后几天内,平均每天至少要挖掘多少土方?
41. 某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;
乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?
42. 若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问
学生有多少人?宿舍有几间?
43. 某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可
获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x 名工人制造甲种零件,其余工人制造乙种零件.
(1) 若此车间每天所获利润为y (元),用x 的代数式表示y .
(2) 若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?
44. 某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别
提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.
(1) 若该单位要印刷2400份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.
(2) 根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?
45. 在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m 2和乙种板材12000m 2的任务.某灾
民安置点计划用该企业生产的这批板材搭建A ,B 两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材及能安置的人数如下表所示:
问:这400。

相关文档
最新文档