幂函数与一元幂方程 优秀教学设计(教案)

合集下载

幂函数教学设计

幂函数教学设计

幂函数教学设计幂函数是初等函数的一种,是指以自然数为指数的函数。

其函数式可以表示为y=x^n,其中x为自变量,n为常数指数,y为函数的值。

以下是五个优秀的幂函数教学设计:1.教学目标:通过本节课的学习,学生将掌握幂函数的概念、性质和图像。

教学过程:(1)导入环节:通过提问引入幂函数的概念,如何用自然数表示指数。

(2)基础知识讲解:介绍幂函数的定义、性质和图像特点。

(3)解答问题:让学生通过例题解答,巩固对幂函数的理解。

(4)实例操作:以实际问题为背景,让学生应用幂函数解决实际问题。

(5)总结归纳:总结幂函数的特点和应用,并提醒学生注意幂函数与其他函数的区别。

2.教学目标:通过本节课的学习,学生将理解幂函数的增减性质和相关应用。

教学过程:(1)导入环节:通过展示两个幂函数的图像,让学生观察并讨论它们的变化趋势。

(2)基础知识讲解:讲解幂函数的增减性质,即正指数的幂函数递增,负指数的幂函数递减。

(3)实例分析:通过实例分析,揭示幂函数增减性质的应用,如求不等式的解等。

(4)实践操作:让学生通过练习题巩固对幂函数增减性质的理解和应用。

(5)拓展讨论:引导学生思考其他函数的增减性质,并与幂函数进行比较。

3.教学目标:通过本节课的学习,学生将学会化简幂函数表达式。

教学过程:(1)导入环节:通过提问引入化简幂函数表达式的概念和意义。

(2)基础知识讲解:介绍幂函数的化简规则和步骤,如指数相加相乘规则等。

(3)解答问题:通过例题解答,让学生掌握幂函数化简的方法和技巧。

(4)实例操练:让学生通过练习题巩固幂函数化简的能力。

(5)拓展应用:引导学生将化简幂函数应用到求导、积分等数学问题中。

4.教学目标:通过本节课的学习,学生将了解幂函数的特殊性质和图像变化规律。

教学过程:(1)导入环节:通过提问引入幂函数的特殊性质,如y=x^0、y=x^1等。

(2)基础知识讲解:介绍幂函数特殊性质的证明和图像变化规律。

(3)实例演示:通过示例演示,展示幂函数图像在特殊情况下的形态和变化特点。

幂函数教案

幂函数教案

2.3幂函数(一)教学目标: ㈠知识和技能1.理解幂函数的概念,会画幂函数的图象,并能结合这几个幂函数的图象,理解幂函数图象的变化情况和性质。

2.理解几个常见的幂函数的性质。

1.通过观察、总结幂函数的性质,培养学生概括抽象和识图水平。

2.使学生进一步体会数形结合的思想。

㈢情感、态度与价值观1.通过生活实例引出幂函数的概念,使学生体会到生活中处处有数学,激发学生的学习兴趣。

2.利用计算机等工具,理解幂函数和指数函数的本质差别,使学生充分理解到现代技术在人们理解世界的过程中的作用,从而激发学生的学习欲望。

教学重点常见幂函数的概念和性质 教学难点幂函数的单调性与幂指数的关系 教学过程(一)引入新课(1) 假如张红购买了每千克1元的蔬菜w 千克,那么她需要支付p=w 元,这里p 是w 的函数;(2) 假如正方形的边长为a ,那么正方形的面积S=a 2,这里S 是a 的函数; (3) 假如立方体的边长为a ,那么立方体的体积V=a 3,这里V 是a 的函数;(4) 假如一个正方形场地的面积为S ,那么这个正方形的边长21S a =,这里a 是S 的函数; (5) 假如某人t 秒内骑车行进了1 km ,那么他骑车的平均速度v=1-t km/s ,这里v 是t 的函数。

思考:这些函数有什么共同的特征?他们有以下共同特点:(1)都是函数;(2) 指数为常数. (3) 均是以自变量为底的幂; (二)新课讲授1、一般地,函数y=x α叫做幂函数,其中x 是自变量,α是常数. 注意:幂函数中α的能够为任意实数.2、练一练:1。

判断以下函数是否为幂函数.(1) 4x y = (2)21x y = (3)22x y = (4)2x y -= (5)23+=x y()。

m ,x m m x f m 的值求是幂函数已知例3221)(:1+-+=.),,2()(:22解析式试求出这个函数的的图像过点已知幂函数例x f y =3、在同一平面直角坐标系内作出幂函数y=x ,2x y =,3x y =,21x y =,1-=x y 的图象:观察图象,总结填写下表:x y = 2x y = 3x y = 21x y = 1-=x y定义域 值域 奇偶性 单调性 定点1.在第一象限内一定有幂函数的图像,第四象限肯定没有幂函数的图像,在第二象限、第三象限可能有也可能没有(根据幂函数的奇偶性来判断)。

幂函数教学设计(共7篇)

幂函数教学设计(共7篇)

幂函数教学设计〔共7篇〕第1篇:幂函数教学设计《幂函数》教学设计一、设计构思设计理念注重开展学生的创新意识。

学生的数学学习活动不应只限于承受、记忆、模拟和练习,倡导学生积极主动探究、动手理论与互相合作交流的数学学习方式。

这种方式有助于发挥学生学习主动性,使学生的学习过程成为在老师引导下的“再创造”过程。

我们应积极创设条件,让学生体验数学发现和创造的历程,开展他们的创新意识。

注重进步学生数学思维才能。

课堂教学是促进学生数学思维才能开展的主阵地。

问题解决是培养学生思维才能的主要途径。

所设计的问题应有利于学生主动地进展观察、实验、猜测、验证、推理与交流等教学活动。

内容的呈现应采用不同的表达方式,以满足多样化的学习需求。

伴随新的问题发现和问题解决后成功感的满足,由此刺激学生非认知深层系统的良性运行,使其产生“乐学”的余味,学生学习的积极性与主动性在教学中便自发生成。

本节主要安排应用类比法进展讨论,加深学生对类比法的体会与应用。

注重学生多层次的开展。

在问题解决的探究过程中应表达“以人为本”,充分表达“人人学有价值的数学,人人都能获得必需的数学”,“不同的人在数学上得到不同的开展”的教学理念。

有意义的数学学习必须建立在学生的主观愿望和知识经历根底之上,而学生的根底知识和学习才能是多层次的,所以设计的问题也应有层次性,使各层次学生都得到开展。

注重信息技术与数学课程的整合。

高中数学课程应尽量使用科学型计算器,各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进展探究和发现。

另外,在数学教学中,强调数学本质的同时,也让学生通过适度的形式化,较好的理解和使用数学概念、性质。

教材分析^p幂函数是江苏教育出版社普通高中课程标准实验教科书数学第二章第四节的内容。

该教学内容在人教版试验修订本中已被删去。

标准将该内容重新提出,正是考虑到幂函数在实际生活的应用。

故在教学过程及后继学习过程中,应可以让学生体会其实际应用。

幂函数 优秀教案

幂函数 优秀教案

幂函数优秀教案幂函数教学目标】1.知识与技能:1) 理解幂函数的概念,能够画出幂函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的图像。

2) 根据常见的幂函数图像,理解幂函数图像的变化情况和性质,并能进行简单的应用。

2.过程与方法:1) 通过观察、总结幂函数的性质,培养学生的识图能力和概括能力。

2) 使学生进一步体会数形结合的思想方法。

3.情感态度与价值观:1) 通过生活实例引出幂函数的概念,使学生体会到数学在实际生活中的应用,激发学生的研究兴趣。

2) 利用计算机,了解幂函数图像的变化规律使学生认识到现代技术在数学认识过程中的作用,从而激发学生的研究欲望。

教学重点】从五个具体幂函数中认识幂函数的一些性质。

教学难点】画五个具体幂函数的图像并由图像概括其性质,体会图像的变化规律。

教法】启发、引导教学过程】一、创设情景,引入新课通过观察几个例子的函数模型,引入新课。

二、互动探究,讲解新课1.幂函数的定义:一般地,函数y=x^α叫做幂函数,其中x为自变量,α为常数。

练:判断下列函数是否为幂函数?1) y=x^4 (2) y=2x^2 (3) y=-x^3 (4) y=2.常见幂函数的图像与性质:自主探究]分别作出函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的图像并观察函数图像,将你发现的结论写在下表内:定义域。

|。

值域。

|。

奇偶性。

|。

单调性。

|。

定点。

|R。

|。

R+。

|。

奇函数。

|。

增函数。

|。

(1,1)。

|R。

|。

R+。

|。

偶函数。

|。

增函数。

|。

(0,0)。

|R。

|。

R。

|。

奇函数。

|。

增函数。

|。

(0,0)。

|R*。

|。

R*。

|。

奇函数。

|。

减函数。

|。

(1,1)。

|R+。

|。

R+。

|。

无奇偶性。

|。

增函数。

|。

(0,0)。

|合作探究]根据上表的内容并结合图像,试总结函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的共同性质。

归纳:1) 函数y=x,y=x^2,y=x^3,y=x^-1和y=x^2的图像都通过点(1,1)。

人教版高中必修一《幂函数》教案

人教版高中必修一《幂函数》教案

人教版高中必修一《幂函数》教案一、教学目标1.了解幂函数的定义和特点;2.学习叠加思想,并掌握简单的幂函数叠加方法;3.能够解决一些实际问题。

二、教学重难点1.幂函数的定义及其特点;2.幂函数的叠加思想;3.幂函数的绘图方法;三、教学过程1.引入幂函数的定义:$y=x^p(p\\in \\mathbb{R})$让学生发现x的取值范围对函数图象的影响,并对函数图象进行描述。

2. 概念讲解1.首先讲解幂函数的定义,指出它是一种基本函数;2.介绍幂函数的性质,让学生知道幂函数的图像不可能横切x轴;3.引入幂函数的叠加思想,让学生知道可以将不同的函数图像叠加在一起。

3. 具体例子讲解1.书写公式,说明函数图象的性质;2.给出幂函数的图象,描出函数的图象;3.确定函数图象的性质,让学生明白函数图象的变化。

4. 例题解析1.给出实际问题,提供数据;2.根据实际问题列出函数式,确定函数图象;3.通过实际问题,解释函数图象的意义。

5. 分组讨论1.将学生分成若干小组,每组做一道练习题;2.每组向其他组展示自己的想法、方法及结果;3.学生之间相互交流,共同探讨出最佳答案。

四、教学方法1.板书法:结合具体例子进行讲解;2.案例法:让学生通过实际问题练习解题思路;3.分组讨论法:提高学生探究问题、思考问题和解决问题的能力。

五、教学帮助1.帮助学生理解定义和性质;2.尤其帮助学生掌握幂函数的叠加思想,找出函数图象的变化规律。

六、课堂反馈1.倾听学生提出的疑问和问题;2.鼓励并指导学生提出自己的解决方案;3.搜集学生反馈,及时调整教学进度和方法。

七、课堂作业1.完成教师布置的作业;2.阅读教材给出的例题;3.自己找出一些幂函数的例子进行探究。

高一数学必修1《幂函数》教案

高一数学必修1《幂函数》教案

高一数学必修1《幂函数》教案教学目标:1. 理解幂函数的定义和性质,掌握画出幂函数的图象的方法。

2. 学会用不等式的方法解决幂函数方程的问题。

教学重点:1. 幂函数的定义和性质。

2. 画出幂函数的图象。

3. 不等式解法。

教学难点:1. 幂函数的图象,如何画出图象。

2. 不等式的解法,如何运用不等式解决幂函数方程的问题。

教学方法:1. 归纳法。

2. 演示法。

3. 分组讨论法。

教学内容:一. 幂函数1. 幂函数的定义:设a为正实数,x为任意实数,幂函数f(x)=$a^x$ 定义为f(x)=$a^x$。

2. 幂函数的性质:(1)当a>1时,幂函数f(x)严格单调递增;当0<a<1时,幂函数f(x)严格单调递减。

(2)当a>1时,幂函数f(x)在x轴的右侧无上界;当0<a<1时,幂函数f(x)在x轴的右侧无下界。

(3)当a=1时,幂函数f(x)为常函数y=1。

3. 幂函数的图象:(1)当a>1时,幂函数f(x)在右侧无上界,并超过x轴,图象接近x轴。

(2)当0<a<1时,幂函数f(x)在右侧无下界,趋近于x轴,图象在x轴上方。

(3)当a=1时,幂函数f(x)图象为直线y=1,在y轴上方。

4. 例题:(1)求幂函数y=$\frac{1}{4}$^x 的增减区间,并画出图象。

(2)求方程$\frac{1}{2x+1}$=8 的解。

二. 不等式的解法1. 不等式的性质:(1)等式两边加(减)同一个数、同一个式子,不等式的方向不变;(2)等式两边同乘(除)一个正数,不等式的方向不变;等式两边同乘(除)一个负数,不等式的方向反转。

2. 不等式的应用:利用不等式的性质,解决幂函数的方程。

3. 例题:求不等式$x^2$+2$\sqrt2x$+1<0 的解。

教学流程:1. 教师介绍幂函数的定义和性质,并简单讲解幂函数的图象。

2. 教师出示幂函数$f(x)=2^x$ 的图象,并让同学对幂函数的图象做出讨论,了解幂函数图象的特点,为下面的探究提供基础。

幂函数教案 获奖教学设计

幂函数教案 获奖教学设计

§幂函数
【教学目标】
一、知识与技能:
1、理解幂函数的概念,会画幂函数2
11
3
2
,,,,x y x y x y x y x y =====-的图像; 2、结合这几个幂函数的图像,理解幂函数图像的变化情况和性质. 二、过程与方法:
1、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力; 2、使学生进一步体会数形结合的思想. 三、情感态度价值观:
1、通过生活实例引出幂函数的概念,使学生体会到数学在实际生活中的应用,激发
学生的学习兴趣;
2、利用计算机,了解幂函数图像的变化规律,使学生认识到现代技术在认识过程中
的作用,从而激发学生的学习欲望.
【教学重点】明确幂函数的定义,并从五个具体幂函数中认识幂函数的一些性质. 【教学难点】画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律. 【教学过程】
一、教学基本流程。

幂函数教案

幂函数教案

幂函数教案幂函数教学设计一、教学内容:本节课主要讲解幂函数的基本概念、性质以及解题方法。

二、教学目标:1. 掌握幂函数的定义及其一般形式。

2. 了解幂函数的图像特点及其变化规律。

3. 能够解决与幂函数相关的实际问题。

三、教学过程:步骤一:导入新课1. 引导学生回顾一元二次函数的知识,并帮助学生发现一元二次函数与平方函数之间的关系。

2. 引导学生思考,如果给定的方程中含有类似于x^n(n为自然数)的项,该如何解决?(请学生回顾类似的方程,并尝试解题)步骤二:讲解幂函数的定义1. 运用幂函数的定义引导学生进行思考:什么样的方程是幂函数?2. 引导学生猜想幂函数的一般形式,即f(x)=x^n,其中n为实数。

3. 张绘制幂函数的图像,并引导学生发现其特点,如:当n>1时,图像呈现递增趋势;当n=1时,图像为直线,并由坐标原点经过;当0<n<1时,图像在原点附近缓慢上升。

步骤三:讲解幂函数的性质1. 解释幂函数的定义域和值域,即当n为偶数时,定义域为R,值域为[0,+∞);当n为奇数时,值域为R。

2. 引导学生发现幂函数与幂函数之间的比较关系,即当0<n<m时,幂函数f(x)=x^n的图像位于幂函数g(x)=x^m的图像之下。

3. 引导学生探究幂函数的奇偶性,即当n为整数时,该幂函数的奇偶性与n的奇偶性一致。

比如,当n为偶数时,函数f(x)=x^n是偶函数;当n为奇数时,函数f(x)=x^n是奇函数。

步骤四:解决幂函数相关的实际问题1. 给学生提供一些实际应用题,如求一块长方形的面积与宽度的关系等,引导学生使用幂函数解决问题。

2. 引导学生分析问题,并运用幂函数的性质进行求解。

3. 鼓励学生自主解决问题,引导学生独立思考并找到解决问题的方法。

四、教学检查及评价:1. 教师可以通过课堂练习、小组讨论等方式进行教学检查,及时发现学生的问题并给予指导。

2. 教师可以根据学生的思考能力和解题情况,评价学生的学习情况,及时提供帮助和改进措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂函数与一元幂方程优秀教学设计(教案)
幂函数与一元幂方程优秀教学设计(教案)
目标
本节课的目标是让学生掌握幂函数和一元幂方程的基本概念和
性质,并能够灵活运用它们解决实际问题。

通过本节课的研究,学
生应能够:
- 理解幂函数的定义,能够画出幂函数的图像;
- 理解一元幂方程的定义,能够解一元幂方程;
- 能够识别和分析实际问题中涉及到幂函数和一元幂方程的情况,并能够用数学方法解决问题。

教学内容
1. 幂函数的定义和性质
- 学生研究幂函数的定义,并通过几个例子来掌握幂函数的基
本性质。

- 学生练画出几个特定幂函数的图像,以加深对幂函数的理解。

2. 一元幂方程的定义和解法
- 学生研究一元幂方程的定义,并通过几个例子来掌握一元幂
方程的解法。

- 学生练解一元幂方程,包括求解方程的根和变形求解等。

3. 幂函数和一元幂方程的应用
- 学生通过一些实际问题来认识幂函数和一元幂方程在生活中
的应用。

- 学生通过解决实际问题来巩固对幂函数和一元幂方程的理解
和应用能力。

教学步骤
1. 导入:通过一个与幂函数相关的实际问题引入本节课的内容,激发学生的研究兴趣。

2. 探究:提出一个幂函数的定义问题,让学生自己思考并回答,引导学生从例子中归纳幂函数的性质。

3. 深入研究:通过讲解和示范,帮助学生掌握幂函数的图像和
一元幂方程的解法。

4. 练:通过一些练题,巩固学生对幂函数和一元幂方程的掌握
程度。

5. 应用:提出几个实际问题,让学生应用所学的知识解决问题,培养学生的应用能力。

6. 总结:对本节课的内容进行总结,并鼓励学生积极参与课堂讨论和提问。

教学评价
1. 同步练:分发一些练题,让学生在课后进行练,并在下节课进行评价。

2. 课堂表现:观察学生在课堂上的研究态度和参与度,并做出评价。

3. 解决问题能力:通过学生解决实际问题的能力来评价他们对幂函数和一元幂方程的应用能力。

教学资源
1. 教材:选择合适的教材章节,提供学生基础知识和例题。

2. 幻灯片:准备幂函数和一元幂方程的幻灯片,用于讲解和示范。

3. 练题:准备一些幂函数和一元幂方程的练题,用于课堂练和作业。

教学环境
教室内需要投影仪和黑板或白板,以便进行讲解和演示。

教学时间
本节课需要2个课时,每个课时45分钟。

教学策略
- 游戏化教学:通过一些互动的游戏和活动,提高学生的研究积极性。

- 合作研究:让学生分组合作解决问题,促进学生之间的合作和交流。

- 差异化教学:根据学生的不同水平和进度,提供适当的辅导和挑战。

教学反思
通过本节课的教学设计和实施,学生对幂函数和一元幂方程的理解和应用能力得到了提高。

但在教学过程中,有些学生对幂函数和一元幂方程的概念理解不深,需要更多的练习和巩固。

下次教学时,可以加大练习的时间,并提供更多的实际问题来让学生应用所学的知识。

相关文档
最新文档