1关于实数集完备性的基本定理
实数完备性的六大基本定理的相互证明(共30个)

1 确界原理非空有上(下)界数集,必有上(下)确界。
2 单调有界原理 任何单调有界数列必有极限。
3 区间套定理 若]},{[n n b a 是一个区间套, 则存在唯一一点ξ,使得 ,2,1],,[=∈n b a n n ξ。
4 Heine-Borel 有限覆盖定理 设],[b a 是一个闭区间,H 为],[b a 上的一个开覆盖,则在H 中存在有限个开区间,它构成],[b a 上的一个覆盖。
5 Weierstrass 聚点定理(Bolzano 致密性定理有界无穷数列必有收敛子列。
) 直线上的有解无限点集至少有一个聚点。
6 Cauchy 收敛准则数列}{n a 收敛⇔对任给的正数ε,总存在某一个自然数N ,使得N n m >∀,时,都有ε<-||n m a a 。
一.确界原理1.确界原理证明单调有界定理证 不妨设{ a n }为有上界的递增数列.由确界原理,数列{ a n }有上确界,记a = sup{ a n }.下面证明a 就是{ a n } 的极限. 事实上,任给ε> 0, 按上确界的定 义,存在数列{ a n }中某一项a N ,使得a - ε> a N .又由{ a n }的递增性,当n ≥ N时有a - ε < a N ≤ a n .另一方面,由于a 是{ a n }的一个上界,故对一切a n 都有a n ≤ a < a + ε.所以当 n ≥ N 时有a - ε < a n < a + ε,这就证得a n = a.同理可证有下界的递减数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理 证明:1设 [an,bn] 是一个闭区间套,即满足: 1)∀n,[an+1,bn+1]⊂[an,bn];2)bn-an =我们证明,存在唯一的实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)存在性:令S={an},显然,S非空且有上界(任一bn都是其上界).据确界原理,S有上确界,设sup S =ξ.现在,我们证明ζ属于每个闭区间[an,bn],(n=1,2,⋯)显然an ≤ξ,(n =1,2,⋯)所以,我们只需证明对一切自然数n,都有ξ≤bn. 事实上,因为对一切自然数n,bn都是S 的上界,而上确界是上界中最小者,因此必有 ξ≤bn,故我们证明了存在一实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)唯一性: 假设还有另外一点R ∈'ξ且],[n n b a ∈'ξ,则||||n n b a -≤'-ξξ,0→ 即ξξ'=。
数学分析讲义 - CH07(实数的完备性)

第七章 实数的完备性§1关于实数集完备性的基本定理前面我们学习了:戴德金切割原理、确界原理、单调有界定理、致密性定理、柯西收敛准则,这些命题都是从不同方式反映实数集的一种特性,通常称为实数的完备性或实数的连续性公理。
本节再学习见个实数的完备性公理,即区间套定理、聚点定理、有限覆盖定理。
最后我们要证明这些命题都是等价的。
一、区间套定理]}定义1 设闭区间列具有如下性质: [{n n b a ,(i) []n n b a ,[]11,++⊃n n b a , ,2,1=n ; (ii) 0)(lim =-∞→n n n a b ,则称为闭区间套,或简称区间套。
[{n n b a ,]} 这里性质(¡)表明,构成区间套的闭区间列是前一个套着后一个,即各闭区间的端点满足如下不等式:.1221b b b a a a n n ≤≤≤≤≤≤≤≤ (1) 左端点{}n a 是单调递增的点列,右端点{}n b 是单调递减的点列。
定理1 (区间套定理) 若是一个区间套,则在实数系中存在唯一的一点[{n n b a ,]}ξ,使得ξ∈[]n n b a ,,,即,2,1=n ξ≤n a n b ≤, .,2,1 =n (2) 证 (由柯西收敛准则证明)设是一区间套.下面证明[{n n b a ,]}{}n a 是基本点列。
设,由区间套的条件(i)得m n >()()()()m n m n m m n n m m a a b a b a b a b a -=---≤---再由区间套的条件(ii ),易知{}n a 是基本点列。
按Cauchy 收敛准则,{}n a 有极限,记为ξ。
于是()lim lim ()lim n n n n n n n n b b a a a ξ→∞→∞→∞=-+==由{}n a 单调递增,{}n b 单调递减,易知ξ≤n a n b ≤,.,2,1 =n下面再证明满足(2)的ξ是唯一的。
《数学分析》第七章 实数基本定理

第七章 实数基本定理 ( 1 8 时)§1 关于实数集完备性的基本定理( 4 时 )一. 确界存在定理:回顾确界概念.Th 1 非空有上界数集必有上确界;非空有下界数集必有下确界.二. 单调有界原理: 回顾单调和有界概念 .Th 2 单调有界数列必收敛.三. Cantor 闭区间套定理:1. 区间套: 设} ] , [ {n n b a 是一闭区间序列. 若满足条件ⅰ> 对n ∀, 有 ] , [11++n n b a ⊂] , [n n b a , 即 n n n n b b a a ≤<≤++11, 亦即 后一个闭区间包含在前一个闭区间中;ⅱ> ,0→-n n a b )(∞→n . 即当∞→n 时区间长度趋于零.则称该闭区间序列为一个递缩闭区间套, 简称为区间套 .简而言之, 所谓区间套是指一个 “闭、缩、套” 区间列.区间套还可表达为:, 1221b b b a a a n n ≤≤≤≤<≤≤≤≤ ,0→-n n a b )(∞→n . 注:这里涉及两个数列} {n a 和 } {n b , 其中} {n a 递增,} {n b 递减.例如 } ] 1 , 1 [ {n n -和} ] 1 , 0 [ {n 都是区间套.但} ] 21 , ) 1 (1 [ {nn n +-+、} ] 1 , 0 ( {n 和 } ] 11 , 1 [ {nn +-都不是. 2. Cantor 区间套定理:Th 3设} ] , [ {n n b a 是一闭区间套. 则存在唯一的点ξ,使对n ∀有∈ξ] , [n n b a .简言之, 区间套必有唯一公共点.四. Cauchy 收敛准则 —— 数列收敛的充要条件:1. 基本列:回顾基本列概念.基本列的直观意义.基本列亦称为Cauchy 列. Cauchy 列的否定:2. Cauchy 收敛原理:Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.五. 致密性定理:数集的聚点(亦称为接触点):定义 设E 是无穷点集. 若在点ξ(未必属于E )的任何邻域内有E 的无穷多个点, 则称点ξ为E 的一个聚点.数集E =} 1{n有唯一聚点0, 但E ∉0; 开区间 ) 1 , 0 (的全体聚点之集是闭区间 ] 1 , 0 [; 设Q 是] 1 , 0 [中全体有理数所成之集, 易见Q 的聚点集是闭区间] 1 , 0 [.1. 列紧性: 亦称为Weierstrass 收敛子列定理.Th 5 ( Weierstrass ) 任一有界数列必有收敛子列.2. 聚点原理 : Weierstrass 聚点原理.Th 6 每一个有界无穷点集必有聚点.六. Heine –Borel 有限复盖定理:复盖: 先介绍区间族} , {Λ∈=λλI G .定义 (复盖 )设E 是一个数集,G 是区间族.若对∍Λ∈∃∈∀ , , λE x λI x ∈,则称区间族G 复盖了E , 或称区间族G 是数集E 的一个复盖. 记为. ,Λ∈⊂λλλI E 若每个λI 都是开区间,则称区间族G 是开区间族.开区间族常记为}, , ) , ( { Λ∈<=λβαβαλλλλM . 定义 (开复盖 )数集E 的一个开区间族复盖称为E 的一个开复盖,简称为E 的一个复盖.子复盖、有限复盖、有限子复盖.例1 } ) 1 , 0 ( ), 23 , 2 ( {∈=x x x M 复盖了区间) 1 , 0 (, 但不能复盖] 1 , 0 [; } ) , ( , ) 2 , 2 ( {b a x x b x x b x H ∈-+--=复盖) , [b a , 但不能复盖] , [b a . 1. Heine –Borel 有限复盖定理:Th 7 闭区间的任一开复盖必有有限子复盖.七 实数基本定理等价性的证明证明若干个命题等价的一般方法.本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行:Ⅰ: 确界原理 ⇒ 单调有界原理 ⇒ 区间套定理 ⇒ Cauchy 收敛准则 ⇒ 确界原理 ;Ⅱ: 区间套定理 ⇒ 致密性定理 ⇒ Cauchy 收敛准则 ;Ⅲ: 区间套定理 ⇒ Heine –Borel 有限复盖定理 ⇒ 区间套定理 .一. “Ⅰ” 的证明: (“确界原理 ⇒ 单调有界原理”已证明过 ).1. 用“确界原理”证明“单调有界原理”:Th 2 单调有界数列必收敛 .证2. 用“单调有界原理”证明“区间套定理”:Th 3 设} ] , [ {n n b a 是一闭区间套. 则存在唯一的点ξ,使对n ∀有∈ξ] , [n n b a . 证推论1 若∈ξ] , [n n b a 是区间套} ] , [ {n n b a 确定的公共点, 则对0>∀ε,,N ∃当N n >时, 总有] , [n n b a ) , (εξ ⊂.推论 2 若∈ξ] , [n n b a 是区间套} ] , [ {n n b a 确定的公共点,则有n a ↗ξ, n b ↘ξ, ) (∞→n .3. 用“区间套定理”证明“Cauchy 收敛准则”:Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.引理 Cauchy 列是有界列. ( 证 )Th 4 的证明: ( 只证充分性 ) 教科书P 217—218上的证明留作阅读.现采用[3]P 70—71例2的证明, 即三等分的方法, 该证法比较直观.4. 用“Cauchy 收敛准则” 证明“确界原理” :Th 1 非空有上界数集必有上确界 ;非空有下界数集必有下确界 .证 (只证“非空有上界数集必有上确界”)设E 为非空有上界数集 . 当E 为有 限集时 , 显然有上确界 .下设E 为无限集, 取1a 不是E 的上界, 1b 为E 的上界. 对 分区间] , [11b a , 取] , [22b a , 使2a 不是E 的上界, 2b 为E 的上界. 依此得闭区间列} ] , [ {n n b a . 验证} {n b 为Cauchy 列, 由Cauchy 收敛准则,} {n b 收敛; 同理} {n a 收敛. 易见n b ↘. 设n b ↘β.有 n a ↗β.下证β=E sup .用反证法验证β的上界性和最小性.二. “Ⅱ” 的证明:1. 用“区间套定理”证明“致密性定理”:Th 5 ( Weierstrass ) 任一有界数列必有收敛子列.证 ( 突出子列抽取技巧 )Th 6 每一个有界无穷点集必有聚点.证 ( 用对分法 )2.用“致密性定理” 证明“Cauch y 收敛准则” :Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.证 (只证充分性)证明思路 :Cauchy 列有界→ 有收敛子列→验证收敛子列的极限即为} {n a 的极限.Ex [1]P 223—224 1—7,11.三. “Ⅲ” 的证明:1. 用“区间套定理”证明“Heine –Borel 有限复盖定理”:证2. 用“Heine –Borel 有限复盖定理” 证明“区间套定理”:证 采用[3]P 72例4的证明.Ex [1]P 224 8—12 选做,其中 1 0 必做.§3 闭区间上连续函数性质的证明 ( 4 时 )一. 有界性:命题1 ] , [)(b a C x f ∈, ⇒ 在] , [b a 上)(x f =) 1 (O .证法 一 ( 用区间套定理 ). 反证法.证法 二 ( 用列紧性 ). 反证法.证法 三 ( 用有限复盖定理 ).二. 最值性:命题2 ] , [)(b a C x f ∈⇒)(x f 在] , [b a 上取得最大值和最小值. (只证取得最大值) 证( 用确界原理) 参阅[1]P 170.三. 介值性: 证明与其等价的“零点定理 ”.命题3 (零点定理)证法一(用区间套定理).证法二(用确界原理).不妨设,0)(>a f 0)(<b f .令} ] , [ , 0)( | {b a x x f x E ∈>=, 则E 非空有界, ⇒ E 有上确界. 设E sup =ξ,有∈ξ] , [b a . 现证 0)(=ξf , ( 为此证明)(ξf 0≥且)(ξf 0≤ ).取n x >ξ且n x ) ( ,∞→→n ξ.由)(x f 在点ξ连续和0)(≤n x f ,⇒,0)(lim )(≤=∞→n n x f f ξ,⇒ξE ∉.于是) ( , ∞→→∍∈∃n t E t n n ξ. 由)(x f 在点ξ连续和0)(>n t f ,⇒0)(lim )(≥=∞→n n t f f ξ.因此只能有0)(=ξf . 证法三 (用有限复盖定理).Ex [1]P 232 1,2,5.四. 一致连续性:命题4 ( Cantor 定理 )证法一 (用区间套定理).参阅[1]P 171[ 证法一 ]证法二 (用列紧性).参阅[1]P 171[ 证法二 ]Ex [1]P 232 3,4, 6*;P 236 1,2,4.。
实数的完备性

不存在 S,
使 1 . n
例:②设
I (0,1),S ( { 1 ,1)n 1,2,3 }. n1
则开区间集S覆盖区间I,
x (0,1), 只要自然数m充分大,有
1 x m 1
即x ( 1 ,1) m1
定理7.3 (海涅—博雷尔(Heine-Borel)有限覆盖定理) 闭区间[a, b]的任一开覆盖H,必可从H中选 出有限个开区间覆盖[a, b]。
它是区间(a, b)的一个无限开覆盖。
又如:(0,2),(1,3), ,(n 1, n 1),
3
24
n n2
是区间(0, 1)的一个无限开覆盖。
例:①设
I (0,1),S ( { 1 ,1)n 1,2,3 }. n1 n
则开区间集S没有覆盖区间I,
1 (0,1), n
取 n min{ 1/ n,| xn1 |},则xn U ( ; n ) S,
且xn与x1,x2, xn1互异,
无限地重复以上步骤,得到S中各项互异的数列 { xn },
且满足:|
xn
|
n
1, n
从而
lim
n
xn
.
证毕。
定理7.2 (魏尔斯特拉斯(weierstrass)聚点定理)
n 即数列的单调有界定理在有理数域不成立。
3. {(1 1 )n }也是满足Cauchy条件的有理数列, n
但其极限是无理数e.
即柯西收敛准则在有理数域不成立。
本节介绍刻画实数完备性的另外三个定理:区间套定 理、聚点定理和有限覆盖定理,
还将证明这六个基本定理的等价性。
一、 区间套定理与柯西收敛准则
(数学分析教案)第七章

第七章 实数的完备性(9学时)§1 关于实数完备性的基本定理教学目的要求: 掌握实数完备性的基本定理的内容,知道其证明方法.教学重点、难点:重点实数完备性的基本定理.难点是定理的证明,特别是柯西收敛准则和充分性的证明.. 学时安排: 4学时 教学方法: 讲授法. 教学过程如下:一、区间套定理与柯西收敛准则定义1 设闭区间列{[,]}n n a b 具有如下性质: (1)11[,][,],1,2,;n n n n a b a b n ++⊃= (2)lim ()0n n n b a →∞-=则称{[,]}n n a b 为闭区间套,或简称区间套.定理7.1(区间套定理) 若{[,]}n n a b 是一个区间套,则在实数系中存在唯一的一点ξ使得[,],1,2,n n a b n ξ∈= ,即 ,1,2,.n n a b n ξ≤≤=证: 先证存在性{[,]}nn ab 是一个区间套, 所以 1221,n n a a a b b b ≤≤≤≤≤≤≤≤∴可设lim n n a ξ→∞=且由条件2有lim lim ()lim n n n n n n n n b b a b a ξ→∞→∞→∞=-+==由单调有界定理的证明过程有,1,2,.n n a b n ξ≤≤= 再证唯一性设ξ'也满足,1,2,.n n a b n ξ'≤≤= 那么,,1,2,.n n b a n ξξ'-≤-= 由区间套的条件2得lim ()0n n n b a ξξ→∞'-≤-=故有ξξ'=推论 若[,](1,2,)n n a b n ξ∈= 是区间套{[,]}n n a b 所确定的点,则对任给的0ε>,存在0N >,使得当n N >时有[,](,)n n a b U ξε⊂柯西收敛准则 数列{}n a 收敛的充要条件是: 对任给的0ε>,存在0N >,使得对,m n N >有 ||m n a a ε-<.证 [必要性] 略.[充分性] 已知条件可改为:对任给的0ε>,存在0N >,使得对,m n N ≥有||m n a a ε-≤.取m N =,有对任给的0ε>,存在0N >,使得对n N ≥有||m n a a ε-≤,即 在区间[,]N N a a εε-+内含有{}n a 中几乎所有的项(指的是{}n a 中除有限项的所有项)∴令12ε=则存在1N ,在区间1111[,]22N N a a -+内含有{}n a 中几乎所有的项,记该区间为11[,]αβ. 再令212ε=则存在21()N N >,在区间112211[,]22N N a a -+内含有{}n a 中几乎所有的项,记该区间为1122112211[,][,][,]22N N a a αβαβ=-+也含有{}n a 中几乎所有的项,且满足1122[,][,]αβαβ⊃及221.2βα-≤依次继续令311,,,,22nε=得一区间列{[,]}n n αβ,其中每个区间中都含有{}n a 中几乎所有的项,且满足11[,][,],1,2,;n n n n n αβαβ++⊃=110(),2n n n n βα--≤→→∞即时{[,]}n n αβ是区间套.由区间套定理,存在唯一的一个数[,],1,2,n n n ξαβ∈= . 再证lim n n a ξ→∞=.由定理7.1的推论对任给的0ε>,存在0N >,使得当n N >时有[,](,)n n U αβξε⊂即在(,)U ξε内含{}n a 中除有限项的所有项,由定义1'lim n n a ξ→∞=. 二、聚点定理与有限覆盖定理定义 2 设S 为数轴上产的点集,ξ为定点,若ξ的任何邻域内都有含有S 中无穷多个点,则称ξ为点集S 的一个聚点.例如:1{(1)}nn -+有两聚点1,1ξξ==-.1{}n 有一个聚点0ξ=.(,)a b 内的点都是它的聚点,所以开区间集(,)a b 有无穷多个聚点. 聚点的等价定义;定义2'对于点集S ,若点ξ的任何ε邻域内都含有S 中异于ξ的点,即(;)U S ξε≠∅ ,则称ξ为S 的一个聚点.定义2''若存在各项互异的数列{}n x S ⊂,则其极限lim n n x ξ→∞=称为S 的一个聚点.三个定义等价性的证明: 证明思路为:2222'''⇒⇒⇒.定义22'''⇒的证明:由定义2'设ξ为S 的一个聚点,则对任给的0ε>,存在0(,)x U S ξε∈ .令11ε=,则存在01(,)x U S ξε∈ ;令211m in(,||)2x εξ=-,则存在022(;)x U S ξε∈ ,且显然21x x ≠;令11m in(,||)2n n x εξ-=-,则存在0(;)n n x U S ξε∈ ,且显然n x 与11,,n x x - 互异;得S 中各项互异的数列{}n x ,且由1||n n n x n ξε-<≤,知lim n n x ξ→∞=.由闭区间套定理可证聚点定理.定理7.2 (Weierstrass 聚点定理) 实数轴上的任一有界无限点集S 致少有一个聚点. 证 S 有界, ∴存在0M >,使得[,]S M M ⊂-,记11[,][,]a b M M =-,将11[,]a b 等分为两个子区间.因S 为无限点集,故意两个子区间中至少有一个含有S 中无穷多个点,记此子区间为22[,]a b ,则1122[,][,]a b a b ⊃且122112()b a b a M -=-=.再将22[,]a b 等分为两个子区间,则其中至少有一个含有S 中无穷多个点,取出这样一个子区间记为33[,]a b ,则2233[,][,]a b a b ⊃,且133222()2M b a b a -=-=依次继续得一区间列{[,]}n n a b ,它满足:11[,][,],1,2,;n n n n a b a b n ++⊃= 20(),2n n n M b a n --=→→∞即{[,]}n n a b 为闭区间套,且其中每一个闭区间都含有S 中无穷多个点.由区间套定理, 存在唯一的一点ξ使得[,],1,2,n n a b n ξ∈= .由定理1的推论, 对任给的0ε>,存在0N >,使得当n N >时有[,](,)n n a b U ξε⊂.从而(;)U ξε含有S 中无穷多个点按定义2ξ为S 的一个聚点.推论(致密性定理) 有界数列必含有收敛子列.证: 设{}n x 为有界数列.若{}n x 中有无限多个相等的项,显然成立.若数列{}n x 中不含有无限多个相等的项,则{}n x 在数轴上对应的点集必为有界无限点集,故由聚点定理,点集{}n x 至少有一个聚点,记为ξ.由定义2'',存在{}n x 的一个收敛子列(以ξ为极限).由致密性定理证柯西收敛准则的充分性.柯西收敛准则 数列{}n a 收敛的充要条件是: 对任给的0ε>,存在0N >,使得对,m n N >有 ||m n a a ε-<.证: [充分性] 先证{}n a 有界,由忆知条件取1ε=,则存在正整数N, 则1m N =+及n N >时有1||1n N a a +-<由此得111||||1||n n N N N a a a a a +++=-+<+.取121m ax{||,||,,||,1||}N N M a a a a +=+ 则对一切的正整数n 均有||n a M ≤. 再证{}n a 收敛,由致密性定理,数列{}n a 有收敛子列{}k n a ,设lim k n k a A→∞=由条件及数列极限的定义, 对任给的0ε>,存在0K >,使得对,,m n k N >有||m n a a ε-<,||k n a A ε-<取()k m n k K =≥>时得到 ||||||2kkn n n n a A a a a A ε-≤-+-<所以lim k n k a A→∞=定义3 设S 为数思轴上的点集,H 为开区间集合(即H 的每一个元素都是形如(,)αβ的开区间).若S 中的任何一个点都有含在H 中至少一个开区间内,则称H 为S 的一个开覆盖,( H 覆盖S ).若H 中开区间的个数是无限的(有限)的,则称H 为S 的一个无限开覆盖(人限开覆盖).如(,),S a b ={(,)|(,)},x x H x x x a b δδ=-+∈H 为S 的一个无限开覆盖.定理7.3(海涅---博雷尔(Heine-Borel)有限覆盖定理) 设H 为闭区间[,]a b 的一个(无限)开覆盖,则从H 中可选出有限个开区间来覆盖[,]a b .证 用反证法 设定理的结论不成立,即不能用H 中有限个开区间来覆盖[,]a b . 将[,]a b 等分为两个子区间,其中至少有一个不区间不能用H 中有限个开区间来覆盖.记这个子区间为11[,]a b ,则11[,][,]a b a b ⊂,且111()2b a b a -=-.再将11[,]a b 等分为两个子区间,同样,其中至少有一个不区间不能用H 中有限个开区间来覆盖.记这个子区间为22[,]a b ,则2211[,][,]a b a b ⊂,且2221()2b a b a -=-.依次继续得一区间列{[,]}n n a b ,它满足:11[,][,],1,2,;n n n n a b a b n ++⊃= 1()0(),2n n nb a b a n -=-→→∞即{[,]}n n a b 为闭区间套,且其中每一个闭区间都不能用H 中有限个开区间来覆盖 由闭区间套定理, 存在唯一的一点ξ使得[,],1,2,n n a b n ξ∈= ,由于H 为闭区间[,]a b 的一个(无限)开覆盖,故存在(,),H αβ∈使得(,)ξαβ∈.于是,由定理7.1的推论,当n 充分大时有[,](,)n n a b αβ⊂.即用H 中一个开区间就能覆盖[,]n n a b 矛盾.课后记:这一节理论性强,学生学习困难较大,我认为应从以下几个方面和学生共同学习这一节.1 如何理解记忆定理内容.2 如何掌握定理的证明方法.3 怎样应用定理及定理的证明方法去解决问题.在应用闭区间套定理时,应先构造一个闭区间套,构造的方法一般是二等分法,在应用有限覆盖定理时,应先构造一个开覆盖构造的方法一般与函数的连续性定义结合.应用聚点定理时,应先构造一数列等.教材中P 16322[,]αβ中包含{}n a 的几乎所有项,是因为它中包含{}n a 的第2N 项以后的所有项,这里应强掉,容易被忽略.在下节的教学中就让学一注意到在什么时候用实数的完备性定理,这是一个难点,重点.三、 实数基本定理等价性的证明(未讲)证明若干个命题等价的一般方法.本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行: Ⅰ: 确界原理单调有界原理区间套定理Cauchy 收敛准则确界原理 ; Ⅱ: 区间套定理 致密性定理Cauchy 收敛准则 ;Ⅲ: 区间套定理Heine –Borel 有限复盖定理区间套定理 .一. “Ⅰ” 的证明: (“确界原理 单调有界原理”已证明过 ).1. 用“确界原理”证明“单调有界原理”: 定理7.4 单调有界数列必收敛 .2. 用“单调有界原理”证明“区间套定理”: 定理 7.5 设是一闭区间套. 则存在唯一的点,使对有.推论1 若是区间套确定的公共点, 则对,当时, 总有.推论2 若是区间套确定的公共点, 则有↗,↘,. 3. 用“区间套定理”证明“Cauchy 收敛准则”:定理 7.6数列收敛是Cauchy列.引理Cauchy列是有界列. ( 证 )定理 7.6 的证明: ( 只证充分性 ) 教科书P217—218上的证明留作阅读 . 现采用三等分的方法证明,该证法比较直观.4.用“Cauchy收敛准则”证明“确界原理”:定理7.7非空有上界数集必有上确界;非空有下界数集必有下确界 .证(只证“非空有上界数集必有上确界”)设为非空有上界数集 . 当为有限集时 , 显然有上确界 .下设为无限集, 取不是的上界, 为的上界. 对分区间, 取, 使不是的上界, 为的上界. 依此得闭区间列. 验证为Cauchy列, 由Cauchy收敛准则,收敛; 同理收敛. 易见↘. 设↘.有↗.下证.用反证法验证的上界性和最小性.二. “Ⅱ”的证明:1. 用“区间套定理”证明“致密性定理”:定理7.8 (Weierstrass )任一有界数列必有收敛子列.证(突出子列抽取技巧)定理7.9每一个有界无穷点集必有聚点.2.用“致密性定理”证明“Cauchy收敛准则”:定理7.10数列收敛是Cauchy列.证(只证充分性)证明思路:Cauchy列有界有收敛子列验证收敛子列的极限即为的极限.三.“Ⅲ”的证明:1. 用“区间套定理”证明“Heine–Borel 有限复盖定理”:2. 用“Heine–Borel 有限复盖定理”证明“区间套定理”:§2 闭区间上连续函数性质的证明教学目的要求:掌握定理的证明方法.教学重点、难点:重点是定理的证明方法,难点是什么情况下用哪一个定理.学时安排: 2学时教学方法: 讲授法.教学过程:一. 有界性:命题1 , 在上.证法一 ( 用区间套定理 ). 反证法.证法二 ( 用列紧性 ). 反证法.证法三 ( 用有限复盖定理 ).二.最值性:命题2 , 在上取得最大值和最小值.( 只证取得最大值 )证 ( 用确界原理 ) 参阅[1]P226[ 证法二 ] 后半段.三.介值性:证明与其等价的“零点定理”.命题3 ( 零点定理 )证法一 ( 用区间套定理 ) .证法二 ( 用确界原理 ). 不妨设.令, 则非空有界, 有上确界. 设有. 现证, ( 为此证明且). 取>且.由在点连续和, ,. 于是. 由在点连续和,. 因此只能有.证法三 ( 用有限复盖定理 ).四.一致连续性:命题4 ( Cantor定理 )证法一 ( 用区间套定理 ) .证法二 ( 用列紧性 ).五.实数基本定理应用举例:例1 设是闭区间上的递增函数, 但不必连续 . 如果,, 则, 使. ( 山东大学研究生入学试题 )证法一 ( 用确界技术 . 参阅[3] P76例10 证法1 )设集合. 则, 不空 ; ,有界 . 由确界原理 ,有上确界. 设, 则.下证.ⅰ)若, 有; 又, 得.由递增和, 有, 可见. 由,. 于是 , 只能有.ⅱ)若, 则存在内的数列, 使↗, ; 也存在数列, ↘,. 由递增, 以及, 就有式对任何成立 . 令, 得于是有.证法二 ( 用区间套技术, 参阅[3] P77例10 证法2 ) 当或时,或就是方程在上的实根 . 以下总设. 对分区间, 设分点为. 倘有, 就是方程在上的实根.(为行文简练计, 以下总设不会出现这种情况 ) . 若, 取; 若, 取, 如此得一级区间. 依此构造区间套, 对,有. 由区间套定理, , 使对任何,有.现证.事实上, 注意到时↗和↘以及递增,就有.令, 得于是有.例2 设在闭区间上函数连续, 递增 , 且有,. 试证明: 方程在区间内有实根 .证构造区间套,使.由区间套定理,, 使对,有. 现证. 事实上, 由在上的递增性和的构造以及↗和↘,, 有.注意到在点连续,由Heine归并原则, 有,, . 为方程在区间内的实根.例3 试证明: 区间上的全体实数是不可列的 .证 ( 用区间套技术, 具体用反证法 ) 反设区间上的全体实数是可列的,即可排成一列:把区间三等分,所得三个区间中至少有一个区间不含,记该区间为一级区间. 把区间三等分,所得三个区间中至少有一个区间不含,记该区间为二级区间. …… .依此得区间套, 其中区间不含. 由区间套定理,, 使对, 有. 当然有. 但对有而, . 矛盾.习题课( 3学时)一.实数基本定理互证举例:例4 用“区间套定理”证明“单调有界原理”.证设数列递增有上界. 取闭区间, 使不是的上界, 是的上界. 易见在闭区间内含有数列的无穷多项, 而在外仅含有的有限项. 对分, 取使有的性质.…….于是得区间套,有公共点. 易见在点的任何邻域内有数列的无穷多项而在其外仅含有的有限项, .例5 用“确界原理”证明“区间套定理”.证为区间套. 先证每个为数列的下界, 而每个为数列的上界. 由确界原理 , 数列有上确界, 数列有下确界 .设, .易见有和.由,.例6 用“有限复盖定理”证明“聚点原理”.证 ( 用反证法 ) 设为有界无限点集, . 反设的每一点都不是的聚点, 则对, 存在开区间, 使在内仅有的有限个点. …… .例7 用“确界原理”证明“聚点原理”.证设为有界无限点集. 构造数集中大于的点有无穷多个.易见数集非空有上界, 由确界原理, 有上确界. 设. 则对,由不是的上界中大于的点有无穷多个; 由是的上界,中大于的点仅有有限个. 于是, 在内有的无穷多个点,即是的一个聚点 .课后记强掉应先构造闭区间套、构造开覆盖、构造数列等的方法.通过大量的例子让同学们体会在什么时候用哪一个定理.。
第七章 实数完备性

第七章实数的完备性§1 关于实数完备性的基本定理一、问题提出定理1.1(确界原理)非空有上(下)界的数集必有上(下)确界.确界存在定理(定理 1.1)揭示了实数的连续性和实数的完备性. 与之等价的还有五大命题,这就是以下的定理1.2至定理1.6.定理1.2 (单调有界定理)任何单调有界数列必定收敛.定理1.3 (区间套定理)设为一区间套:.则存在唯一一点定理1.4 (有限覆盖定理)设是闭区间的一个无限开覆盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖.定理1.5 (聚点定理)直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6 (柯西准则)数列收敛的充要条件是:,只要恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.)这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.下图中有三种不同的箭头,其含义如下::(1)~(3) 基本要求类:(4)~(7) 阅读参考类:(8)~(10) 习题作业类二、回顾确界原理的证明我们曾引入有界数集的确界概念,今证明它的存在性(记号a 、b 、c 表示实数) Dedekind 定理设A/B 是R 的一个切割,则比存在实数R ε∈使得(,]A ε=-∞,(,)B ε=+∞或(,)A ε=-∞,[,)B ε=+∞无其它可能.1 非空有上界的数集E 必存在上确界.证明 设}{x E =非空,有上界b : E x ∈∀,b x ≤. (1) 若E 中有最大数0x ,则0x 即为上确界;(2) 若E 中无最大数,用下述方法产生实数的一个分划;取E 的一切上界归入上类B ,其余的实数归入下类A ,则)|(B A 是实数的一个分划.ο1 A 、B 不空.首先B b ∈.其次E x ∈∀,由于x 不是E 的最大数,所以它不是E 的上界,即A x ∈.这说明E 中任一元素都属于下类A ;ο2 A 、B 不漏性由A 、B 定义即可看出;ο3 A 、B 不乱.设A a ∈,B b ∈.因a 不是E 的上界,E x ∈∃,使得x a <,而E 内每一元素属于A ,所以b x a <<.ο4 由ο3的证明可见A 无最大数.所以)|(B A 是实数的一个分划.由戴德金定理,知上类B 必有最小数,记作c .E x ∈∀,由ο1知A x ∈,即得c x <.这表明c 是E 的一个上界.若b 是E 的一个上界,则B b ∈,由此得b c ≤,所以c 是上界中最小的,由上确界定义,c 为集合E 的上确界,记作 E c sup =.推论 非空的有下界的集合必有下确界.事实上,设集合}{x E =有下界b ,则非空集合}|{'E x x E ∈-=有上界b -,利用集合'E 上确界的存在性,即可得出集合E 的下确界存在.定理1解决了非空有上界集合的上确界存在性问题,我们可以利用上确界的存在性,得出我们所研究的某一类量(如弧长)的存在性.若全序集中任一非空有上界的集合必有上确界,我们称该全序集是完备的.定理1刻划了实数集是完备的.例1 证明实数空间满足阿基米德原理.证明 0>>∀a b ,要证存在自然数n 使b na >.假设结论不成立,即b na ≤, ),,Λ21(=n ,则数集}{na E =有上界b ,因此有上确界c ,使c na ≤),,Λ21(=n ,也就有c a n ≤+)1(),,Λ21(=n ,或 a c na -≤ ),,Λ21(=n .这表明a c -是集合E 的上界,与c 是上确界矛盾.所以总存在自然数n ,使b na >. 三、等价命题证明下面来完成(1)~(7)的证明. (一) 用确界定理证明单调有界定理设}{n x 单调上升,即ΛΛ≤≤≤≤≤n x x x x 321,有上界,即M ∃,使得M x n ≤.考虑集合}|{N n x E n ∈=,它非空,有界,定理2推出它有上确界,记为nN n x a ∈=sup .我们验证 nn x a ∞→=lim .0>∀ε,由上确界的性质,N ∃,使得N x a <-ε,当N n >时,由序列单调上升得n N x x a ≤<-ε,再由上确界定义,ε+<≤a a x n ,有 εε+<<-a x a n ,即ε<-a x n ,也就是说 nN n n n x a x ∈∞→==sup lim . 同理可证若}{n x 单调下降,有下界,也存在极限,且nN n n n x x ∈∞→=inf lim .若集合E 无上界,记作+∞=E sup ;若集合E 无下界,记作+∞=E inf ,这样一来,定理2证明了的单调上升(下降)有上界(下界)的序列}{n x ,必有极限)inf (sup n N x n N x x x ∈∈的定理现在有了严格的理论基础了.且对单调上升(下降)序列}{n x ,总有)inf (sup lim n Nx n Nx n n x x x ∈∈+∞→=.(二) 用单调有界定理证明区间套定理由假设(1)知,序列}{n a 单调上升,有上界1b ;序列}{n b 单调下降,有下界1a .因而有1lim c a n n =+∞→,2lim c b n n =+∞→. n n b c c a ≤≤≤21.再由假设(2)知0)(lim 12=-=-+∞→c c a b n n n ,记c c c ==21. 从而有nn n n b c a +∞→+∞→==lim lim .若还有*c 满足n n b c a ≤≤*,令+∞→n ,得c c =*.故c 是一切],[n n b a 的唯一公共点.证毕.这个定理称为区间套定理.关于定理的条件我们作两点说明:(1) 要求],[n n b a 是有界闭区间的这个条件是重要的.若区间是开的,则定理不一定成立.如)1,0(),(n b a n n =.显然有 )1,0()11,0(n n ⊂+, 但 φ=+∞=)1,0(1n n I .如果开区间套是严格包含: n n n n b b a a <<<++11,这时定理的结论还是成立的.(2)若],[],[11n n n n b a b a ⊂++),,Λ21(=n ,但0)(lim ≠-+∞→n n n a b ,此时仍有1lim c a n n =+∞→,2lim c b n n =+∞→,但21c c <,于是对任意的c ,21c c c ≤≤,都有],[1n n n b a c +∞=∈I . 全序集中任一区间长趋于零的区间套有非空交集,则称该全序集是完备的,定理3刻划实数集是完备的(这里完备定义与上段完备定义是等价的).定理3也给出通过逐步缩小搜索范围,找出所求点的一种方法.推论 设为一区间套,.则当时,恒有.用区间套定理证明其他命题时,最后常会用到这个推论.例2 序列}{n x 由下列各式a x =1,b x =2,221--+=n n n x x x ),,Λ43(=n所确定(见下图).证明极限n n x+∞→lim 存在,并求此极限.1x 3x 5x 4x 2x x证明 当b a =时,a x n =,故ax n n =+∞→lim .当b a ≠时,若取),min(1n n n x x a +=,),m ax (1n n n x x b +=,),,Λ21(=n .则由条件,显然可得一串区间套:],[],[11n n n n b a b a ⊂++ ),,Λ21(=n .由已知条件)(212111--+--=-+=-n n n n n n n x x x x x x x ,于是,)(0||21||21||21||21||112121211+∞→→-=-==-=-=-=------+n a b x x x x x x x x a b n n n n n n n n n n Λ由区间套定理,存在c 满足: n n n n b c a +∞→+∞→==lim lim .注意到],[n n n b a x ∈,所以 c x n n =+∞→lim . 下面来求c .由)(2111-+--=-n n n n x x x x ,令132-=k n ,,,Λ得一串等式: )(211223x x x x --=-; )(212334x x x x --=-;ΛΛΛΛΛΛ)(21211-----=-k k k k x x x x .将它们相加,得 )(21112x x x x k k --=--,令+∞→k ,得)(2112x c x c --=-所以)2(31323121b a x x c +=+=.(三) 用区间套定理证明确界原理证明思想:构造一个区间套,使其公共点即为数集的上确界.设, 有上界.取;,再令如此无限进行下去,得一区间套.可证:因恒为的上界,且,故,必有,这说明是的上界;又因,故,而都不是的上界,因此更不是的上界.所以成立.[证毕]*(四) 用区间套定理证明有限覆盖定理设为闭区间的一个无限开覆盖.反证法假设:“不能用中有限个开区间来覆盖”.对采用逐次二等分法构造区间套,的选择法则:取“不能用中有限个开区间来覆盖”的那一半.由区间套定理,.导出矛盾:使记由[推论],当足够大时,这表示用中一个开区间就能覆盖,与其选择法则相违背.所以必能用中有限个开区间来覆盖.说明当改为时,或者不是开覆盖时,有限覆盖定理的结论不一定成立.例如:1) .是开区间的一个无限开覆盖,但不能由此产生的有限覆盖.2) .是的一个无限覆盖,但不是开覆盖,由此也无法产生的有限覆盖.* (五) 用有限覆盖定理证明聚点定理设为实轴上的有界无限点集,并设.由反证法假设来构造的一个无限开覆盖:若有聚点,则.现反设中任一点都不是的聚点,即在内至多只有.这样,就是的一个无限开覆盖.用有限覆盖定理导出矛盾:据定理9,存在为的一个有限开覆盖(同时也覆盖了).由假设,内至多只有所属个邻域内至多只有属于(即只覆盖了中有限个点).这与覆盖了全部中无限多个点相矛盾.所以,有界无限点集必定至少有一个聚点.[证毕]推论(致密性定理)有界数列必有收敛子列.即若为有界数列,则使有.子列的极限称为原数列的一个极限点,或称聚点注数列的聚点与一般点集的聚点,含义稍有不同.数列的聚点定义为:“,在内含有中无限多个项,则为的一个聚点.”在此意义下,对于数列它有两个收敛子列:和,.它们的极限和就是的两个聚点.证}{n a 有界,则存在数11,y x 使得11y a x n ≤≤对n ∀成立.将],[11y x 二等分为]2,[111y x x +、],2[111y y x +,则其中必有一个含有数列}{n a 的无穷多项,记为],[22y x ;再将],[22y x 二等分为]2,[222y x x +、],2[222y y x +,同样其中至少有一个含有数列}{n a 的无穷多项,把它记为],[33y x ,……一直进行这样的步骤,得到一闭区间套]},{[n n y x ,其中每一个],[n n y x 中都含有数列}{n a 的无穷多项,且满足:⑴ ],[11y x ⊃],[22y x ⊃⊃Λ],[n n y x ⊃…⑵111lim()lim02n n n n n y x y x -→∞→∞--==则由闭区间套定理,ξ∃使得 =∞→n n a lim =∞→n n b lim ξ 下证}{n a 中必有一子列收敛于实数ξ先在],[11y x 中选取}{n a 的某一项,记为1n a ,因],[22y x 中含有}{n a 中的无穷多项,可选取位于1n a 后的某一项,记为2n a ,12n n >.继续上述步骤,选取k n a ],[k k y x ∈后,因为],[11++k k y x 中含有无穷多项,可选取位于kn a 后的某一项,记为1k n a +且kk n n >+1,这样我们就得到}{n a 的一个子列}{k n a 满足k n k y a x k ≤≤,Λ,2,1=k由两边夹定理即得 =∞→k n n a lim ξ.证明 设b x a n ≤≤,用中点21ba c +=将[]b a ,一分为二,则两个子区间[]1,c a 和[]b c ,1中至少有一个含有}{n x 中无穷多项,选出来记为[]11,b a ,在其中选一项1n x .用中点2112b a c +=将[]11,b a 一分为二,则两个子区间[]21,c a 和[]12,b c 中至少有一个含有}{n x 中无穷多项,选出来记为[]22,b a ,在其中选一项2n x ,使得Λ,12n n >.最后得一区间套[]k k b a ,,满足[][]k k k k b a b a ,,11⊂++,k k k a b a b 2-=-,[]kk k k n n n b a x k >∈+1,,.由区间套定理,c b a k k k k ==∞→∞→lim lim ,又由于kn k b x a k ≤≤,有c x k n k =∞→lim .*(六) 用聚点定理证明柯西准则必要性: 已知收敛,设.由定义,,当时,有.从而有.充分性: 已知条件: 当时.欲证收敛..首先证有界.对于当时,有令,则有..由致密性定理,存在收敛子列,设..最后证,由条件,当时,有.于是当(同时有)时,就有.证 “⇒” }{n a 收敛,则存在极限,设a a n n =∞→lim ,则0>∀ε,N ∃,当N n >时有2/||ε<-a a n ⇒当N m n >,时有ε<-+-≤-||||||a a a a a a n m m n“⇐”先证有界性,取1=ε,则N ∃,N m n >,⇒1||<-m n a a特别地,N n >时 1||1<-+N n a a ⇒1||||1+<+N n a a设}1|||,|,|,||,m ax {|121+=+N N a a a a M Λ,则n ∀,Ma n ≤||再由致密性定理知,}{n a 有收敛子列}{k n a ,设aa k n k =∞→lim0>∀ε,1N ∃,1,N m n >⇒||/2n m a a ε-<K ∃,K k >⇒2/||ε<-a a k n取),m ax (1N K N =,当N n >时有11N n N N +≥+>⇒ εεε=+<-+-≤-++2/2/||||||11a a a a a a N N n n n n故aa n k =∞→lim .Cauchy 列、基本列(满足Cauchy 收敛准则的数列)*(七) 用柯西准则证明单调有界原理 设为一递增且有上界M 的数列.用反证法( 借助柯西准则 )可以证明:倘若无极限,则可找到一个子列以为广义极限,从而与有上界相矛盾.现在来构造这样的.对于单调数列,柯西条件可改述为:“ 当 时,满足”.这是因为它同时保证了对一切,恒有 .倘若不收敛,由上述柯西条件的否定陈述:,对一切,,使.依次取把它们相加,得到.故当时,可使,矛盾.所以单调有界数列必定有极限. [ 证毕 ] 例1 用单调有界定理证明区间套定理.即已知:1 )单调有界定理成立;2 )设[]{}nnba,为一区间套.欲证:[],,2,1,,Λ=∈ξ∃nbann且惟一.证证明思想:构造一个单调有界数列,使其极限即为所求的ξ.为此,可就近取数列{}na(或{}n b).由于,1221bbbaaann≤≤≤≤≤≤≤≤ΛΛΛ因此{}na为递增数列,且有上界(例如1b).由单调有界定理,存在ξ=∞→nnalim,且Λ,2,1,=ξ≤nan.又因nnnnaabb+-=)(,而0)(lim=-∞→nnnab,故ξ=ξ+=+-=∞→∞→∞→lim)(limlimnnnnnnnaabb;且因{}nb递减,必使ξ≥nb.这就证得[]Λ,2,1,,=∈ξnbann.最后,用反证法证明如此的ξ惟一.事实上,倘若另有一个[]Λ,2,1,,=∈ξ'nbann,则由)()(∞→→-≤ξ'-ξnabnn,导致与>ξ'-ξ相矛盾.例 2 (10)用区间套定理证明单调有界定理.即已知:1 )区间套定理成立.2 )设{}n x为一递增且有上界M的数列.欲证:{}n x存在极限nnx∞→=ξlim.证证明思想:设法构造一个区间套[]{}nnba,,使其公共点ξ即为{}n x的极限.为此令[][]Mxba,,111=.记2111bac+=,并取[][]{}[]{}⎩⎨⎧=.,,;,,,11111122的上界为不若的上界为若nnxcbcxccaba再记222 2ba c +=, 同理取[][]{}[]{}⎩⎨⎧=.,,;,,,22222233的上界不为若的上界为若n n x c b c x c c a b a如此无限进行下去,得一区间套[]{}n n b a ,.根据区间套定理,[]∞→∞→=ξ==∈ξ∃n n n n n n b a n b a )lim lim (,2,1,,Λ.下面用数列极限定义证明ξ=∞→n n x lim :0>ε∀,一方面,由于)(N ∈k b k 恒为{}n x 的上界,因此ε+ξ<ξ=≤⇒≤∈∀∞→k k n k n b x b x ,k n lim ,N ;另一方面,由ε-ξ>⇒ε<-ξ=ξ-≥∈∃⇔ξ=∞→K k k k k a a a K k ,K a ,lim 时当N ;而由区间套的构造,任何k a 不是{}n x 的上界,故ε-ξ>>∃K N a x ;再由{}n x 为递增数列,当N n >时,必有ε-ξ>≥N n x x .这样,当 N n > 时,就有ε+ξ<<ε-ξn x , 即 ξ=∞→n n x lim .例 3 (9) 用确界定理证明区间套定理.即已知: 1 ) 确界定理成立(非空有上界的数集必有上确界);2 ) 设{}],[n n b a 为一区间套.欲证:存在惟一的点[]Λ,2,1,,=∈ξn b a n n .证 证明思想:给出某一数集S ,有上界,使得S 的上确界即为所求的ξ. 为此,取{}n a S =,其上界存在(例如 1b ).由确界定理,存在 {}n a sup =ξ.首先,由ξ为{}n a 的一个上界,故Λ,2,1,=ξ≤n a n .再由ξ是{}n a 的最小上界,倘有某个ξ<m b ,则m b 不会是{}n a 的上界,即m k b a >∃,这与[]{}nn b a ,为区间套相矛盾(ji b a <).所以任何ξ≥n b .这就证得Λ,2,1,=≤ξ≤n b a n n .关于ξ的惟一性,与例1中的证明相同.注 本例在这里所作的证明比习题解答中的证明更加清楚.在以上六个等价命题中,最便于推广至中点集的,当属聚点定理与有限覆盖定理.为加深对聚点概念的认识,下例所讨论的问题是很有意义的.例证明“是点集的聚点”的以下三个定义互相等价:(i) 内含有中无限多个点(原始定义);(ii) 在内含有中至少一个点;(iii) ,时,使.证 (i)(ii) 显然成立.(ii)(iii) 由(ii),取,;再取;……一般取;……由的取法,保证,,.(iii)(i)时,必有,且因各项互不相同,故内含有中无限多个点.[证毕]四、实数系的完备性实数所组成的基本数列{}nx比存在实数极限――实数系完备性;有理数域不具有完备性,如1(1)nn⎧⎫+⎨⎬⎩⎭:1lim(1)nnen→∞+=(无理数).五、压缩映射原理(不动点原理)1、函数f(x)的不动点指什么?设y=f(x)是定义在[a,b]上的一个函数,方程x=f(x)的解称为f(x)的不动点.2、在什么样的条件下不动点一定存在呢?存在时唯一吗?如何求出不动点?压缩映射:如果存在常数k,满足0≤k<1,使得对一切,[,]x y a b∈成立不等式()()||f x f y k x y -≤-,则称f 是[a,b]上的一个压缩映射. 压缩映射必连续.压缩映射原理(不动点原理) 设()x ϕ是[a,b]上压缩映射,且([,])[,]a b a b ϕ⊂,则()x ϕ在[a,b]上存在唯一的不动点.例3 证明Kapler 方程sin x x b ε=+在||1ε<时,存在唯一实数.§7.2 闭区间上连续函数性质的证明教学目标:证明闭区间上的连续函数性质.教学内容:闭区间上的连续函数有界性的证明;闭区间上的连续函数的最大(小)值定理的证明;闭区间上的连续函数介值定理的证明;闭区间上的连续函数一致连续性的证明.基本要求:掌握用有限覆盖定理或用致密性定理证明闭区间上连续函数的有界性;用确界原理证明闭区间上的连续函数的最大(小)值定理;用区间套定理证明闭区间上的连续函数介值定理.较高要求:掌握用有限覆盖定理证明闭区间上的连续函数的有界性和一致连续性. 教学建议:(1) 本节的重点是证明闭区间上的连续函数的性质.(2) 本节的难点是掌握用有限覆盖定理证明闭区间上的连续函数的一致连续性以及实数完备性的六大定理的等价性证明,对较好学生可布置这方面的习题. 教学过程:在本节中,将利用关于实数完备性的基本定理来证明第四章2中给出的闭区间上连续函数的基本性质.一、有界性定理 若函数f 在闭区间[]b a ,上连续,则f 在[]b a ,上有界证法 一 ( 用区间套定理 ). 反证法. 参阅[3]P106—107.证法 二 ( 用致密性定理). 反证法.证明 如若不然,)(x f 在],[b a 上无界,∈∀n N ,],[b a x n ∈∃,使得n x f n >|)(|,对于序列}{n x ,它有上下界b x a n ≤≤,致密性定理告诉我们k n x∃使得],[0b a x x k n ∈→,由)(x f 在0x 连续,及kn n x f k >|)(|有+∞==∞→|)(|lim |)(|0k n k x f x f ,矛盾.证法 三 ( 用有限复盖定理 ). 参阅[1]P168—169证明 (应用有限覆盖定理) 由连续函数的局部有界性(th4.2)对每一点[]b a x ,'∈都存在邻域()x x '',δο⋃及正数'x M使()()[]b a x x M x f x x ,,'''⋂⋃∈≤δ 考虑开区间集()(){}b a x x H x ,,'''∈⋃=δ虽然H 是[]b a ,的一个无限开覆盖,由有限开覆盖定理,存在H 的一个有限点集()[]{}k i b a x x H i i i ,,2,1,,Λ=∈⋃=*δ覆盖了[]b a ,,且存在正整数,,,21k M M M Λ使对一切()[]b a x x i i ,,⋂⋃∈δ有()k i M x f i ,,2,1,Λ=≤,令ki iM M ≤≤=1m ax则对[]b a x ,∈∀,x 必属于某()()M M x f x i i i ≤≤⇒δ,Y ,即证f 在[]b a ,上有上界. 二、最值性:命题2 ] , [)(b a C x f ∈, ⇒ )(x f 在] , [b a 上取得最大值和最小值. ( 只证取得最大值 )证 ( 用确界原理 ) 令)}({sup x f M bx a ≤≤=,+∞<M , 如果)(x f 达不到M ,则恒有M x f <)(.考虑函数)(1)(x f M x -=ϕ,则],[)(b a C x ∈ϕ,因而有界,即)0()(>≤μμϕx , 从而MM x f <-≤μ1)(,这与M 是上确界矛盾,因此],[b a x ∈∃,使得M x f =)(.类似地可以证明达到下确界.三、介值性: 证明与其等价的“零点定理 ”.命题3 (零点存在定理或根的存在性定理)设函数)(x f 在闭区间],[b a 上连续即]),([)(b a C x f ∈且)(a f 与)(b f 异号()(a f 0)(<b f ),则在),(b a 内存在一点0x 使得 0)(0=x f .即方程0)(=x f 在),(b a 内至少存在一个实根.证法 一 ( 用区间套定理 ) .设0)(<a f ,0)(>b f .将],[b a 二等分为],[c a 、],[b c ,若0)(=c f 则c x =0即为所求;若0)(≠c f ,当0)(>c f 时取],[c a 否则取],[b c 为],[11b a ,有0)(1<a f ,0)(1>b f .如此继续,如某一次中点i c 有0)(=i c f 终止(i c 即为所求);否则得]},{[n n b a 满足:⑴ΛΛ⊃⊃⊃⊃],[],[],[11n n b a b a b a ;⑵ 02lim)(lim =-=-∞→∞→nn n n n ab a b ;⑶)(,0)(><n n b f a f由闭区间套定理知,∃唯一的],[10n n n b a x ∞=∈I ,且=∞→n n a lim 0lim x b n n =∞→由)(x f 在0x处的连续性及极限的保号性得)()(lim 0≤=∞→x f a f n n 、0lim ()()0n n f b f x →∞=≥0)(0=⇒x f #证二( 用确界原理 ) 不妨假设0)(<a f (从图1看,0x是使得0)(>x f 的x 的下确界),令]},[,0)(|{b a x x f x E ∈>=,要证E x inf 0=(E inf 存在否?).因为Φ≠⇒∈E E b ,],[b a E ⊂E ⇒有界,故E inf 存在.令 Ex inf 0=,下面证0)(0=x f如若不然,)(0≠x f 则)(0>x f (或)(0<x f )(从图形上可清楚看出,此时必存在1x x <使0)(1>x f ).首先ax ≠0,即],(0b a x ∈;f 在0x连续,由连续函数的局部保号性],[),(0b a x U ⊂∃⇒δ使得),(0δx U x ∈∀有0)(>x f ,特别应有0)2(0>-δx f 即 E x ∈-20δ,这与E x inf 0=矛盾,故必有0)(0=x f .证法 二 ( 用确界原理 ) 不妨设,0)(>a f 0)(<b f .令} ] , [ , 0)( | {b a x x f x E ∈>=, 则E 非空有界, ⇒ E 有上确界. 设E sup =ξ, 有∈ξ] , [b a . 现证 0)(=ξf , ( 为此证明)(ξf 0≥且)(ξf 0≤ ). 取n x >ξ 且n x ) ( ,∞→→n ξ. 由)(x f 在点ξ连续和0)(≤n x f , ⇒ 0)(lim )(≤=∞→n n x f f ξ,⇒ ξE ∉. 于是) ( , ∞→→∍∈∃n t E t n n ξ. 由)(x f 在点ξ连续和0)(>n t f ,⇒ 0)(lim )(≥=∞→n n t f f ξ. 因此只能有0)(=ξf .证法 三 ( 用有限复盖定理 ).介值性定理 设f 在闭区间[]b a ,上连续,且()()()()b f a f b f a f 与为介于若μ≠之间的任何实数()()b f a f <<μ或()()b f a f >>μ,则存在()b a x ,∈ο使()μ=οx f .证明 (应用确界定理) 不妨设()()()()μμ-=<<x f x g b f a f 令 则g 也是[]b a ,上连续函数,()()0,0>>b g a g ,于是定理的结论转为:()()0,,=∈∃οοx g b a x 使这个简化的情形称为根的存在性定理(th4.7的推论)记()[]{}b a x x g x E ,,0∈>=显然E 为非空有界数集[]()E b b a E ∈⊂且,故有确界定理, E 有下确界,记()()0,0inf ><=b g a g E x 因ο有连续函数的局部保号性, 0>∃δ,使在),[δ+a a 内0)(<x g ,在),(δ-b b 内0)(>x g .由此易见a x ≠ο,b x ≠ο,即()b a x ,∈ο.下证()0=οx g .倘若()0≠οx g ,不妨设()0>οx g ,则又由局部保号性,存在()()()b a x ,,⊂ηοY 使在其内)0(>x g ,特别有Ex x g ∈-⇒>⎪⎭⎫ ⎝⎛-202ηηοο=0,但此与E x inf =ο矛盾,则必有0)(0=x g .几何解释 直线c y =与曲线)(x f y =相交.把x 轴平移到c y =,则问题成为零点存在问题.这启发我们想办法作一个辅助函数,把待证问题转化为零点存在问题.辅助函数如何作?① 从几何上,c y y x x -='=',启示我们作c x f x F -=)()(; ② 从结果cx f =)(0着手.利用零点定理证:令c x f x F -=)()(,则]),([)(b a C x F ∈,往下即转化为零点存在问题. # 这种先证特殊、再作辅助函数化一般为特殊,最后证明一般的方法是处理数学问题的常用方法,以后会经常用到.推论 如f 为区间I 上的连续函数,则值域)(I f J =也是一个区间(可以退化为一点). 证 f 为常量函数,则)(I f J =退化为一点.f 非常量函数,则J 当然不是单点集.在J 中任取两点21y y <(只要证J y y ⊂],[21),则在I 中必有两点1x ,2x 使得11)(y x f =,22)(y x f =.于是对21y y y <<∀,必存在x ,x 介于1x 与2x 之间,使y x f =)(,即J y ∈因而J y y ⊂],[21⇒J 是一个区间.二、一致连续性:命题4 ( Cantor 定理 ) ],[)(b a C x f ∈, 则)(x f 在],[b a 上一致连续.证法 一 ( 用有限复盖定理 ) 参阅[1]P171[ 证法一 ]证明 (用有限覆盖定理) 由f 在闭区间[]b a ,上连续性,0>∀ε,对每一点[]b a x ,∈,都存在0>x δ,使当()x x x δ,'Y ∈时,有()()2'ε<-x f x f考虑开区间集合[]⎭⎬⎫⎩⎨⎧∈⎪⎭⎫ ⎝⎛=b a x x H x ,2,δY 显然H 是[]b a ,的一个开覆盖,由有限覆盖定理H ∃的一个有限子集[]02min ,,,2,12,>⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=⎪⎭⎫ ⎝⎛=*i i i b a k i x H δδδ记覆盖了ΛY对[]δ<-∈∀"'"',,x x b a x x ,x '必属于*H 中某开区间,设⎪⎭⎫ ⎝⎛∈2,'i i x x δY ,即2'ii x x δ<-,此时有iiiii i x x x x x x δδδδδ=+≤+<-+-≤-222''""故有(2)式同时有 ()()()()22"'εε<-<-i i x f x f x f x f 和由此得()()[]上一致连续在b a f x f x f i ,'∴<-ε.证法 二 ( 用致密性定理). 参阅[1]P171—172 [ 证法二 ]证明 如果不然,)(x f 在],[b a 上不一致连续,00>∃ε,0>∀δ,],[,b a x x ∈'''∃,δ<''-'||x x ,而0|)()(|ε≥''-'x f x f .取n 1=δ,],[,b a x x n n∈'''∃,n x x n n 1||<''-',而0|)()(|ε≥''-'n n x f x f ,由致密性定理,存在子序列],[0b a x x k n∈→',而由k n nn x x k k 1||<''-',也有0x x k n→''. 再由)(x f 在0x 连续,在0|)()(|ε≥''-'k k n n x f x f 中令∞→k ,得000|)()(|lim |)()(|0ε≥''-'=-=∞→k k n nk x f x f x f x f ,矛盾.所以)(x f 在],[b a 上一致连续.推广 ),()(b a C x f ∈,()f a +,()f b -∃⇒)(x f 在),(b a 上一致连续. 作业 [1]P172 1,2 3,4, 5*;P176 1,2,4.§7.3 上极限和下极限一、上(下)极限的定义对于数列,我们最关心的是其收敛性;如果不收敛,我们希望它有收敛的子列,这个愿望往往可以实现.例如:{}(1)n -.一般地,数列{}n x ,若{}k n x :k n x a →(k →∞),则称a 是数列{}n x 的一个极限点.如点例{}(1)n -有2个极限点.数列{}n x 的最大(最小)极限点如果存在,则称为该数列的上(下)极限,并记为lim n n x →∞(lim n n x →∞).如lim(1)1n n →∞-=,lim(1)1n n →∞-=-.例1 求数列sin 3n π⎧⎫⎨⎬⎩⎭的上、下极限.例2 [1(1)]n n x n =+-,求上、下极限. 二、上(下)极限的存在性下面定理指出,对任何数列{}n x ,它的上(下)极限必定存在. 定理1 每个数列{}n x 的上极限和下极限必定唯一,且lim n n x →∞=1sup{,,}limsup n n k n k nx x x +→∞≥=L ,lim n n x →∞=1inf{,,}liminf n n k n k nx x x +→∞≥=L .三、上下极限和极限的关系lim n n x →∞≥lim n n x →∞.定理2 {}n x 存在极限则{}n x 的上极限和下极限相等,即lim n n x →∞=lim n n x →∞=lim n n x →∞.四、上(下)极限的运算普通的极限运算公式对上(下)极限不再成立.例如:11lim[(1)(1)]0lim(1)lim(1)2n n n n n n n ++→∞→∞→∞-+-=<-+-=u u u r . 一般地有:lim()lim lim n n n n n n n x y x y →∞→∞→∞+≤+,当{}n x 收敛时,等号成立.实数完备性的等价命题一、问题提出确界存在定理(定理1.1)揭示了实数的连续性和实数的完备性. 与之等价的还有五大命题,这就是以下的定理1.2至定理1.6.定理1.2(单调有界定理)任何单调有界数列必定收敛.定理1.3(区间套定理)设为一区间套:.则存在唯一一点定理1.4(有限覆盖定理)设是闭区间的一个无限开覆盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖.定理1.5 (聚点定理)直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6 (柯西准则)数列收敛的充要条件是:,只要恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.)这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.下图中有三种不同的箭头,其含义如下::(1)~(3) 基本要求类:(4)~(7) 阅读参考类:(8)~(10) 习题作业类下面来完成(1)~(7)的证明.二、等价命题证明(一) 用确界定理证明单调有界定理.(二) 用单调有界定理证明区间套定理设区间套.若另有使,则因.推论设为一区间套,.则当时,恒有.用区间套定理证明其他命题时,最后常会用到这个推论.(三) 用区间套定理证明确界原理证明思想构造一个区间套,使其公共点即为数集的上确界.设, 有上界.取;,再令如此无限进行下去,得一区间套.可证:因恒为的上界,且,故,必有,这说明是的上界;又因,故,而都不是的上界,因此更不是的上界.所以成立.*(四) 用区间套定理证明有限覆盖定理设为闭区间的一个无限开覆盖.反证法假设:“不能用中有限个开区间来覆盖”.对采用逐次二等分法构造区间套,的选择法则:取“不能用中有限个开区间来覆盖”的那一半.由区间套定理,.导出矛盾:使.记由[推论],当足够大时,这表示用中一个开区间就能覆盖,与其选择法则相违背.所以必能用中有限个开区间来覆盖.说明当改为时,或者不是开覆盖时,有限覆盖定理的结论不一定成立.例如:1) .是开区间的一个无限开覆盖,但不能由此产生的有限覆盖.2) .是的一个无限覆盖,但不是开覆盖,由此也无法产生的有限覆盖.*(五) 用有限覆盖定理证明聚点定理设为实轴上的有界无限点集,并设.由反证法假设来构造的一个无限开覆盖:若有聚点,则.现反设中任一点都不是的聚点,即在内至多只有.这样,就是的一个无限开覆盖.用有限覆盖定理导出矛盾:据定理9,存在为的一个有限开覆盖(同时也覆盖了).由假设,内至多只有所属个邻域内至多只有属于(即只覆盖了中有限个点).这与覆盖了全部中无限多个点相矛盾.所以,有界无限点集必定至少有一个聚点.[推论(致密性定理)有界数列必有收敛子列.即若为有界数列,则使有.子列的极限称为原数列的一个极限点,或称聚点.数列的聚点与一般点集的聚点,含义稍有不同.数列的聚点定义为:“,在内含有中无限多个项,则为的一个聚点.”在此意义下,对于数列它有两个收敛子列:和,.它们的极限和就是的两个聚点.*(六) 用聚点定理证明柯西准则柯西准则的必要性容易由数列收敛的定义直接证得.(已知收敛,设.由定义,,当时,有.从而有.)这里只证其充分性.已知条件:当时.欲证收敛..首先证有界.对于当时,有令,则有..由致密性定理,存在收敛子列,设..最后证,由条件,当时,有.于是当(同时有)时,就有.*(七) 用柯西准则证明单调有界原理设为一递增且有上界M的数列.用反证法(借助柯西准则)可以证明:倘若无极限,则可找到一个子列以为广义极限,从而与有上界相矛盾.现在来构造这样的.对于单调数列,柯西条件可改述为:“当时,满足”.这是因为它同时保证了对一切,恒有.倘若不收敛,由上述柯西条件的否定陈述:,对一切,,使.依次取把它们相加,得到.故当时,可使,矛盾.所以单调有界数列必定有极限. [ 证毕 ] 在以上六个等价命题中,最便于推广至中点集的,当属聚点定理与有限覆盖定理.为加深对聚点概念的认识,下例所讨论的问题是很有意义的.例证明“是点集的聚点”的以下三个定义互相等价:(i) 内含有中无限多个点(原始定义);(ii) 在内含有中至少一个点;(iii) ,时,使.证 (i)(ii) 显然成立.(ii)(iii) 由(ii),取,;。
实数的完备性

第七章 实数的完备性§1 实数完备性的基本定理1. 验证 数集},2,11)1{(L =+−n n n有且只有两个聚点11−=ξ和12=ξ 解 因{1+}21n 是{(-1)n+n 1}的所有偶数项组成的子列,且,1)211(lim =+∞→nn 故12=ξ是数集},2,11)1{(L =+−n n n的一个聚点.由于}1211{−+−n 是原数集的所有奇数项组成的子列,且,1)1211(lim −=−+−∞→n n 因而11−=ξ也是原数集的聚点.下证该数集再无其它聚点. 时,有则当取001}21,21min{,1εϕϕεϕ>−+=±≠∀n⎪⎪⎩⎪⎪⎨⎧−+−−≥⎪⎪⎩⎪⎪⎨⎧−+−−=−−−为奇数为偶数为奇数,为偶数)(n n n n n n n n n n ,11.1111,1111ϕϕϕϕϕ.1200εε>−≥n故ϕ不是该数集的聚点.这就证明原数集只有两个聚点,即1+与1−. 2.证明:任何有限数集都没有聚点.证 设S 是有限数集,则对任一S R a 因,1,0=∃∈ε是有限数集,故领域),(0εa U 内至多 有S 中的有限个点,故a 不是S 的聚点,由a 的任意性知,S 无聚点.3.设)},{(n n b a 是一严格开区间套,即1221b b b a a a n n <<<<<<<<L L L , 且.0)(lim =−∞→n n n a b 证明存在唯一一点ξ,有L ,2,1,=<<n b a n n ξ证 作闭区间列]},{[n n y x , 其中L ,2,1,2,211=+=+=++n b b y a a x n n n n n n ,由于),(,11N n b y b a x a n n n n n n ∈∀<<<<++ 故有(1) ))(,(],[),(11N n b a y x b a n n n n n n ∈∀⊂⊂++,从而L ,2,1],,[],[11=⊂++n y x y x n n n n(2) )(0N n a b x y n n n n ∈∀−<−<从而由]},{[.0)(lim ,0)(lim n n n n n n n n y x x y a b 所以得=−=−∞→∞→为闭区间套.由区间套定理知,存在一点).,2,1()1().,2,1](,[L L =<<=∈n b a n y x n n n n ξξ有由满足条件),2,1(L =<<n b a n n ξ的点ξ的唯一性的证明与区间套定理的证明相同.4.试举例说明:在有理数集内,确界原理、单调有界定理、聚点定理和柯西收敛准则一般都不能成立。
数学分析7.1关于实数集完备性的基本定理(练习)

第七章 实数的完备性1 关于实数集完备性的基本定理(练习题)1、验证:数集{(-1)n +n1}有且只有两个聚点ξ1=-1, ξ2=1. 证:∵(-1)2k +2k 1; (-1)2k+1+12k 1+∈{(-1)n +n 1}, 且 ∞→k lim [(-1)2k +2k 1]=1; ∞→k lim [(-1)2k+1+12k 1+]=-1,∴±1是{(-1)n +n1}的聚点. 设x 0是不同于±1的聚点,则取ε0=21min{|x 0-1|,|x 0+1|},存在N=ε1, 当n=2k>N 时,(-1)n +n1>1-ε0>-1-ε0,当n=2k+1>N 时,(-1)n +n1<-1+ε0<1+ε0,又当x 0<-1时,ε0=21(-x 0-1),2ε0=-x 0-1,即x 0+ε0=-1-ε0,当-1<x 0≤0时,ε0=21(x 0+1),2ε0=x 0+1,即x 0-ε0=-1+ε0,当0≤x 0<1时,ε0=21(1-x 0),2ε0=1-x 0,即x 0+ε0=1-ε0,当x 0>1时,ε0=21(x 0-1),2ε0=x 0-1,即x 0-ε0=1+ε0,∴(-1)n +n 1>x 0+ε0或(-1)n +n 1<x 0-ε0,即(-1)n +n1落在U(x 0,ε0)外部,∴落在U(x 0,ε0)至多只有有限个点,与聚点概念矛盾. ∴{(-1)n +n1}有且只有两个聚点ξ1=-1, ξ2=1.2、证明:任何有限集都没有聚点.证:设S 为有限集,x 0是它的聚点,由聚点定义存在互异{x n }⊂S 且∞→n lim x n =x 0,数列{x n }有无限项,与S 为有限集矛盾. 原命题得证.3、设{(a n ,b n )}是一个严格开区间套,即a 1<a 2<…<a n <…<b n <…b 2<b 1,且∞→n lim (b n -a n )=0. 证明:存在唯一一点ξ,有a n <ξ<b n , n=1,2,…证:作闭区间列{[x n ,y n ]},其中x n =2a a 1n n ++, y n =2bb 1n n ++, n=1,2,… ∵a n <x n <a n+1, b n <y n <b n+1, ∴有(a n+1,b n+1)⊂[x n ,y n ]⊂(a n ,b n ),从而有 [x n+1,y n+1]⊂[x n ,y n ], n=1,2,… 又b n+1-a n+1<y n -x n <b n -a n ,由∞→n lim (b n -a n )=0得∞→n lim (y n -x n )=0. ∴{[x n ,y n ]}为闭区间套,由区间套定理,存在唯一一点ξ,使得ξ∈[x n ,y n ]⊂(a n ,b n ), n=1,2,…设数ξ’∈(a n ,b n ), n=1,2,…,则|ξ-ξ’|≤b n -a n , n=1,2,…,则 |ξ-ξ’|≤∞→n lim (b n -a n )=0,∴ξ’=ξ. 原命题得证.4、试举例证明:在有理数集内,确界原理、单调有界原理、聚点定理和柯西收敛准则一般都不能成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证 由(1)式, a n 为递增有界数列,依单调有界定理,
a n 有极限 ,且有 an,n1,2,L.
(3)
同理,递减有界数列也有极限,并按区间套的条件(ii)有
lni m bnlni m an
满足(i) [a n ,b n ] [a n 1 ,b n 1 ],n 1 ,2 ,L ; (ii) lni m(bnan)0.
另一方面,也是最重要的,要把欲证命题的本质属性保留在 区间套的每一个闭区间中,前者是区间套定理本身条件的要求
保证诸区间[an,bn] (n1,2,L)存在唯一公共点 , 后者则把
证明整个区间 [ a , b ] 上所具有某性质的问题归结为 点邻域
U ( , ) 的性质,实现完满整体向局部的转化.
由(4)容易推的如下很有用的区间套性质 .
首页 ×
推论
若 [a n,b n] (n1 ,2 ,L )是区间套所确定的点则对任给
的 0 ,存在 N 0 ,使得当 n N 时有
an,bnU(;) 作为区间套定理的应用,我们来证明第二章中叙述而未证明的 “数列的柯西收敛准则"(定理2.10). 即
定理7.1(区间套定理) 若an,bn 是一个区间套,则在实数
系中存在唯一的一点 , 使得 anb n,n1 ,2,L.
即
a nb n ,n 1 ,2 ,L . (2)
首页 ×
分析 即要证明闭区间列 [an,bn],n1,2,L 有唯一的公共点,所以首先我们要至少找到一个公共点,由(1)
式和单调有界定理可以知道数列 a n 和 b n 都存在极限,我们
数列 a n 收敛的充要条件是:对任给的 0 ,存在 N 0 ,
使得对 m,n N ,
有 am an .
分析 由数列极限定义易证得必要性;要使用区间套定理证明充 分性,关键是如何构造合适的区间套,使其公共点正好是数列
的极限.我们将对柯西列 a n 构造区间套n,n, 使得在每个
n,n, 外只有数列 a n 中有限项.
它也含有 a n 中几乎所有的项,且满足
1,1 2,2 及 221 2.
继续依次令
1 23
,L
,
1 2n
,L
照以上方法得一闭区间列 n , n ,
其中每个区间都含 a n 中几乎所有的项,且满足
n , n n 1 , n 1 ,n 1 ,2 ,L ,
nn2n 11 0n ,
第七章 实数的完备性
§1 关于实数集完备性的基本定理 §2 闭区间上连续函数性质的证明
首页 ×
§1 关于实数集完备性的基本定理
一、区间套定理与柯西收敛准则 二、聚点定理与有限覆盖定理 三、实数完备性基本定理的等价性
首页 ×
一、区间套定理与柯西收敛准则
定义1 设闭区间列 an,bn 具有如下性质
且
bn,n1,2,L.
(4) (5)
联合(3)、(5)即得(2)式. 最后证明满足(2)的
是唯一的.设数 也满足 a nb n,n1 ,2 ,L .
首页 ×
则由(2)式有
b n a n ,n 1 ,2 ,L .由区间套的条件(ii)得
故有 .
lim bnan0 , n
注1 区间套定理中要求各个区间都是闭区间,才能保证
首页 ×
即 n,n 是区间套. 由区间套定理,存在唯一的一个数 n,n (n1,2,L).
现在证明数 就是数列 a n 的极限.事实上,由定理7.1的推论,
对任给的 0 ,存在N 0,使得当 n>N 时有
n,nU(;).
因此在 U ( ; ) 内含有 a n 中除有限项外的所有项.
这就证得
lim
n
an
.
注 本证明中的关键是构造合适的区间套,使其公共点正好是数 列的极限. 注意本证明中构造区间套的方法,我们可由此体会到
在处理具体问题时构造区间套的思想方法.
首页 ×
二、聚点定理与有限覆盖定理
定义2 设 S为数轴上的点集 为定点 (它可以属于 S也可
以不属于S) 若 的临域内都含有 S中无穷多个点则称 为集 S
定理的结论成立.对于开区间列,有可能不成立,如
0,
1 n
,
虽然其中各个开区间也是前一个包含后一个,且 lim(1 0) 0 ,
n n
但不存在属于所有开区间的公共点.
首页 ×
注2 应用区间套定理的关键是针对要证明的数学命题, 恰 当地构造区间套. 一方面,这样的区间套必须是闭、缩、套,
即闭区间列 an,bn .
首页 ×
证
[必要性]
设
lim
n
an
A.
由数列极限定义, 对任给的
0,
存在 N
0
,当
m,n N
时有
因而
a m anam am A A a n2,A an 2A 2 2, .
[充分性] 按假设,对任给的 0 , 存在 N 0 ,使得对
一切 n N 有 an aN , 即在区间 aN,aN 内含有 a n 中几乎所有的项(这里及以下,为叙述简单起见,我们用“ a n 中几乎
的一个聚点.
点集
S
(1)n
1 n
有两个聚点 1
1
和2
1;
点集
S
1
n
只有一个聚点 0; 又若 S为开区间(a,b)(a,b)内每一点以及端
点a、b都是S的聚点;而正整数集 N 没有聚点,任何有限数集也
没有聚点.
注1 点集的 S 聚点可以属于S ,也可以不属于 S ;
所有的项”表示“ aБайду номын сангаасn 中除有限项外的所项”).
据此,令
1, 2
则存在
N
1
,在区间
aN1
1 2 ,aN1
1 2
内含有
an
中几乎所有的项,记这个区间为1 , 1 .
首页 ×
再令
1 22
,
则存在 在区间 N2( N1)
aN2
1 22
,aN2
1 22
内含有
an
中
几乎所有的项.
记
2,2 aN 22 1 2,aN 22 1 2 I 1,1 ,
(i)[a n ,b n ] [a n 1 ,b n 1 ] ,n 1 ,2 ,L ; (ii) lni m(bnan)0
则称 an,bn 为闭区间套,或简称区间套.
这里的性质(i)表明,构成区间套的闭区间列是前一个 套者后一个,即各闭区间的端点满足如下不等式
a 1 a 2 L a n L b n L b 2 b 1 (1)