十年高考真题分类汇编(2010-2019) 数学 专题14 概率与统计 Word版含解析

合集下载

十年高考真题分类汇编(2010-2019) 数学 专题14 概率与统计

十年高考真题分类汇编(2010-2019)  数学 专题14 概率与统计

十年高考真题分类汇编(2010—2019)数学专题14概率与统计1.(2019·全国1·理T6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻 “”和阴爻“”,右图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516B.1132C.2132D.1116【答案】A【解析】由题可知,每一爻有2种情况,故一重卦的6个爻有26种情况.其中6个爻中恰有3个阳爻有C 63种情况,所以该重卦恰有3个阳爻的概率为C 6326=516,故选A .2.(2019·全国2·文T4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23B.35C.25D.15【答案】B【解析】设测量过该指标的3只兔子为a,b,c,剩余2只为A,B,则从这5只兔子中任取3只的所有取法有{a,b,c},{a,b,A},{a,b,B},{a,c,A},{a,c,B},{a,A,B},{b,c,A},{b,c,B},{c,A,B},{b,A,B}共10种,其中恰有2只测量过该指标的取法有{a,b,A},{a,b,B},{a,c,A},{a,c,B},{b,c,A},{b,c,B}共6种,所以恰有2 只测量过该指标的概率为610=35,故选B .3.(2019·全国3·文T3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) 【答案】D【解析】两位男同学和两位女同学排成一列,共有24种排法.两位女同学相邻的排法有12种,故两位女同学相邻的概率是12.故选D.4.(2019·全国1·文T6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )A.8号学生B.200号学生C.616号学生D.815号学生 【答案】C【解析】由已知得将1 000名新生分为100个组,每组10名学生,用系统抽样46号学生被抽到,则第一组应为6号学生,所以每组抽取的学生号构成等差数列{an},所以an=10n-4,n ∈N*, 若10n-4=8,则n=1.2,不合题意; 若10n-4=200,则n=20.4,不合题意; 若10n-4=616,则n=62,符合题意; 若10n-4=815,则n=81.9,不合题意. 故选C.5.(2019·全国2·理T5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A.中位数 B.平均数 C.方差 D.极差【答案】A【解析】设9位评委的评分按从小到大排列为x1<x2<x3<x4<…<x8<x9.对于A,原始评分的中位数为x5,去掉最低分x1,最高分x9后,剩余评分的大小顺序为x2<x3<…<x8,中位数仍为x5,故A 正确;对于B,原 始评分的平均数x =19(x 1+x 2+…+x 9),有效评分的平均数x '=17(x 2+x 3+…+x 8),因为平均数受极端值影响较大,所以x 与x '不一定相同,故B 不正确;对于C,原始评分的方差s 2=19[(x 1-x )2+(x 2-x )2+…+(x 9-x )2],有效评分的方差s'2=17[(x 2-x ')2+(x 3-x ')2+…+(x 8-x ')2],由B 易知,C 不正确;对于D,原始评分的极差为x9-x1,有效评分的极差为x8-x2,显然极差变小,故D 不正确. 6.(2018·全国2·理T8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112 B.114C.115D.118【答案】C【解析】不超过30的素数有“2,3,5,7,11,13,17,19,23,29”共10个.其中和为30的有7+23,11+19,13+17共3种情况,故P=3C 102=115.7.(2018·全国2·文T5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )A.0.6B.0.5C.0.4D.0.3 【答案】D【解析】设2名男同学为男1,男2,3名女同学为女1,女2,女3,则任选两人共有(男1,女1),(男1,女2),(男1,女3),(男1,男2),(男2,女1),(男2,女2)(男2,女3)(女1,女2),(女1,女3),(女2,女3)共10种,其中选中两人都为女同学共(女1,女2),(女1,女3)、(女2,女3)3种,故P=310=0.3.8.(2018·全国1·理T10)下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC,直角边AB,AC.△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则( ) A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 【答案】A【解析】∵S △ABC =12AB ·AC,以AB 为直径的半圆的面积为12π·AB 22=π8AB 2,以AC 为直径的半圆的面积为12π·AC 22=π8AC 2, 以BC 为直径的半圆的面积为12π·BC 22=π8BC 2,∴S Ⅰ=12AB ·AC,S Ⅲ=π8BC 2-12AB ·AC,S Ⅱ=π8AB 2+π8AC 2-π8BC 2-12AB ·AC =12AB ·AC.∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=SⅠS 总,p 2=SⅡS 总.∴p 1=p 2.∵S △ABC =12AB ·AC,以AB 为直径的半圆的面积为12π·AB 22=π8AB 2,以AC 为直径的半圆的面积为12π·AC 22=π8AC 2, 以BC 为直径的半圆的面积为12π·BC 22=π8BC 2,∴S Ⅰ=12AB ·AC ,S Ⅲ=π8BC 2-12AB ·AC , S Ⅱ=π8AB 2+π8AC 2-π8BC 2-12AB ·AC =12AB ·AC.∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=SⅠS 总,p 2=SⅡS 总.∴p 1=p 2.9.(2018·江苏·T3)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .【答案】90【解析】由题中茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为89+89+90+91+915=90.10.(2018·全国1·理T3文T3)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【答案】A【解析】设建设前经济收入为1,则建设后经济收入为2,建设前种植收入为0.6,建设后种植收入为2×0.37=0.74,故A 不正确;建设前的其他收入为0.04,养殖收入为0.3,建设后其他收入为0.1,养殖收入为0.6,故B,C 正确;建设后养殖收入与第三产业收入的总和所占比例为58%,故D 正确,故选A. 11.(2018·浙江·T7)设0<p<1,随机变量ξ的分布列是则当p 在(0,1)内增大时,( )A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小 【答案】D【解析】由题意可知,E(ξ)=0×(1-p 2)+1×12+2×p 2=12+p,D(ξ)=(0-12-p)2×1-p 2+(1-12-p)2×12+(2-12-p)2×p2=12(-2p 2+2p +12)=-(p 2-p +14-12) =-(p -12)2+12,p ∈(0,1).故当p 在(0,1)内增大时,D(ξ)先增大后减小.12.(2018·全国3·理T8)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.3 【答案】B【解析】由题意,得DX=np(1-p)=10p(1-p)=2.4,∴p(1-p)=0.24,由p(X=4)<p(X=6)知C 104p 4·(1-p)6<C 106p 6(1-p)4,即p2>(1-p)2,∴p>0.5,∴p=0.6(其中p=0.4舍去).13.(2018·全国3·文T5)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A.0.3 B.0.4 C.0.6 D.0.7 【答案】B【解析】设不用现金支付的概率为P,则P=1-0.45-0.15=0.4.14.(2017·全国3·理T3文T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】由题图可知2014年8月到9月的月接待游客量在减少,故A错误.15.(2017·山东·文T8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为( )A.3,5B.5,5C.3,7D.5,7【答案】A【解析】甲组数据为56,62,65,70+x,74;乙组数据为59,61,67,60+y,78.若两组数据的中位数相等,则65=60+y,所以y=5.又两组数据的平均值相等,所以56+62+65+70+x+74=59+61+67+65+78,解得x=3.16.(2017·全国1·理T2文T4)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π4【答案】B【解析】不妨设正方形边长为2,则圆半径为1,正方形的面积为2×2=4,圆的面积为π×12=π.由图形的对称性,可知图中黑色部分的面积为圆面积的一半,即12πr 2=12π,所以此点取自黑色部分的概率为π24=π8.17.(2017·全国2·文T11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110 B .15C .310D .25【答案】D【解析】从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图所示.总共有25种情况,其中第一张卡片上的数大于第二张卡片上的数的情况有10种,故所求的概率为1025=25. 18.(2017·天津·文T3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ) A.45 B.35C.25D.15【答案】C【解析】从5支彩笔中任取2支不同颜色的彩笔,共有(红黄),(红蓝),(红绿),(红紫),(黄蓝),(黄绿),(黄紫),(蓝绿),(蓝紫),(绿紫)10种不同情况,记“取出的2支彩笔中含有红色彩笔”为事件A,则事件A 包含(红黄),(红蓝),(红绿),(红紫)4个基本事件,则P(A)=410=25.故选C.19.(2017·山东·理T5)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归 直线方程为y ^=b ^x+a ^.已知∑i=110x i =225,∑i=110y i =1 600,b ^=4,该班某学生的脚长为24,据此估计其身高为( ) A.160B.163C.166D.170【答案】C【解析】由已知得x =110∑i=110x i =22.5,y =110·∑i=110y i =160,又b ^=4,所以a ^=y −b ^x =160-4×22.5=70,故当x=24时,y ^=4×24+70=166.故选C .20.(2016·全国1·文T3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56【答案】C【解析】总的基本事件是红黄,白紫;红白,黄紫;红紫,黄白,共3种.满足条件的基本事件是红黄,白紫;红白,黄紫,共2种.故所求事件的概率为P=23.21.(2016·全国3·文T5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.130【答案】C【解析】密码的前两位共有15种可能,其中只有1种是正确的密码,因此所求概率为115.故选C.22.(2016·北京·文T6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )A.15B.25C.825D.925【答案】B【解析】从甲、乙等5名学生中选2人有10种方法,其中2人中包含甲的有4种方法,故所求的概率为410=25.23.(2016·全国1·理T4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34【答案】B【解析】这是几何概型问题,总的基本事件空间如图所示,共40分钟,等车时间不超过10分钟的时间段为7:50至8:00和8:20至8:30,共20分钟,故他等车时间不超过10分钟的概率为P=2040=12,故选B.24.(2016·全国2·理T10)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4nm B.2nmC.4mnD.2mn【答案】C【解析】利用几何概型求解,由题意可知,14S圆S正方形=14π×1212=mn,所以π=4mn.25.(2016·山东·理T3文T3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A.56B.60C.120D.140【答案】D【解析】自习时间不少于22.5小时为后三组,其频率和为(0.16+0.08+0.04)×2.5=0.7,故人数为200×0.7=140,选D.26.(2016·全国2·文T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.710B.58C.38D.310【答案】B【解析】因为红灯持续时间为40秒,所以这名行人至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.27.(2016·全国3·理T4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个【答案】D【解析】由题图可知,0 ℃在虚线圈内,所以各月的平均最低气温都在0 ℃以上,A正确;易知B,C正确;平均最高气温高于20 ℃的月份有3个,分别为六月、七月、八月,D错误.故选D.28.(2015·全国2·理T3文T3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【答案】D【解析】由柱形图知,2006年以来我国二氧化硫年排放量呈减少趋势,故其排放量与年份负相关,故D错误.29.(2015·陕西·理T2文T2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167【答案】C【解析】由题图知,初中部女教师有110×70%=77人;高中部女教师有150×(1-60%)=60人.故该校女教师共有77+60=137(人).故选C.30.(2015·北京·理T8)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/时.相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】对于选项A,从图中可以看出乙车的最高燃油效率大于5,故A项错误;对于选项B,同样速度甲车消耗1升汽油行驶的路程比乙车、丙车的多,所以行驶相同路程,甲车油耗最少,故B项错误;对于选项C,甲车以80千米/小时的速度行驶,1升汽油行驶10千米,所以行驶1小时,即行驶80千米,消耗8升汽油,故C项错误;对于选项D,速度在80千米/小时以下时,相同条件下每消耗1升汽油,丙车行驶路程比乙车多,所以该市用丙车比用乙车更省油,故D 项正确.31.(2015·湖北·理T2)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A.134石 B.169石 C.338石 D.1 365石【答案】B【解析】由条件知254粒内夹谷28粒,可估计米内夹谷的概率为28254=14127,所以1 534石米中夹谷约为14127×1 534≈169(石).32.(2015·陕西·理T11)设复数z=(x-1)+yi(x,y ∈R),若|z|≤1,则y ≥x 的概率为( ) A.34+12π B.12+1πC.12−1π D.14−12π【答案】D【解析】由|z|≤1,得(x-1)2+y2≤1.不等式表示以C(1,0)为圆心,半径r=1的圆及其内部,y ≥x 表示直线y=x 左上方部分(如图所示). 则阴影部分面积S=14π×12-S △OAC=14π-12×1×1=π4−12.故所求事件的概率P=S 阴S圆=π4-12π×12=14−12π. 33.(2015·山东·文T7)在区间[0,2]上随机地取一个数x,则事件“-1≤lo g 12(x +12)≤1”发生的概率为( ) A.34 B.23C.13D.14【答案】A【解析】由-1≤lo g 12(x +12)≤1,得lo g 122≤lo g 12(x +12)≤lo g 1212,所以12≤x+12≤2,所以0≤x ≤32.由几何概型可知,事件发生的概率为32-02-0=34.34.(2015·福建·文T8)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f(x)={x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A.16 B.14C.38D.12【答案】B【解析】如图,设f(x)与y 轴的交点为E,则E(0,1). ∵B(1,0),∴yC=1+1=2.∴C(1,2). 又四边形ABCD 是矩形, ∴D(-2,2).∴S △DCE =12×[1-(-2)]×1=32.又S 矩形=3×2=6,∴由几何概型概率计算公式可得所求概率P=326=14.故选B .35.(2015·湖北·文T4)已知变量x 和y 满足关系y=-0.1x+1,变量y 与z 正相关.下列结论中正确的是( ) A.x 与y 负相关,x 与z 负相关 B.x 与y 正相关,x 与z 正相关 C.x 与y 正相关,x 与z 负相关 D.x 与y 负相关,x 与z 正相关 【答案】A【解析】由y=-0.1x+1知y 与x 负相关,又因为y 与z 正相关,故z 与x 负相关.36.(2015·湖北·文T8)在区间[0,1]上随机取两个数x,y,记p 1为事件“x+y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( ) A.p 1<p 2<12B.p 1<12<p 2 C.p 2<12<p 1 D.12<p 2<p 1【答案】B【解析】设点P 的坐标为(x,y),由题意x,y ∈[0,1], 所以点P 在正方形OABC 内,S 正方形OABC=1×1=1. 画出直线x+y=12与正方形交于D ,E 两点,画出曲线xy=12与正方形交于M,N两点.而Rt△OAC的面积S=12.由图可知:S△OED<S△OAC<S曲边形OCMNA,所以p1<12<p2.故选B.37.(2015·全国1·文T4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120【答案】C【解析】从1,2,3,4,5中任取3个数共有10种不同的取法,其中的勾股数只有3,4,5,因此3个数构成一组勾股数的取法只有一种,故所求概率为110.38.(2015·广东·文T7)已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为( )A.0.4B.0.6C.0.8D.1【答案】B【解析】设正品分别为A1,A2,A3,次品分别为B1,B2,从中任取2件产品,基本事件共有10种,分别为{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},而其中恰有一件次品的基本事件有6种,由古典概型概率公式,得P=610=0.6.39.(2015·湖南·文T2)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( )A.3B.4C.5D.6【答案】B【解析】依题意,应将35名运动员的成绩由好到差排序后分为7组,每组5人.然后从每组中抽取1人,其中成绩在区间[139,151]上的运动员恰好是第3,4,5,6组,因此,成绩在该区间上的运动员人数是4.40.(2015·北京·文T4)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )A.90B.100C.180D.300【答案】C【解析】由已知分层抽样中青年教师的抽样比为3201600=15, 由分层抽样的性质可得老年教师的抽样比也等于15, 所以样本中老年教师的人数为900×15=180.故选C.41.(2015·安徽·理T6)若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为( ) A.8 B.15C.16D.32【答案】C【解析】设数据x 1,x 2,…,x 10的平均数为x ,标准差为s,则2x 1-1,2x 2-1,…,2x 10-1的平均数为2x -1,方差为[(2x 1-1)-(2x -1)]2+[(2x 2-1)-(2x -1)]2+…+[(2x 10-1)-(2x -1)]210=4(x 1-x )2+4(x 2-x )2+…+4(x 10-x )210=4s 2,因此标准差为2s=2×8=16.故选C.42.(2015·全国1·理T4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A.0.648 B.0.432 C.0.36 D.0.312 【答案】A【解析】由条件知该同学通过测试,即3次投篮投中2次或投中3次.故P=C 320.62(1-0.6)+C 330.63=0.648.43.(2015·湖北·理T4)设X~N(μ1,σ12),Y~N(μ2,σ22),这两个正态分布密度曲线如图所示,下列结论中正确的是( )A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≤t)≥P(Y≤t)D.对任意正数t,P(X≥t)≥P(Y≥t)【答案】C【解析】由曲线X的对称轴为x=μ1,曲线Y的对称轴为x=μ2,可知μ2>μ1.∴P(Y≥μ2)<P(Y≥μ1),故A错;由图象知σ1<σ2且均为正数,∴P(X≤σ2)>P(X≤σ1),故B错;对任意正数t,由题中图象知,P(X≤t)≥P(Y≤t),故C正确,D错.44.(2015·山东·理T8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56%B.13.59%C.27.18%D.31.74%【答案】B【解析】由正态分布N(0,32)可知,ξ落在(3,6)内的概率为P(μ-2σ<ξ<μ+2σ)-P(μ-σ<ξ<μ+σ)2=13.59%.=95.44%-68.26%245.(2014·陕西·文T9)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为x和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A.x,s2+1002B.x+100,s2+1002C.x,s2D.x+100,s2【答案】D【解析】由题意,得x=x1+x2+…+x1010,y i=x i+100,所以y1,y2,…,y10的均值为x+100,方差不变.故选D.46.(2014·重庆·文T3)某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )A.100B.150C.200D.250【答案】A【解析】由题意知,抽样比为703500=150,所以n3500+1500=150,即n=100.故选A.47.(2014·湖南·文T3)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3【答案】D【解析】由随机抽样的原则可知简单随机抽样、分层抽样、系统抽样都必须满足每个个体被抽到的概率相等,即p1=p2=p3.48.(2014·广东·文T6)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.20【答案】C【解析】由题意知分段间隔为100040=25,故选C.49.(2014·全国1·理T5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18B.38C.58D.78【答案】D【解析】4名同学各自在周六、周日两天中任选一天参加活动的情况有24=16(种),其中4名同学都在周六或周日参加活动各有1种情况.所以所求概率为P=16-216=78.50.(2014·陕西·文T6)从正方形4个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )A.15B.25C.35D.45【答案】B【解析】设正方形的四个顶点为A,B,C,D,中心为O,从这5个点中任取2个点,一共有10种不同的取法:AB,AC,AD,AO,BC,BD,BO,CD,CO,DO,其中这2个点的距离小于该正方形边长的取法共有4种:AO,BO,CO,DO.因此由古典概型概率计算公式,可得所求概率P=410=25,故选B.51.(2014·湖南·文T5)在区间[-2,3]上随机选取一个数X,则X≤1的概率为( )A.45B.35C.25D.15【答案】B【解析】由几何概型的概率公式可得P(X≤1)=35,故选B.52.(2014·辽宁·文T6)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8【答案】B【解析】所求概率为S半圆S长方形=12π×122×1=π4,故选B.53.(2014·全国2·理T5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8B.0.75C.0.6D.0.45【答案】A【解析】设某天空气质量为优良为事件A,随后一天空气质量为优良为事件B,由已知得P(A)=0.75,P(AB)=0.6,所求事件的概率为P(B|A)=P(AB)P(A)=0.60.75=0.8,故选A.54.(2013·陕西·理T5)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是()A .1-π4B .π2-1C .2-π2D .π4【答案】A【解析】S 矩形ABCD =1×2=2,S 扇形ADE =S 扇形CBF =π4.由几何概型可知该地点无信号的概率为P=S矩形ABCD-S扇形ADE-S扇形CBFS矩形ABCD=2-π22=1-π4.55.(2013·四川·理T9)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 ( ) A.14 B.12C.34D.78【答案】C【解析】设两串彩灯第一次闪亮的时刻分别为x,y,则由题意可得,0≤x ≤4,0≤y ≤4;而所求事件“两串彩灯同时通电后,第一次闪亮相差不超过2秒”={(x,y)||x-y|≤2},由图示得,该事件概率P=S阴影S正方形=16-416=34.56.(2013·湖南·文T9)已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则ADAB =( ) A.12B.14C.√32D.√74【答案】D【解析】如图,设AB=2x,AD=2y. 由于AB 为最大边的概率是12,则P 在EF 上运动满足条件,且DE=CF=12x ,即AB=EB 或AB=FA.∴2x=√(2y )2+(32x)2,即4x 2=4y 2+94x 2,即74x 2=4y 2,∴y 2x 2=716.∴y x =√74.又AD AB =2y 2x =y x =√74,故选D .57.(2013·全国1·文T3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A .12B .13C .14D .16【答案】B【解析】由题意知总事件数为6,分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为1358.(2013·全国1·理T3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ) A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样【答案】C【解析】因为学段层次差异较大,所以宜采用按学段分层抽样.59.(2013·江西·理T4文T5)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.08B.07C.02D.01【答案】D【解析】选出的5个个体的编号依次是08,02,14,07,01,故选D.60.(2013·陕西·理T4)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ) A.11B.12C.13D.14【答案】B【解析】840÷42=20,把1,2,…,840分成42段,不妨设第1段抽取的号码为l,则第k 段抽取的号码为l+(k-1)·20,1≤l ≤20,1≤k ≤42.令481≤l+(k -1)·20≤720,得25+1-l20≤k≤37-l20.由1≤l≤20,则25≤k≤36.满足条件的k 共有12个.61.(2012·山东·理T4)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B 的人数为 ( ) A.7 B.9 C.10 D.15【答案】C【解析】由题意可得,抽样间隔为30,区间[451,750]恰好为10个完整的组,所以做问卷B 的有10人,故选C.62.(2012·北京·理T2)设不等式组{0≤x ≤2,0≤y ≤2表示的平面区域为D.在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A.π4 B.π-22C.π6D.4-π4【答案】D【解析】由题意知此概型为几何概型,设所求事件为A,如图所示,边长为2的正方形区域为总度量μΩ,满足事件A 的是阴影部分区域μA,故由几何概型的概率公式得P (A )=22-14×π×2222=4-π4.63.(2012·辽宁·文T11)在长为12 cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC,CB 的长,则该矩形面积大于20 cm2的概率为( ) A.16 B.13C.23D.45【答案】C【解析】此概型为几何概型,由于在长为12 cm 的线段AB 上任取一点C,因此总的几何度量为12,满足矩形面积大于20 cm2的点在C1与C2之间的部分,如图所示. 因此所求概率为812,即23,故选C .64.(2012·安徽·文T10)袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于 ( )。

(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题12概率统计文(含解析)

(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题12概率统计文(含解析)

专题12概率统计历年考题细目表题型年份考点试题位置单选题2016 概率2016年北京文科06单选题2015 统计2015年北京文科04单选题2012 概率2012年北京文科03单选题2010 概率2010年北京文科03填空题2015 统计2015年北京文科14填空题2010 统计2010年北京文科12解答题2019 概率统计综合题2019年北京文科17解答题2018 概率统计综合题2018年北京文科17解答题2017 概率统计综合题2017年北京文科17解答题2016 概率统计综合题2016年北京文科17解答题2015 概率统计综合题2015年北京文科17解答题2014 概率统计综合题2014年北京文科18解答题2013 概率统计综合题2013年北京文科16解答题2012 概率统计综合题2012年北京文科17解答题2011 概率统计综合题2011年北京文科16历年高考真题汇编1.【2016年北京文科06】从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.B.C.D.【解答】解:从甲、乙等5名学生中随机选出2人,基本事件总数n10,甲被选中包含的基本事件的个数m4,∴甲被选中的概率p.故选:B.2.【2015年北京文科04】某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90 B.100 C.180 D.300【解答】解:由题意,老年和青年教师的人数比为900:1600=9:16,因为青年教师有320人,所以老年教师有180人,故选:C.3.【2012年北京文科03】设不等式组,表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A.B.C.D.【解答】解:其构成的区域D如图所示的边长为2的正方形,面积为S1=4,满足到原点的距离大于2所表示的平面区域是以原点为圆心,以2为半径的圆外部,面积为4﹣π,∴在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率P故选:D.4.【2010年北京文科03】从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是()A.B.C.D.【解答】解:由题意知本题是一个古典概型,∵试验包含的所有事件根据分步计数原理知共有5×3种结果,而满足条件的事件是a=1,b=2;a=1,b=3;a=2,b=3共有3种结果,∴由古典概型公式得到P,故选:D.5.【2015年北京文科14】高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.【解答】解:由高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况的散点图可知,两个图中,同一个人的总成绩是不会变的.从第二个图看,丙是从右往左数第5个点,即丙的总成绩在班里倒数第5.在左边的图中,找到倒数第5个点,它表示的就是丙,发现这个点的位置比右边图中丙的位置高,所以语文名次更“大”①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;②观察散点图,作出对角线y=x,发现丙的坐标横坐标大于纵坐标,说明数学成绩的名次小于总成绩名次,所以在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学;故答案为:乙;数学.6.【2010年北京文科12】从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.【解答】解:∵直方图中各个矩形的面积之和为1,∴10×(0.005+0.035+a+0.02+0.01)=1,解得a=0.03.由直方图可知三个区域内的学生总数为100×10×(0.03+0.02+0.01)=60人.其中身高在[140,150]内的学生人数为10人,所以身高在[140,150]范围内抽取的学生人数为10=3人.故答案为:0.03,3.7.【2019年北京文科17】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:不大于2000元大于2000元仅使用A27人3人仅使用B24人1人(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.【解答】解:(Ⅰ)由题意得:从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,∴A,B两种支付方式都使用的人数有:100﹣5﹣30﹣25=40,∴估计该校学生中上个月A,B两种支付方式都使用的人数为:1000400人.(Ⅱ)从样本仅使用B的学生有25人,其中不大于2000元的有24人,大于2000元的有1人,从中随机抽取1人,基本事件总数n=25,该学生上个月支付金额大于2000元包含的基本事件个数m=1,∴该学生上个月支付金额大于2000元的概率p.(Ⅲ)不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化,理由如下:上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元的概率为,虽然概率较小,但发生的可能性为.故不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化.8.【2018年北京文科17】电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数140 50 300 200 800 510好评率0.4 0.2 0.15 0.25 0.2 0.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【解答】解:(Ⅰ)总的电影部数为140+50+300+200+800+510=2000部,获得好评的第四类电影200×0.25=50,故从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)获得好评的电影部数为140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1=372,估计这部电影没有获得好评的概率为10.814,(Ⅲ)故只要第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,则使得获得好评的电影总部数与样本中的电影总部数的比值达到最大.9.【2017年北京文科17】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40), (80)90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【解答】解:(Ⅰ)由频率分布直方图知:分数小于70的频率为:1﹣(0.04+0.02)×10=0.4故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4;(Ⅱ)已知样本中分数小于40的学生有5人,故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1﹣(0.04+0.02+0.02+0.01)×10﹣0.05=0.05,估计总体中分数在区间[40,50)内的人数为400×0.05=20人,(Ⅲ)样本中分数不小于70的频率为:0.6,由于样本中分数不小于70的男女生人数相等.故分数不小于70的男生的频率为:0.3,由样本中有一半男生的分数不小于70,故男生的频率为:0.6,即女生的频率为:0.4,即总体中男生和女生人数的比例约为:3:2.10.【2016年北京文科17】某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如图频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.【解答】解:(1)由频率分布直方图得:用水量在[0.5,1)的频率为0.1,用水量在[1,1.5)的频率为0.15,用水量在[1.5,2)的频率为0.2,用水量在[2,2.5)的频率为0.25,用水量在[2.5,3)的频率为0.15,用水量在[3,3.5)的频率为0.05,用水量在[3.5,4)的频率为0.05,用水量在[4,4.5)的频率为0.05,∵用水量小于等于3立方米的频率为85%,∴为使80%以上居民在该用的用水价为4元/立方米,∴w至少定为3立方米.(2)当w=3时,该市居民的人均水费为:(0.1×1+0.15×1.5+0.2×2+0.25×2.5+0.15×3)×4+0.05×3×4+0.05×0.5×10+0.05×3×4+0.05×1×10+0.05×3×4+0.05×1.5×10=10.5,∴当w=3时,估计该市居民该月的人均水费为10.5元.11.【2015年北京文科17】某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁100 √×√√217 ×√×√200 √√√×300 √×√×85 √×××98 ×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?【解答】解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为0.2.(2)在这1000名顾客中,在甲、乙、丙、丁中同时购买3种商品的有100+200=300(人),故顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率为0.3.(3)在这1000名顾客中,同时购买甲和乙的概率为0.2,同时购买甲和丙的概率为0.6,同时购买甲和丁的概率为0.1,故同时购买甲和丙的概率最大.12.【2014年北京文科18】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:排号分组频数1 [0,2) 62 [2,4)83 [4,6)174 [6,8)225 [8,10)256 [10,12)127 [12,14) 68 [14,16) 29 [16,18) 2合计100(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(Ⅱ)求频率分布直方图中的a,b的值;(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写结论)【解答】解:(Ⅰ)由频率分布表知:1周课外阅读时间少于12小时的频数为6+8+17+22+25+12=90,∴1周课外阅读时间少于12小时的频率为0.9;(Ⅱ)由频率分布表知:数据在[4,6)的频数为17,∴频率为0.17,∴a=0.085;数据在[8,10)的频数为25,∴频率为0.25,∴b=0.125;(Ⅲ)数据的平均数为1×0.06+3×0.08+5×0.17+7×0.22+9×0.25+11×0.12+13×0.06+15×0.02+17×0.02=7.68(小时),∴样本中的100名学生该周课外阅读时间的平均数在第四组.13.【2013年北京文科16】如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【解答】解:(Ⅰ)由图看出,1日至13日13天的时间内,空气质量优良的是1日、2日、3日、7日、12日、13日共6天.由古典概型概率计算公式得,此人到达当日空气质量优良的概率P;(Ⅱ)此人在该市停留期间两天的空气质量指数(86,25)、(25,57)、(57,143)、(143,220)、(220,160)(160,40)、(40,217)、(217,160)、(160,121)、(121,158)、(158,86)、(86,79)、(79,37)共13种情况.其中只有1天空气重度污染的是(143,220)、(220,160)、(40,217)、(217,160)共4种情况,所以,此人在该市停留期间只有1天空气重度污染的概率P;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图看出从5日开始连续5、6、7三天的空气质量指数方差最大.14.【2012年北京文科17】近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了该市三类垃圾箱总计1000吨生活垃圾,数据统计如下(单位:吨);“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400 100 100可回收物30 240 30其他垃圾20 20 60(1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a >0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.(求:S2[],其中为数据x1,x2,…,x n的平均数)【解答】解:(1)由题意可知:厨余垃圾600吨,投放到“厨余垃圾”箱400吨,故厨余垃圾投放正确的概率为;(2)由题意可知:生活垃圾投放错误有200+60+20+20=300,故生活垃圾投放错误的概率为;(3)由题意可知:∵a+b+c=600,∴a,b,c的平均数为200∴,∵(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≥a2+b2+c2,因此有当a=600,b=0,c=0时,有s2=80000.15.【2011年北京文科16】以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(注:方差,其中的平均数)(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.【解答】解:(1)当X=8时,由茎叶图可知乙组同学的植树棵树是8,8,9,10,∴平均数是,方差是.(2)由题意知本题是一个等可能事件的概率.若X=9,分别从甲、乙两组中随机选取一名同学,共有16种结果,满足条件的事件是这两名同学的植树总棵数为19,包括:(9,10),(11,8),(11,8),(9,10)共有4种结果,∴根据等可能事件的概率公式得到P.考题分析与复习建议本专题考查的知识点为:随机抽样,用样本估计总体,变量间的相关关系,独立性检验,随机事件的概率,古典概型,几何概型等,历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:随机抽样,用样本估计总体,变量间的相关关系,独立性检验,随机事件的概率,古典概型,几何概型等,预测明年本考点题目会比较稳定,备考方向以知识点用样本估计总体,变量间的相关关系,独立性检验,随机事件的概率等为重点较佳.最新高考模拟试题1.如图是1990年-2017年我国劳动年龄(15-64岁)人口数量及其占总人口比重情况:根据图表信息,下列统计结论不正确的是()A.2000年我国劳动年龄人口数量及其占总人口比重的年增幅均为最大B.2010年后我国人口数量开始呈现负增长态势C.2013年我国劳动年龄人口数量达到峰值D.我国劳动年龄人口占总人口比重极差超过6%【答案】B 【解析】解:A 选项,2000年我国劳动年龄人口数量增幅约为6000万,是图中最大的,2000年我国劳动年龄人口数量占总人口比重的增幅约为3%,也是最多的.故A 对.B 选项,2010年到2011年我国劳动年龄人口数量有所增加,故B 错.C 选项,从图上看,2013年的长方形是最高的,即2013年我国劳动年龄人口数量达到峰值,C 对,D 选项,我国劳动年龄人口占总人口比重最大为11年,约为74%,最小为92年,约为67%,故极差超过6%.D 对. 故选:B .2.一试验田某种作物一株生长果个数x 服从正态分布()290,N σ,且()700.2P x <=,从试验田中随机抽取10株,果实个数在[]90,110的株数记作随机变量X ,且X 服从二项分布,则X 的方差为( ) A .3 B .2.1 C .0.3D .0.21【答案】B 【解析】∵290(),x N δ~,且()700.2P x <=,所以()1100.2P x >=∴()901100.50.20.3P x <<=-=, ∴()10,0.3X B ~,X 的方差为()100.310.3 2.1⨯⨯-=.故选B .3.小张刚参加工作时月工资为5000元,各种用途占比统计如下面的条形图.后来他加强了体育锻炼,目前月工资的各种用途占比统计如下面的拆线图.已知目前的月就医费比刚参加工作时少200元,则目前小张的月工资为( )A .5500B .6000C .6500D .7000【答案】A 【解析】由条形图可知,刚参加工作的月就医费为:500015%750⨯=元 则目前的月就医费为:750200550-=元∴目前的月工资为:55010%5500÷=元本题正确选项:A4.若,a b 是从集合{}1,1,2,3,4-中随机选取的两个不同元素,则使得函数()5ab f x x x =+是奇函数的概率为( ) A .320B .310C .925D .35【答案】B 【解析】从集合{}1,1,2,3,4-中随机选取的两个不同元素共有2520A = 种要使得函数()5ab f x x x =+是奇函数,必须,a b 都为奇数共有236A = 种则函数()5ab f x x x =+是奇函数的概率为632010P == 故选B5.某企业的一种商品的产量与单位成本数据如下表: 产量x (万件)14 16182022单位成本y (元/件) 1210 7a3若根据表中提供的数据,求出y 关于x 的线性回归方程为ˆ 1.1528.1yx =-+,则a 的值等于( )A .4.5B .5C .5.5D .6【答案】B 【解析】1416182022901855x ++++===1210733255a a y +++++==()x y Q , 在线性回归方程ˆ 1.1528.1y x =-+上 1.151828.1=7.4y \=-?则32=7.45a+解得5a = 故选B6.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[)50,60的同学有30人,则n 的值为( )A .100B .1000C .90D .900【答案】A 【解析】由频率分布直方图可知,支出在[)50,60的同学的频率为:0.03100.3⨯=301000.3n ∴== 本题正确选项:A7.某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,则恰好抽到2幅不同种类的概率为( ) A .56B .45C .34D .23【答案】B 【解析】设A 为“恰好抽到2幅不同种类”某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,基本事件总数2615n C ==,恰好抽到2幅不同种类包含的基本事件个数21132212m C C C ==,则恰好抽到2幅不同种类的概率为()124155m P A n ===. 故选:B .8.若即时起10分钟内,305路公交车和202路公交车由南往北等可能进入二里半公交站,则这两路公交车进站时间的间隔不超过2分钟的概率为( ) A .0.18 B .0.32C .0.36D .0.64【答案】C 【解析】设305路车和202路车的进站时间分别为x 、y ,设所有基本事件为:W 010010x y ≤≤⎧⎨≤≤⎩,“进站时间的间隔不超过2分钟”为事件A ,则{(,)|010,010,||2}A x y x y x y =≤≤≤≤-≤,画出不等式表示的区域如图中阴影区域,则10108836S =⨯-⨯=,则36()0.36100A S P A S Ω===. 选C .9.一个盒子中放有大小相同的4个白球和1个黑球,从中任取两个球,则所取的两个球不同色的概率为_______. 【答案】25【解析】设4个白球编号为:1,2,3,4;1个黑球为:A从中任取两个球的所有可能结果为:12、13、14、1A、23、24、2A、34、3A、4A,共10种所取的两个球不同色的有:1A、2A、3A、4A,共4种∴所求概率为:42105 P==本题正确结果:2 510.已知某中学高三理科班学生共有800人参加了数学与物理的水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样统计,先将800人按001,002,003,…,800进行编号。

2010-2019十年高考数学真题分类汇编专题14 概率与统计 学生版+解析版

2010-2019十年高考数学真题分类汇编专题14 概率与统计  学生版+解析版

十年高考真题分类汇编(2010—2019)数学专题17复数1.(2019·全国1·文T1)设z=3-i1+2i,则|z|= ()A.2B.√3C.√2D.12.(2019·全国3·理T2文T2)若z(1+i)=2i,则z=( )A.-1-iB.-1+iC.1-iD.1+i3.(2019·北京·理T1文T2)已知复数z=2+i,则z·z=()A.√3B.√5C.3D.54.(2019·全国2·文T2)设z=i(2+i),则z=( )A.1+2iB.-1+2iC.1-2iD.-1-2i5.(2019·全国1·理T2)设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则( )A.(x+1)2+y2=1B.(x-1)2+y2=1C.x2+(y-1)2=1D.x2+(y+1)2=16.(2019·全国2·理T2)设z=-3+2i,则在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限7.(2018·全国1·理T1文T2)设z=1-i1+i+2i,则|z|=()A.0B.12C.1D.√28.(2018·全国2·理T1)1+2i1-2i=()A.-45−35i B.-45+35iC.-35−45i D.-35+45i9.(2018·全国2·文T1)i(2+3i)=( )A.3-2iB.3+2i10.(2018·全国3·理T2文T2)(1+i)(2-i)=( )A.-3-iB.-3+iC.3-iD.3+i的共轭复数对应的点位于( ) 11.(2018·北京·理T2文T2)在复平面内,复数11-iA.第一象限B.第二象限C.第三象限D.第四象限12.(2018·浙江·4)复数2(i为虚数单位)的共轭复数是( )1-iA.1+iB.1-iC.-1+iD.-1-i13.(2017·全国1·理T3)设有下面四个命题p1:若复数z满足1∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=z2;p4:若复数z∈R,则z∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4=( )14.(2017·全国2·理T1)3+i1+iA.1+2iB.1-2iC.2+iD.2-i15.(2017·全国2·文T2)(1+i)(2+i)= ( )A.1-iB.1+3iC.3+iD.3+3i16.(2017·山东·文T2)已知i是虚数单位,若复数z满足zi=1+i,则z2=( )A.-2iB.2iC.-2D.217.(2017·全国3·理T2)设复数z满足(1+i)z=2i,则|z|=( )A.1B.√2C.√2D.218.(2017·全国1·文T3)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)19.(2017·山东·理T2)已知a∈R,i是虚数单位.若z=a+√3i,z·z=4,则a=()A.1或-1B.√7或-√7C.-√3D.√320.(2017·全国3·文T2)复平面内表示复数z=i(-2+i)的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限21.(2017·北京·理T2)若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是( )A.(-∞,1)B.(-∞,-1)C.(1,+∞)D.(-1,+∞)22.(2016·全国2·理T1)已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则实数m的取值范围是( )A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)=()23.(2016·全国3·理T2)若z=1+2i,则zz-1A.1B.-1C.iD.-I=()24.(2016·北京·文T2)复数1+2i2-iA.iB.1+iC.-iD.1-I25.(2016·全国1·理T2)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=( )A.1B.√2C.√3D.226.(2016·全国1·文T2)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=( )A.-3B.-2C.2D.327.(2016·全国2·文T2)设复数z满足z+i=3-i,则z=( )A.-1+2iB.1-2iC.3+2iD.3-2i28.(2016·全国3·文T2)若z=4+3i,则z|z|= ()A.1B.-1C.45+35i D.45−35i29.(2016·山东·理T1)若复数z满足2z+z=3-2i,其中i为虚数单位,则z=( )A.1+2iB.1-2iC.-1+2iD.-1-2i30.(2015·全国2·理T2)若a为实数,且(2+ai)·(a-2i)=-4i,则a=( )A.-1B.0C.1D.231.(2015·全国·文T3)已知复数z满足(z-1)i=1+i,则z=( )A.-2-iB.-2+iC.2-iD.2+i32.(2015·全国2·文T2)若a为实数,且2+ai1+i=3+i,则a=( )A.-4B.-3C.3D.433.(2015·安徽·文T1)设i是虚数单位,则复数(1-i)(1+2i)=( )A.3+3iB.-1+3iC.3+iD.-1+i34.(2015·湖南·文T1)已知(1-i)2z=1+i(i为虚数单位),则复数z=( ) A.1+i B.1-iC.-1+iD.-1-i35.(2015·全国1·理T1)设复数z满足1+z1-z=i,则|z|=()A.1B.√2C.√3D.236.(2015·湖北·理T1)i为虚数单位,i607的共轭复数....为( )A.iB.-iC.1D.-137.(2015·安徽·理T1)设i是虚数单位,则复数2i1-i在复平面内所对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限38.(2014·全国2·理T2)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=( )A.-5B.5C.-4+iD.-4-i39.(2014·重庆·理T1)复平面内表示复数i(1-2i)的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限40.(2014·全国1·理T2)(1+i)3(1-i)2=()A.1+iB.1-iC.-1+iD.-1-I41.(2014·全国2·文T2)1+3i1-i=()A.1+2iB.-1+2iC.1-2iD.-1-2i42.(2014·全国1·文T3)设z=11+i+i,则|z|=()A.12B.√22C.√32D.243.(2013·全国1·理T2)若复数z满足(3-4i)z=|4+3i|,则z的虚部为( )A.-4B.-45C.4 D.4544.(2013·全国2·文T2)|2|=()A.2√2B.2C.√2D.145.(2013·全国2·理T2)设复数z 满足(1-i)z=2i,则z=( ) A.-1+i B.-1-i C.1+iD.1-i46.(2013·全国1·文T2)1+2i (1-i )2=()A.-1-12i B.-1+12i C.1+12iD.1-12i47.(2012·全国·理T3)下面是关于复数z=2-1+i的四个命题: p1:|z|=2, p2:z2=2i, p3:z 的共轭复数为1+i, p4:z 的虚部为-1, 其中的真命题为( ) A.p2,p3B.p1,p2C.p2,p4D.p3,p448.(2012·全国·文T2)复数z=-3+i2+i 的共轭复数是( ) A.2+i B.2-i C.-1+iD.-1-i49.(2011·全国·文T2)复数5i1-2i =( ) A.2-i B.1-2i C.-2+iD.-1+2i50.(2010·全国·理T2)已知复数z=√3+i(1-√3i )2,z 是z 的共轭复数,则z ·z =( )A.14B.12C.1D.251.(2010·全国·文T3)已知复数z=√3+i(1-√3i )2,则|z|等于()A.14B.12C.1D.252.(2018·天津·理T9文T9)i 是虚数单位,复数6+7i1+2i =.53.(2019·天津·理T9文T9)i 是虚数单位,则|5-i1+i |的值为___________.54.(2019·江苏·T 2)已知复数(a+2i)(1+i)的实部为0,其中i 为虚数单位,则实数a 的值是____ . 55.(2018·上海·5)已知复数z 满足(1+i)z=1-7i(i 是虚数单位),则|z|= .56.(2017·浙江·12)已知a,b ∈R,(a+bi)2=3+4i(i 是虚数单位),则a2+b2=_____,ab=________.57.(2017·江苏·T 2)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.58.(2017·天津·理T9文T9)已知a∈R,i为虚数单位,若a-i为实数,则a的值为.2+i59.(2016·江苏·T 2)复数z=(1+2i)(3-i),其中i为虚数单位,则z的实部是.的值为.60.(2016·天津·理T9)已知a,b∈R,i是虚数单位,若(1+i)(1-bi)=a,则ab61.(2016·北京·理T9)设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a= .62.(2015·天津·理T9)i是虚数单位,若复数(1-2i)(a+i)是纯虚数,则实数a的值为.63.(2015·江苏·T 3)设复数z满足z2=3+4i(i是虚数单位),则z的模为.64.(2015·重庆·理T11)设复数a+bi(a,b∈R)的模为√3 ,则(a+bi)(a-bi)= .十年高考真题分类汇编(2010—2019)数学专题14概率与统计1.(2019·全国1·理T6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻 “”和阴爻“”,右图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516B.1132C.2132D.1116【答案】A【解析】由题可知,每一爻有2种情况,故一重卦的6个爻有26种情况.其中6个爻中恰有3个阳爻有C 63种情况,所以该重卦恰有3个阳爻的概率为C 6326=516,故选A .2.(2019·全国2·文T4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23B.35C.25D.15【答案】B【解析】设测量过该指标的3只兔子为a,b,c,剩余2只为A,B,则从这5只兔子中任取3只的所有取法有{a,b,c},{a,b,A},{a,b,B},{a,c,A},{a,c,B},{a,A,B},{b,c,A},{b,c,B},{c,A,B},{b,A,B}共10种,其中恰有2只测量过该指标的取法有{a,b,A},{a,b,B},{a,c,A},{a,c,B},{b,c,A},{b,c,B}共6种,所以恰有2 只测量过该指标的概率为610=35,故选B .3.(2019·全国3·文T3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) 【答案】D【解析】两位男同学和两位女同学排成一列,共有24种排法.两位女同学相邻的排法有12种,故两位女同学相邻的概率是12.故选D.4.(2019·全国1·文T6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )A.8号学生B.200号学生C.616号学生D.815号学生 【答案】C【解析】由已知得将1 000名新生分为100个组,每组10名学生,用系统抽样46号学生被抽到,则第一组应为6号学生,所以每组抽取的学生号构成等差数列{an},所以an=10n-4,n ∈N*, 若10n-4=8,则n=1.2,不合题意; 若10n-4=200,则n=20.4,不合题意; 若10n-4=616,则n=62,符合题意; 若10n-4=815,则n=81.9,不合题意. 故选C.5.(2019·全国2·理T5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A.中位数 B.平均数 C.方差 D.极差【答案】A【解析】设9位评委的评分按从小到大排列为x1<x2<x3<x4<…<x8<x9.对于A,原始评分的中位数为x5,去掉最低分x1,最高分x9后,剩余评分的大小顺序为x2<x3<…<x8,中位数仍为x5,故A 正确;对于B,原 始评分的平均数x =19(x 1+x 2+…+x 9),有效评分的平均数x '=17(x 2+x 3+…+x 8),因为平均数受极端值影响较大,所以x 与x '不一定相同,故B 不正确;对于C,原始评分的方差s 2=19[(x 1-x )2+(x 2-x )2+…+(x 9-x )2],有效评分的方差s'2=17[(x 2-x ')2+(x 3-x ')2+…+(x 8-x ')2],由B 易知,C 不正确;对于D,原始评分的极差为x9-x1,有效评分的极差为x8-x2,显然极差变小,故D 不正确. 6.(2018·全国2·理T8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112 B.114C.115D.118【答案】C【解析】不超过30的素数有“2,3,5,7,11,13,17,19,23,29”共10个.其中和为30的有7+23,11+19,13+17共3种情况,故P=3C 102=115.7.(2018·全国2·文T5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )A.0.6B.0.5C.0.4D.0.3 【答案】D【解析】设2名男同学为男1,男2,3名女同学为女1,女2,女3,则任选两人共有(男1,女1),(男1,女2),(男1,女3),(男1,男2),(男2,女1),(男2,女2)(男2,女3)(女1,女2),(女1,女3),(女2,女3)共10种,其中选中两人都为女同学共(女1,女2),(女1,女3)、(女2,女3)3种,故P=310=0.3.8.(2018·全国1·理T10)下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC,直角边AB,AC.△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则( ) A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 【答案】A【解析】∵S △ABC =12AB ·AC,以AB 为直径的半圆的面积为12π·AB 22=π8AB 2,以AC 为直径的半圆的面积为12π·AC 22=π8AC 2, 以BC 为直径的半圆的面积为12π·BC 22=π8BC 2,∴S Ⅰ=12AB ·AC,S Ⅲ=π8BC 2-12AB ·AC,S Ⅱ=π8AB 2+π8AC 2-π8BC 2-12AB ·AC =12AB ·AC.∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=SⅠS 总,p 2=SⅡS 总.∴p 1=p 2.∵S △ABC =12AB ·AC,以AB 为直径的半圆的面积为12π·AB 22=π8AB 2,以AC 为直径的半圆的面积为12π·AC 22=π8AC 2, 以BC 为直径的半圆的面积为12π·BC 22=π8BC 2,∴S Ⅰ=1AB ·AC ,S Ⅲ=πBC 2-1AB ·AC , S Ⅱ=π8AB 2+π8AC 2-π8BC 2-12AB ·AC =12AB ·AC.∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=SⅠS 总,p 2=SⅡS 总.∴p 1=p 2.9.(2018·江苏·T3)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .【答案】90【解析】由题中茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为89+89+90+91+91=90.10.(2018·全国1·理T3文T3)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【答案】A【解析】设建设前经济收入为1,则建设后经济收入为2,建设前种植收入为0.6,建设后种植收入为2×0.37=0.74,故A 不正确;建设前的其他收入为0.04,养殖收入为0.3,建设后其他收入为0.1,养殖收入为0.6,故B,C 正确;建设后养殖收入与第三产业收入的总和所占比例为58%,故D 正确,故选A. 11.(2018·浙江·T7)设0<p<1,随机变量ξ的分布列是则当p 在(0,1)内增大时,( )A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小 【答案】D【解析】由题意可知,E(ξ)=0×(1-p 2)+1×12+2×p 2=12+p,D(ξ)=(0-12-p)2×1-p 2+(1-12-p)2×12+(2-12-p)2×p2=12(-2p 2+2p +12)=-(p 2-p +14-12) =-(p -12)2+12,p ∈(0,1).故当p 在(0,1)内增大时,D(ξ)先增大后减小.12.(2018·全国3·理T8)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.3 【答案】B【解析】由题意,得DX=np(1-p)=10p(1-p)=2.4,∴p(1-p)=0.24,由p(X=4)<p(X=6)知C 104p 4·(1-p)6<C 106p 6(1-p)4,即p2>(1-p)2,∴p>0.5,∴p=0.6(其中p=0.4舍去).13.(2018·全国3·文T5)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A.0.3 B.0.4 C.0.6 D.0.7 【答案】B【解析】设不用现金支付的概率为P,则P=1-0.45-0.15=0.4.14.(2017·全国3·理T3文T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】由题图可知2014年8月到9月的月接待游客量在减少,故A错误.15.(2017·山东·文T8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为( )A.3,5B.5,5C.3,7D.5,7【答案】A【解析】甲组数据为56,62,65,70+x,74;乙组数据为59,61,67,60+y,78.若两组数据的中位数相等,则65=60+y,所以y=5.又两组数据的平均值相等,所以56+62+65+70+x+74=59+61+67+65+78,解得x=3.16.(2017·全国1·理T2文T4)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π4【答案】B【解析】不妨设正方形边长为2,则圆半径为1,正方形的面积为2×2=4,圆的面积为π×12=π.由图形的对称性,可知图中黑色部分的面积为圆面积的一半,即12πr 2=12π,所以此点取自黑色部分的概率为π24=π8.17.(2017·全国2·文T11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110 B .15C .310D .25【答案】D【解析】从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图所示.总共有25种情况,其中第一张卡片上的数大于第二张卡片上的数的情况有10种,故所求的概率为1025=25. 18.(2017·天津·文T3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ) A.45 B.35C.25D.15【答案】C【解析】从5支彩笔中任取2支不同颜色的彩笔,共有(红黄),(红蓝),(红绿),(红紫),(黄蓝),(黄绿),(黄紫),(蓝绿),(蓝紫),(绿紫)10种不同情况,记“取出的2支彩笔中含有红色彩笔”为事件A,则事件A 包含(红黄),(红蓝),(红绿),(红紫)4个基本事件,则P(A)=4=2.故选C.19.(2017·山东·理T5)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归 直线方程为y ^=b ^x+a ^.已知∑i=110x i =225,∑i=110y i =1 600,b ^=4,该班某学生的脚长为24,据此估计其身高为( ) A.160B.163C.166D.170【答案】C【解析】由已知得x =110∑i=110x i =22.5,y =110·∑i=110y i =160,又b ^=4,所以a ^=y −b ^x =160-4×22.5=70,故当x=24时,y ^=4×24+70=166.故选C .20.(2016·全国1·文T3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56【答案】C【解析】总的基本事件是红黄,白紫;红白,黄紫;红紫,黄白,共3种.满足条件的基本事件是红黄,白紫;红白,黄紫,共2种.故所求事件的概率为P=23.21.(2016·全国3·文T5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.130【答案】C【解析】密码的前两位共有15种可能,其中只有1种是正确的密码,因此所求概率为115.故选C.22.(2016·北京·文T6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )A.15B.25C.825D.925【答案】B【解析】从甲、乙等5名学生中选2人有10种方法,其中2人中包含甲的有4种方法,故所求的概率为410=25.23.(2016·全国1·理T4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34【答案】B【解析】这是几何概型问题,总的基本事件空间如图所示,共40分钟,等车时间不超过10分钟的时间段为7:50至8:00和8:20至8:30,共20分钟,故他等车时间不超过10分钟的概率为P=2040=12,故选B.24.(2016·全国2·理T10)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4nm B.2nmC.4mnD.2mn【答案】C【解析】利用几何概型求解,由题意可知,14S圆S正方形=14π×1212=mn,所以π=4mn.25.(2016·山东·理T3文T3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A.56B.60C.120D.140【答案】D【解析】自习时间不少于22.5小时为后三组,其频率和为(0.16+0.08+0.04)×2.5=0.7,故人数为200×0.7=140,选D.26.(2016·全国2·文T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.7B.5C.38D.310【答案】B【解析】因为红灯持续时间为40秒,所以这名行人至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.27.(2016·全国3·理T4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个【答案】D【解析】由题图可知,0 ℃在虚线圈内,所以各月的平均最低气温都在0 ℃以上,A正确;易知B,C正确;平均最高气温高于20 ℃的月份有3个,分别为六月、七月、八月,D错误.故选D.28.(2015·全国2·理T3文T3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【答案】D【解析】由柱形图知,2006年以来我国二氧化硫年排放量呈减少趋势,故其排放量与年份负相关,故D错误.29.(2015·陕西·理T2文T2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167【答案】C【解析】由题图知,初中部女教师有110×70%=77人;高中部女教师有150×(1-60%)=60人.故该校女教师共有77+60=137(人).故选C.30.(2015·北京·理T8)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/时.相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】对于选项A,从图中可以看出乙车的最高燃油效率大于5,故A项错误;对于选项B,同样速度甲车消耗1升汽油行驶的路程比乙车、丙车的多,所以行驶相同路程,甲车油耗最少,故B项错误;对于选项C,甲车以80千米/小时的速度行驶,1升汽油行驶10千米,所以行驶1小时,即行驶80千米,消耗8升汽油,故C项错误;对于选项D,速度在80千米/小时以下时,相同条件下每消耗1升汽油,丙车行驶路程比乙车多,所以该市用丙车比用乙车更省油,故D 项正确.31.(2015·湖北·理T2)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A.134石 B.169石 C.338石 D.1 365石【答案】B【解析】由条件知254粒内夹谷28粒,可估计米内夹谷的概率为28254=14127,所以1 534石米中夹谷约为14127×1 534≈169(石).32.(2015·陕西·理T11)设复数z=(x-1)+yi(x,y ∈R),若|z|≤1,则y ≥x 的概率为( ) A.34+12π B.12+1πC.12−1π D.14−12π【答案】D【解析】由|z|≤1,得(x-1)2+y2≤1.不等式表示以C(1,0)为圆心,半径r=1的圆及其内部,y ≥x 表示直线y=x 左上方部分(如图所示). 则阴影部分面积S=14π×12-S △OAC=14π-12×1×1=π4−12.故所求事件的概率P=S 阴S圆=π4-12π×12=14−12π. 33.(2015·山东·文T7)在区间[0,2]上随机地取一个数x,则事件“-1≤lo g 12(x +12)≤1”发生的概率为( ) A.34 B.23C.13D.14【答案】A【解析】由-1≤lo g 12(x +12)≤1,得lo g 122≤lo g 12(x +12)≤lo g 1212,所以12≤x+12≤2,所以0≤x ≤32.由几何概型可知,事件发生的概率为32-02-0=34.34.(2015·福建·文T8)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f(x)={x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A.16 B.14C.38D.12【答案】B【解析】如图,设f(x)与y 轴的交点为E,则E(0,1). ∵B(1,0),∴yC=1+1=2.∴C(1,2). 又四边形ABCD 是矩形, ∴D(-2,2).∴S △DCE =12×[1-(-2)]×1=32.又S 矩形=3×2=6,∴由几何概型概率计算公式可得所求概率P=326=14.故选B .35.(2015·湖北·文T4)已知变量x 和y 满足关系y=-0.1x+1,变量y 与z 正相关.下列结论中正确的是( ) A.x 与y 负相关,x 与z 负相关 B.x 与y 正相关,x 与z 正相关 C.x 与y 正相关,x 与z 负相关 D.x 与y 负相关,x 与z 正相关 【答案】A【解析】由y=-0.1x+1知y 与x 负相关,又因为y 与z 正相关,故z 与x 负相关.36.(2015·湖北·文T8)在区间[0,1]上随机取两个数x,y,记p 1为事件“x+y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( ) A.p 1<p 2<12B.p 1<12<p 2 C.p 2<12<p 1 D.12<p 2<p 1【答案】B【解析】设点P 的坐标为(x,y),由题意x,y ∈[0,1], 所以点P 在正方形OABC 内,S 正方形OABC=1×1=1. 画出直线x+y=12与正方形交于D ,E 两点,画出曲线xy=12与正方形交于M,N两点.而Rt△OAC的面积S=12.由图可知:S△OED<S△OAC<S曲边形OCMNA,所以p1<12<p2.故选B.37.(2015·全国1·文T4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120【答案】C【解析】从1,2,3,4,5中任取3个数共有10种不同的取法,其中的勾股数只有3,4,5,因此3个数构成一组勾股数的取法只有一种,故所求概率为110.38.(2015·广东·文T7)已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为( )A.0.4B.0.6C.0.8D.1【答案】B【解析】设正品分别为A1,A2,A3,次品分别为B1,B2,从中任取2件产品,基本事件共有10种,分别为{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},而其中恰有一件次品的基本事件有6种,由古典概型概率公式,得P=610=0.6.39.(2015·湖南·文T2)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( )A.3B.4C.5D.6【答案】B【解析】依题意,应将35名运动员的成绩由好到差排序后分为7组,每组5人.然后从每组中抽取1人,其中成绩在区间[139,151]上的运动员恰好是第3,4,5,6组,因此,成绩在该区间上的运动员人数是4.40.(2015·北京·文T4)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )A.90B.100C.180D.300【答案】C【解析】由已知分层抽样中青年教师的抽样比为3201600=15, 由分层抽样的性质可得老年教师的抽样比也等于15, 所以样本中老年教师的人数为900×15=180.故选C.41.(2015·安徽·理T6)若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为( ) A.8 B.15C.16D.32【答案】C【解析】设数据x 1,x 2,…,x 10的平均数为x ,标准差为s,则2x 1-1,2x 2-1,…,2x 10-1的平均数为2x -1,方差为[(2x 1-1)-(2x -1)]2+[(2x 2-1)-(2x -1)]2+…+[(2x 10-1)-(2x -1)]210=4(x 1-x )2+4(x 2-x )2+…+4(x 10-x )210=4s 2,因此标准差为2s=2×8=16.故选C.42.(2015·全国1·理T4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A.0.648 B.0.432 C.0.36 D.0.312 【答案】A【解析】由条件知该同学通过测试,即3次投篮投中2次或投中3次.故P=C 320.62(1-0.6)+C 330.63=0.648.43.(2015·湖北·理T4)设X~N(μ1,σ12),Y~N(μ2,σ22),这两个正态分布密度曲线如图所示,下列结论中正确的是( )A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≤t)≥P(Y≤t)D.对任意正数t,P(X≥t)≥P(Y≥t)【答案】C【解析】由曲线X的对称轴为x=μ1,曲线Y的对称轴为x=μ2,可知μ2>μ1.∴P(Y≥μ2)<P(Y≥μ1),故A错;由图象知σ1<σ2且均为正数,∴P(X≤σ2)>P(X≤σ1),故B错;对任意正数t,由题中图象知,P(X≤t)≥P(Y≤t),故C正确,D错.44.(2015·山东·理T8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56%B.13.59%C.27.18%D.31.74%【答案】B【解析】由正态分布N(0,32)可知,ξ落在(3,6)内的概率为P(μ-2σ<ξ<μ+2σ)-P(μ-σ<ξ<μ+σ)2=13.59%.=95.44%-68.26%245.(2014·陕西·文T9)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为x和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A.x,s2+1002B.x+100,s2+1002C.x,s2D.x+100,s2【答案】D【解析】由题意,得x=x1+x2+…+x1010,y i=x i+100,所以y1,y2,…,y10的均值为x+100,方差不变.故选D.46.(2014·重庆·文T3)某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )A.100B.150C.200D.250【答案】A【解析】由题意知,抽样比为703500=150,所以n3500+1500=150,即n=100.故选A.47.(2014·湖南·文T3)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3【答案】D【解析】由随机抽样的原则可知简单随机抽样、分层抽样、系统抽样都必须满足每个个体被抽到的概率相等,即p1=p2=p3.48.(2014·广东·文T6)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.20【答案】C【解析】由题意知分段间隔为100040=25,故选C.49.(2014·全国1·理T5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18B.38C.58D.78【答案】D【解析】4名同学各自在周六、周日两天中任选一天参加活动的情况有24=16(种),其中4名同学都在周六或周日参加活动各有1种情况.所以所求概率为P=16-216=78.50.(2014·陕西·文T6)从正方形4个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )A.15B.25C.35D.45【答案】B【解析】设正方形的四个顶点为A,B,C,D,中心为O,从这5个点中任取2个点,一共有10种不同的取法:AB,AC,AD,AO,BC,BD,BO,CD,CO,DO,其中这2个点的距离小于该正方形边长的取法共有4种:AO,BO,CO,DO.因此由古典概型概率计算公式,可得所求概率P=410=25,故选B.51.(2014·湖南·文T5)在区间[-2,3]上随机选取一个数X,则X≤1的概率为( )A.45B.35C.25D.15【答案】B【解析】由几何概型的概率公式可得P(X≤1)=35,故选B.52.(2014·辽宁·文T6)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8【答案】B【解析】所求概率为S半圆S长方形=12π×122×1=π4,故选B.53.(2014·全国2·理T5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8B.0.75C.0.6D.0.45【答案】A【解析】设某天空气质量为优良为事件A,随后一天空气质量为优良为事件B,由已知得P(A)=0.75,P(AB)=0.6,所求事件的概率为P(B|A)=P(AB)P(A)=0.60.75=0.8,故选A.54.(2013·陕西·理T5)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是()。

2010-2019学年高考新课标全国I卷数学(文)真题分类汇编专题09 概率与统计(2)(解析版)

2010-2019学年高考新课标全国I卷数学(文)真题分类汇编专题09 概率与统计(2)(解析版)

专题09 概率与统计(2)概率与统计大题:10年10考,每年1题.第一小题多为统计问题,第二小题多为概率计算问题,特点:实际生活背景在加强,阅读量大.1.(2019年)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客40 10女顾客30 20(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:K2=()()()()()2n ad bca b c d a c b d-++++.P(K2≥k)0.050 0.010 0.001 k 3.841 6.635 10.828【解析】(1)由题中数据可知,男顾客对该商场服务满意的概率P=4050=45,女顾客对该商场服务满意的概率P=3050=35;(2)由题意可知,K2=()21004020301070305050⨯-⨯⨯⨯⨯=10021≈4.762>3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.2.(2018年)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7)频数 1 3 2 4 9 26 5使用了节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)频数 1 5 13 10 16 5(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图;(2)估计该家庭使用节水龙头后,日用水量小于0.35m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)【解析】(1)根据使用了节水龙头50天的日用水量频数分布表,作出使用了节水龙头50天的日用水量数据的频率分布直方图,如下图:(2)根据频率分布直方图得:该家庭使用节水龙头后,日用水量小于0.35m 3的概率为:p =(0.2+1.0+2.6+1)×0.1=0.48. (3)由题意得未使用水龙头50天的日均水量为:150(1×0.05+3×0.15+2×0.25+4×0.35+9×0.45+26×0.55+5×0.65)=0.48, 使用节水龙头50天的日均用水量为:150(1×0.05+5×0.15+13×0.25+10×0.35+16×0.45+5×0.55)=0.35, ∴估计该家庭使用节水龙头后,一年能节省:365×(0.48﹣0.35)=47.45m 3.3.(2017年)为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸: 抽取次序 1 2 3 4 5 6 7 8 零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 抽取次序 9 10 11 12 13 14 15 16 零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得 x =161116i i x =∑=9.97,s ==≈0.212,,()()1618.5ii x x i =--∑=﹣2.78,其中x i为抽取的第i 个零件的尺寸,i =1,2,…,16.(1)求(x i ,i )(i =1,2,…,16)的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r |<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(x ﹣3s ,x +3s )之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(x ﹣3s ,x +3s )之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(x i ,y i )(i =1,2,…,n )的相关系数r()()niix xy y --∑.【解析】(1)r=()()()()161161622118.58.5iiii ix x ix x i===----∑∑∑=0.2121618.439⨯⨯=﹣0.18.∵|r|<0.25,∴可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)(i)x=9.97,s=0.212,∴合格零件尺寸范围是(9.334,10.606),显然第13号零件尺寸不在此范围之内,∴需要对当天的生产过程进行检查.(ii)剔除离群值后,剩下的数据平均值为()1169.979.2215⨯-=10.02,1621iix=∑=16×0.2122+16×9.972=1591.134,∴剔除离群值后样本方差为115(1591.134﹣9.222﹣15×10.022)=0.008,∴剔除离群值后样本标准差为0.008≈0.09.4.(2016年)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(1)若n=19,求y与x的函数解析式;(2)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【解析】(1)当n =19时,y =()19200,191920019500,19x x x ⨯≤⎧⎪⎨⨯+-⨯>⎪⎩=3800,195005700,19x x x ≤⎧⎨->⎩;(2)由柱状图知,更换的易损零件数为16个频率为0.06, 更换的易损零件数为17个频率为0.16, 更换的易损零件数为18个频率为0.24, 更换的易损零件数为19个频率为0.24, 又∵更换易损零件不大于n 的频率为不小于0.5, 则n ≥19,∴n 的最小值为19件;(3)假设这100台机器在购机的同时每台都购买19个易损零件, 所须费用平均数为:1100(70×19×200+4300×20+4800×10)=4000(元), 假设这100台机器在购机的同时每台都购买20个易损零件, 所须费用平均数为1100(90×4000+10×4500)=4050(元), ∵4000<4050,∴购买1台机器的同时应购买19台易损零件.5.(2015年)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyω()821ii x x =-∑()821ii ωω=-∑()()81iii x x y y =--∑ ()()81iii y y ωω=--∑46.6 563 6.8 289.8 1.6 1469 108.8表中i i x ω=,8118i i ωω==∑.(1)根据散点图判断,y =a +bx 与y =c +d 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x 、y 的关系为z =0.2y ﹣x .根据(2)的结果回答下列问题: (i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2),…,(u n v n ),其回归线v =α+βu 的斜率和截距的最小二乘估计分别为:()()()121ˆnii i ni i uu v v u u β==--=-∑∑,ˆˆv u αβ=-. 【解析】(1)由散点图可以判断,y =c +x 适宜作为年销售量y 关于年宣传费x 的回归方程类型;(2)令w x ,先建立y 关于w 的线性回归方程,由于108.8ˆ 1.6d ==68, ˆˆcy d ω=-=563﹣68×6.8=100.6, 所以y 关于w 的线性回归方程为ˆy=100.6+68w , 因此y 关于x 的回归方程为ˆy=x , (3)(i )由(2)知,当x =49时,年销售量y 的预报值ˆy=49=576.6, 年利润z 的预报值ˆz=576.6×0.2﹣49=66.32, (ii )根据(2)的结果可知,年利润z 的预报值ˆz=0.2(x )﹣x =﹣x x +20.12, x =13.62=6.8时,即当x =46.24时,年利润的预报值最大. 6.(2014年)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数 6 26 38 22 8(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?【解析】(1)频率分布直方图如图所示:(2)质量指标的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100,质量指标的样本的方差为S2=(﹣20)2×0.06+(﹣10)2×0.26+0×0.38+102×0.22+202×0.08=104,这种产品质量指标的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68,由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.7.(2013年)为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A 药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?【解析】(1)设A药观测数据的平均数据的平均数为x,设B药观测数据的平均数据的平均数为y,则x=120(0.6+1.2+2.7+1.5+2.8+1.8+2.2+2.3+3.2+3.5+2.5+2.6+1.2+2.7+1.5+2.9+3.0+3.1+2.3+2.4)=2.3.120y=(3.2+1.7+1.9+0.8+0.9+2.4+1.2+2.6+1.3+1.4+1.6+0.5+1.8+0.6+2.1+1.1+2.5+1.2+2.7+0.5)=1.6.由以上计算结果可知:x y>.由此可看出A药的效果更好.(2)根据两组数据得到下面茎叶图:从以上茎叶图可以看出,A药疗效的试验结果有710的叶集中在2,3上.而B药疗效的试验结果有710的叶集中在0,1上.由此可看出A药的疗效更好.8.(2012年)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14 15 16 17 18 19 20频数10 20 16 16 15 13 10(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.【解析】(1)当日需求量n≥17时,利润y=85;当日需求量n<17时,利润y=10n﹣85;∴利润y关于当天需求量n的函数解析式1085,1785,17n nyn-<⎧=⎨≥⎩(n∈N*).(2)(i)这100天的日利润的平均数为551065207516855476.4100⨯+⨯+⨯+⨯=元;(ii)当天的利润不少于75元,当且仅当日需求量不少于16枝,故当天的利润不少于75元的概率为P=0.16+0.16+0.15+0.13+0.1=0.7.9.(2011年)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110] 频数8 20 42 22 8B配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110] 频数 4 12 42 32 10(1)分别估计用A配方,B配方生产的产品的优质品率;(2)已知用B 配方生产的一件产品的利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩.估计用B 配方生产的产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润. 【解析】(1)由试验结果知,用A 配方生产的产品中优质品的频率为2280.3100+=, ∴用A 配方生产的产品的优质品率的估计值为0.3. 由试验结果知,用B 配方生产的产品中优质品的频率为32100.42100+=, ∴用B 配方生产的产品的优质品率的估计值为0.42.(2)由条件知,用B 配方生产的一件产品的利润大于0当且仅当其质量指标值94t ≥,由试验结果知,质量指标值94t ≥的频率为0.96,∴用B 配方生产的一件产品的利润大于0的概率估计值为0.96. 用B 配方生产的产品平均一件的利润为()142542424 2.68100⨯-+⨯+⨯=⎡⎤⎣⎦(元). 10.(2010年)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女需要 40 30 不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P (K 2≥k )0.050 0.010 0.0013.8416.63510.828附:K 2=()()()()()2n ad bc a b c d a c b d -++++.【解析】(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为7014%500=.(2)K2的观测值()250040270301609.96720030070430k⨯-⨯=≈⨯⨯⨯,因为9.967>6.635,且P(K2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.、。

河北省2019-2010年十年对口招生高考(对口升学)数学试题含答案

河北省2019-2010年十年对口招生高考(对口升学)数学试题含答案

河北省对口招生高考数学历年真题(2010-2019)目录✧..2019年河北省普通高等学校对口招生考试数学试题 (1)✧..2019年河北省对口招生考试数学参考答案 (4)✧..2018年河北省普通高等学校对口招生考试数学试题 (7)✧..2018年河北省对口招生考试数学参考答案 (12)✧..2017年河北省普通高等学校对口招生考试数学试题 (13)✧..2017年河北省对口招生考试数学参考答案 (18)✧..2016年河北省普通高等学校对口招生考试数学试题 (23)✧..2016年河北省对口招生考试数学参考答案 (28)✧..2015年河北省普通高等学校对口招生考试数学试题 (29)✧..2015年河北省对口招生考试数学参考答案 (34)✧..2014年河北省普通高等学校对口招生考试数学试题 (36)✧..2014年河北省对口招生考试数学参考答案 (41)✧..2013年河北省普通高等学校对口招生考试数学试题 (42)✧..2013年河北省对口招生考试数学参考答案 (47)✧..2012年河北省普通高等学校对口招生考试数学试题 (50)✧..2012年河北省对口招生考试数学参考答案 (54)✧..2011年河北省普通高等学校对口招生考试数学试题 (55)✧..2011年河北省对口招生考试数学参考答案 (59)✧..2010年河北省普通高等学校对口招生考试数学试题 (63)✧..2010年河北省对口招生考试数学参考答案 (67)2019年河北省普通高等学校对口招生考试数学试题一、选择题(每题3分,共45分)1.设集合A={b,c,d},则集合A 的子集共有()A.5个B.6个C.7个D.8个2.若22b a <,则下列不等式成立的是()A.ba < B.ba 22< C.0)(log 222<-a b D.||||b a <3.在ABC ∆中,“sinA=sinB ”是“A=B ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件4.已知一次函数b kx y +=关于原点对称,则二次函数)0(2≠++=a c bx ax y 一定是()A.奇函数B.偶函数C.非奇非偶函数D.奇偶性和c 有关5.函数|cos sin |x x y =的最小正周期为()A.2π B.πC.π2D.π46.设向量b a x b a ∥且),1,(),2,4(==,则x=()A.2B.3C.4D.57二次函数b ax x y ++=2图像的顶点坐标为(-3,1),则b a ,的值为()A.10,6=-=b a B.10,6-=-=b a C.10,6==b a D.10,6-==b a 8.在等差数列}{n a 中,n S 为前n 项和,===642,8,0a S S 则若()A.5B.7C.9D.169.在等比数列}{n a 中,=+=⋅>1047498log log ,161.0a a a a a n 则若()A.-2 B.-1 C.0 D.210.下列四组函数中,图像相同的是()A.x x y x y 220cos sin +==和B.xy x y lg 10==和C.xy x y 222log 2log ==和 D.)2cos(sin x y x y -==π和11.过点A(1,2)且与直线012=-+y x 平行的直线方程为()A.042=-+y x B.052=-+y x C.02=-y x D.032=++y x 12.北京至雄安将开通高铁,共设有6个高铁站(包含北京站和雄安站),则需设计不同车票的种类有()A.12种B.15种C.20种D.30种13.二项式于的展开式中,常数项等122)12(x x -()A.84122⋅C B.84122⋅-C C.66122⋅C D.66122⋅-C 14.在正方体1111D C B A ABCD -中,棱C D D A 11与所成的角为()A.6π B.4π C.3π D.32π15.已知双曲线方程为192522=-y x ,则其渐近线方程为()A.x y 45±=B.xy 35±= C.xy 54±= D.xy 53±=二、填空题(每题2分,共30分)16.已知函数3)(3++=bx ax x f 满足=-=)1(,6)1(f f 则.17.函数|3|lg 37121)(2-++-=x x x x f 的定义域为.18.计算:=-+++|3|281log 45tan2log 31e e π.19.若不等式02<-+b ax x 的解集为(1,2),则)(log 6ab =.20.数列1,22241-3121,,-的通项公式为.21.若|b |3b a 4b a 4|a |→→→→→→==⋅=,则,,,π=.22.已知ααααα2cos 137cos sin 1317cos sin ,则,=-=+=.23.已知以21F F ,为焦点的椭圆1361622=+y x 交x 轴正半轴于点A ,则21F AF ∆的面积为.24.已知99.0log 10099.010099.0100===c b a ,,,则c b a ,,按由小到大的顺序排列为.25.在正方体1111D C B A ABCD -中,与AB 为异面直线的棱共有条.26.某学校参加2019北京世界园艺博览会志愿活动,计划从5名女生,3名男生中选出4人组成小分队,则选出的4人中2名女生2名男生的选法有种.27.已知αβαβαβαβα2sin 81)sin()cos()cos()sin(,则=-++-+=.28.设,,,,)sin 11()1cos 1(A n A m +-=+=→→其中∠A 为ABC ∆的内角.→→⊥n m 若,则∠A=.29.不等式x x 5log )6(log 222>+的解集为.30.一口袋里装有4个白球和4个红球,现在从中任意取3个球,则取到既有白球又有红球的概率为.三、解答题(7个小题,共45分)31.(5分)设集合R B A m x x B x x x A =≥+=>--= ,若,}1|{}012|{2,求m 的取值范围.32.(6分)某广告公司计划设计一块周长为16米的矩形广告牌,设计费为每平方米500元.设该矩形一条边长为x 米,面积为y 平方米.(1)写出y 与x 的函数关系式;(2)问矩形广告牌长和宽各为多少米时,设计费最多,最多费用为多少元?33.(8分)若数列}{n a 是公差为23的等差数列,且前5项和155=S .(1)求数列}{n a 的通项公式;(2)若n a n e b =,求证}{n b 为等比数列并指出公比q ;(3)求数列}{n b 的前5项之积.34.(6分)函数x x y 2sin )23sin(+-=π(1)求该函数的最小正周期;(2)当x 为何值时,函数取最小值,最小值为多少?35.(6分)过抛物线x y 42=的焦点,且斜率为2的直线l 交抛物线于A ,B 两点.(1)求直线l 的方程;(2)求线段AB 的长度.36.(7分)如图所示,底面ABCD 为矩形,PD ⊥平面ABCD ,|PD|=2,平面PBC 与底面ABCD所成角为45°,M 为PC 中点.(1)求DM 的长度;(2)求证:平面BDM ⊥平面PBC.37.(7分)一颗骰子连续抛掷3次,设出现能被3整除的点的次数为ξ,(1)求)2(=ξP ;(2)求ξ的概率分布.P DMCAB2019年河北省对口招生考试数学参考答案一、选择题题号123456789101112131415答案DDCBAACCADBDACD二、填空题16.017.),3()3,(+∞-∞ 18.019.120.21)1(n a n n +-=21.222.169119-23.5824.ba c <<25.426.3027.8128.4π29.),3()2,0(+∞ 30.76三、解答题31.解:}34|{}012|{2-<>=>--=x x x x x x A 或}1|{}1|{m x x m x x B -≥=≥+=因为R B A = 所以431≥-≤-m m 即所以m 的取值范围为),4[+∞.32.解:矩形的另一边长为)(82216米x x-=-则x x x x y 8)8(2+-=-=(0<x<8)(2)16)4(822+--=+-=x x x y 当x=4米时,矩形的面积最大,最大面积为16平方米此时广告费为)(800016500元=⨯所以当广告牌长和宽都为4米时矩形面积最大,设计费用最多,最多费用为8000元.33.解:(1)由已知23,155==d S 得1552)(53515==+=a a a S 解得33=a所以232323)3(3)3(3-=⋅-+=-+=n n d n a a n (2)由)2323(-==n a n eeb n所以n eb 231=+所以23a 111e e e ee b b d a a a n n n n n n ====-+++,又101==e b 所以}{n b 为以1为首项23e 为公比的等比数列.(3)由题意可得155)13(235354321)(e eb b b b b b ===⋅⋅⋅⋅-,所以}{n b 的前5项积为15e .34.解:x x x x x y 2sin 2sin 3cos 2cos 3sin 2sin )23sin(+-=+-=πππ=)32sin(2cos 232sin 21π+=+x x x 所以函数的最小正周期为ππ==22T (2)当1-)(125)(2232小值为时,函数有最小值,最即Z k k x Z k k x ∈-=∈-=+πππππ.35.解:(1)由抛物线方程x y 42=得焦点F(1,0),又直线l 的斜率为2,所以直线方程为022)1(2=---=y x x y 即.(2).设抛物线与直线的交点坐标为),(),,(2211y x B y x A 联立两方程得01322422=+-⎩⎨⎧-==x x x y xy 整理得由韦达定理得1,32121==+x x x x 由弦长公式得549414)(1||212212=-+=-++=x x x x k AB 36.解:(1)因为PD ⊥平面ABCD 所以PD ⊥BC又因为ABCD 为矩形,得BC ⊥CD 所以BC ⊥平面PCD 所以BC ⊥PC所以∠PCD 为平面PBC 与平面ABCD 所成角即∠PCD=45°从而△PDC 为等腰直角三角形在RT ∆PDC 中||||45sin PC PD =︒得2245sin ||||=︒=PD PC 又M 为PC 的中点,则DM ⊥PC所以在2||21||==∆PC DM DMC RT 中,(2)证明:由(1)可知BC ⊥平面PCD 所以BC ⊥DM由(1)可知DM ⊥PC ,且BC PC=C,所以DM ⊥平面PBC又DM ⊆平面BDM ,所以平面BDM ⊥平面PBC37.解:(1)能被3整除的只有3和6,则在一次抛掷中出现的概率为31,从而出现不能被3整除的点的概率为32所以9232()31(223=⨯⨯=C P (2)ξ的可能取值为0,1,2,3且278)32()31()0(3003=⨯⨯==C P ξ94)32(31()1(2113=⨯⨯==C P ξ9232()31()2(1223=⨯⨯==C P ξ271)32()31()3(0333=⨯⨯==C P ξ所以ξ的概率分布为ξ0123P27894922712018年河北省普通高等学校对口招生考试数学试题一、选择题(本大题共15小题,每小题3分,共45分)1、设集合M={0,1,2,3,4},N={xl0<x ≤3},则N M ⋂=()A{1,2}B{0,1,2}C{1,2,3}D{0,1,2,3}2、若a,b,c 为实数,且a>b,则()A a-c>b-cB a 2>b 2C ac>bcD ac 2>bc 23、2>x 是x>2的()A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件4、下列函数中,既是奇函数又是减函数的是()A xy 31=B 22x y =C 3x y -=D xy 1=5、函数42sin(π-=x y 的图像可以有函数x y 2sin =的图像如何得到()A 向左平移4π个单位B 向右平移4π个单位C 向左平移8π个单位D 向右平移8π个单位6、已知),,3(),2,1(m b a =-=b a b a -=+则m=()A -23B23C 6D -67、下列函数中,周期为π的偶函数是()A xy sin =B xy 2sin =C xy sin =D 2cosx y =8、在等差数列{a n }中,若a 1+a 2+a 3=12,a 2+a 3+a 4=18,则a 3+a 4+a 5=()A 22B 24C 26D 309、记S n 为等比数列{a n }的前n 项和,若S 2=10,S 4=40,则S 6=()A 50B 70C 90D 13010、下列各组函数中,表示同一个函数的是()A x y =与2x y =B x y =与33x y =C x y =与2x y =D 2x y =与33x y =11、过圆2522=+y x 上一点(3,4)的切线方程为()A 3x+4y-25=0B 3x+4y+25=0C 3x-4y-25=0D 3x-4y+25=012、某体育兴趣小组共有4名同学,如果随机分为两组进行对抗赛,每组两名队员,分配方案共有()A2种B3种C6种D12种13、设(2x-1)2018=a 0+a 1x+a 2x 2+……….+a 2018x 2018,则a 0+a 1+a 2+…….+a 2018=()A 0B 1C -1D 22018-114、已知平面上三点A (1,-2),B (3,0),C (4,3),则点B 关于AC 中点是对称点的坐标是()A (1,4)B (5,6)C (-1,-4)D (2,1)15、下列命题中正确的是()(1)平行于同一直线的两条直线平行(2)平行于同一平面的两条直线平行(3)平行于同一直线的两个平面平行(4)平行于同一平面的两个平面平行A(1)(2)B(1)(3)C(1)(4)D(2)(4)二、填空题(共15小题。

2024_2025年高考数学真题分类汇编专题14概率与统计填空题文

2024_2025年高考数学真题分类汇编专题14概率与统计填空题文

专题14概率与统计(填空题)近三年高考真题1.(2024•上海)现有某地一年四个季度的GDP (亿元),第一季度GDP 为232(亿元),第四季度GDP 为241(亿元),四个季度的GDP 逐季度增长,且中位数与平均数相同,则该地一年的GDP 为 (亿元) .【答案】946(亿元).【解析】设其次季度GDP 为x 亿元,第三季度GDP 为y 亿元,则232241x y <<<,中位数与平均数相同, ∴23224124x y x y ++++=, 473x y ∴+=,∴该地一年的GDP 为232241946x y +++=(亿元).故答案为:946(亿元).2.(2024•上海)某校抽取100名学生测身高,其中身高最大值为186cm ,最小值为154cm ,依据身高数据绘制频率组距分布直方图,组距为5,且第一组下限为153.5,则组数为 .【答案】7.【解析】极差为18615432-=,组距为5,且第一组下限为153.5,32 6.45=,故组数为7组, 故答案为:7.3.(2024•天津)甲、乙、丙三个盒子中装有肯定数量的黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为 ;将三个盒子混合后任取一个球,是白球的概率为 . 【答案】120;35. 【解析】设盒子中共有球15n 个,则甲盒子中有黑球2n 个,白球3n 个,乙盒子中有黑球n 个,白球3n 个,丙盒子中有黑球3n 个,白球3n 个, 从三个盒子中各取一个球,取到的三个球都是黑球的概率为23154620n n n n n n ⨯⨯=; 将三个盒子混合后任取一个球,是白球的概率93155n n =.故答案为:120;35.4.(2024•乙卷(文))从甲、乙等5名同学中随机选3名参与社区服务工作,则甲、乙都入选的概率为.【答案】3 10【解析】设5人为甲、乙、丙、丁、戊,从5人中选3人有以下10个基本领件:甲乙丙,甲乙丁,甲乙戊,甲丙丁,甲丙戊,甲丁戊,乙丙丁、乙丙戊,乙丁戊,丙丁戊;甲、乙被选中的基本领件有3个:甲乙丙,甲乙丁,甲乙戊;故甲、乙被选中的概率为310.。

(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题12概率统计文(含解析)

(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题12概率统计文(含解析)

专题12概率统计历年考题细目表历年高考真题汇编1.【2016年北京文科06】从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.B.C.D.【解答】解:从甲、乙等5名学生中随机选出2人,基本事件总数n10,甲被选中包含的基本事件的个数m4,∴甲被选中的概率p.故选:B.2.【2015年北京文科04】某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()A.90 B.100 C.180 D.300【解答】解:由题意,老年和青年教师的人数比为900:1600=9:16,因为青年教师有320人,所以老年教师有180人,故选:C.3.【2012年北京文科03】设不等式组,表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A.B.C.D.【解答】解:其构成的区域D如图所示的边长为2的正方形,面积为S1=4,满足到原点的距离大于2所表示的平面区域是以原点为圆心,以2为半径的圆外部,面积为4﹣π,∴在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率P故选:D.4.【2010年北京文科03】从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是()A.B.C.D.【解答】解:由题意知本题是一个古典概型,∵试验包含的所有事件根据分步计数原理知共有5×3种结果,而满足条件的事件是a=1,b=2;a=1,b=3;a=2,b=3共有3种结果,∴由古典概型公式得到P,故选:D.5.【2015年北京文科14】高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.【解答】解:由高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年。

2019年高考试题分类汇编(统计与概率)

2019年高考试题分类汇编(统计与概率)

2019年高考试题分类汇编(统计与概率)考点1 统计考法1 简单随机抽样1.(2019·全国卷Ⅰ·文科)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生 B.200号学生 C.616号学生 D.815号学生2.(2019·天津卷·文科)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A B C D E F.享受情况如右表,其中“”表示享受,“⨯”表示不享受.现从,,,,,(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.考法2数字特征1.(2019·全国卷Ⅱ·理科)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数 C.方差 D.极差2.(2019·全国卷Ⅱ·文理科)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经该站高铁列车所有车次的平均正点率的估计值为 .3.(2019·江苏卷)已知一组数据6,7,8,8,9,10,则该组数据的方差是 .4.(2019·全国卷Ⅰ·文理科)古希腊时期,人们认为最美人体的头顶至肚脐的0.618≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是A .165cmB .175cmC .185cmD .195cm9.(2019·全国卷Ⅱ·文科)某行业主管部门为了解本行业中小型企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表:(Ⅰ)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(Ⅱ)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.018.602≈考点2 概率考法1古典概型1.(2019·全国卷Ⅱ·文科)生物实验室有5只兔子,其中3只测量过某项指标,若从这5只兔子随机取出3只,则恰有2只测量过该项指标概率为A .23B .35C .25D .152.(2019·江苏卷)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 .3.(2019·全国卷Ⅲ·文理科)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.84.(2019·全国卷Ⅰ·理科)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“—”和阴爻“--”,右图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.1116考法2相互独立事件的概率1.(2019·全国卷Ⅰ·理科)甲、乙两队进行篮球决赛,采取七场四胜制(当一对赢得四场胜利时,该队获胜,决赛决赛).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果互相独立,则甲队以4:1获胜的概率为 .2.(2019·全国卷Ⅱ·理科)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(Ⅰ)求(2)P X=;(Ⅱ)事件“4X=且甲获胜”的概率.3.(2019·天津卷·理科)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.考法3 频率分布直方图1.(2019·全国卷Ⅲ·文理科)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A 、B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每组小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C 的估计值为0.70.(Ⅰ)求乙离子残留百分比直方图中a ,b 的值;(Ⅱ)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).2.(2019·北京卷·文科)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本仅使用A 和仅使用B 的学生的支付金额分布(Ⅰ)估计该校学生中上个月A ,B 两种支付方式都使用的人数;(Ⅱ)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中,随机抽查1人,发现他本月的支付金额大于2000元,结合(Ⅱ)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化?说明理由.甲离子残留百分比直方图 乙离子残留百分比直方图考点3 分布列1.(2019·北京卷·理科)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本仅使用A 和仅使用B 的学生的支付金额分布(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A ,B 两个支付方式都使用的概率; (Ⅱ)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化,现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.则当a 在(0,1)内增大时, A .()D X 增大 B .()D X 减小C .()D X 先增大后减小 D .()D X 先减小后增大3.(2019·全国卷Ⅰ·理科)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物实验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮的试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别为α和β,一轮试验中甲药的得分记为X . (Ⅰ)求X 的的分布列;(Ⅱ)若甲药、乙药在试验开始时都赋予4分,i p (0,1,,8i =)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,1i i p ap -= 1i i bp cp +++(1,2,,7i =),其中(1)a p X ==-,(0)b p X ==,(1)c p X ==.假设0.5α=,0.8β=.①证明:1{}i i p p +-(1,2,,7i =)为等比数列;②求4p ,并根据4p 的值解释这种试验方案的合理性. 考点4 独立性检验1.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对(Ⅰ)分别估计男、女顾客对该商场服务满意的概率; (Ⅱ)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十年高考真题分类汇编(2010—2019)数学专题14概率与统计1.(2019·全国1·理T6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻 “”和阴爻“”,右图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516B.1132C.2132D.1116【答案】A【解析】由题可知,每一爻有2种情况,故一重卦的6个爻有26种情况.其中6个爻中恰有3个阳爻有C 63种情况,所以该重卦恰有3个阳爻的概率为C 6326=516,故选A .2.(2019·全国2·文T4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23B.35C.25D.15【答案】B【解析】设测量过该指标的3只兔子为a,b,c,剩余2只为A,B,则从这5只兔子中任取3只的所有取法有{a,b,c},{a,b,A},{a,b,B},{a,c,A},{a,c,B},{a,A,B},{b,c,A},{b,c,B},{c,A,B},{b,A,B}共10种,其中恰有2只测量过该指标的取法有{a,b,A},{a,b,B},{a,c,A},{a,c,B},{b,c,A},{b,c,B}共6种,所以恰有2 只测量过该指标的概率为610=35,故选B .3.(2019·全国3·文T3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) 【答案】D【解析】两位男同学和两位女同学排成一列,共有24种排法.两位女同学相邻的排法有12种,故两位女同学相邻的概率是12.故选D.4.(2019·全国1·文T6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )A.8号学生B.200号学生C.616号学生D.815号学生 【答案】C【解析】由已知得将1 000名新生分为100个组,每组10名学生,用系统抽样46号学生被抽到,则第一组应为6号学生,所以每组抽取的学生号构成等差数列{an},所以an=10n-4,n ∈N*, 若10n-4=8,则n=1.2,不合题意; 若10n-4=200,则n=20.4,不合题意; 若10n-4=616,则n=62,符合题意; 若10n-4=815,则n=81.9,不合题意. 故选C.5.(2019·全国2·理T5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A.中位数 B.平均数 C.方差 D.极差【答案】A【解析】设9位评委的评分按从小到大排列为x1<x2<x3<x4<…<x8<x9.对于A,原始评分的中位数为x5,去掉最低分x1,最高分x9后,剩余评分的大小顺序为x2<x3<…<x8,中位数仍为x5,故A 正确;对于B,原 始评分的平均数x =19(x 1+x 2+…+x 9),有效评分的平均数x '=17(x 2+x 3+…+x 8),因为平均数受极端值影响较大,所以x 与x '不一定相同,故B 不正确;对于C,原始评分的方差s 2=19[(x 1-x )2+(x 2-x )2+…+(x 9-x )2],有效评分的方差s'2=17[(x 2-x ')2+(x 3-x ')2+…+(x 8-x ')2],由B 易知,C 不正确;对于D,原始评分的极差为x9-x1,有效评分的极差为x8-x2,显然极差变小,故D 不正确. 6.(2018·全国2·理T8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112 B.114C.115D.118【答案】C【解析】不超过30的素数有“2,3,5,7,11,13,17,19,23,29”共10个.其中和为30的有7+23,11+19,13+17共3种情况,故P=3C 102=115.7.(2018·全国2·文T5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )A.0.6B.0.5C.0.4D.0.3 【答案】D【解析】设2名男同学为男1,男2,3名女同学为女1,女2,女3,则任选两人共有(男1,女1),(男1,女2),(男1,女3),(男1,男2),(男2,女1),(男2,女2)(男2,女3)(女1,女2),(女1,女3),(女2,女3)共10种,其中选中两人都为女同学共(女1,女2),(女1,女3)、(女2,女3)3种,故P=310=0.3.8.(2018·全国1·理T10)下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC,直角边AB,AC.△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则( ) A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 【答案】A【解析】∵S △ABC =12AB ·AC,以AB 为直径的半圆的面积为12π·AB 22=π8AB 2,以AC 为直径的半圆的面积为12π·AC 22=π8AC 2, 以BC 为直径的半圆的面积为12π·BC 22=π8BC 2,∴S Ⅰ=12AB ·AC,S Ⅲ=π8BC 2-12AB ·AC,S Ⅱ=π8AB 2+π8AC 2-π8BC 2-12AB ·AC =12AB ·AC.∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=SⅠS 总,p 2=SⅡS 总.∴p 1=p 2.∵S △ABC =12AB ·AC,以AB 为直径的半圆的面积为12π·AB 22=π8AB 2,以AC 为直径的半圆的面积为12π·AC 22=π8AC 2, 以BC 为直径的半圆的面积为12π·BC 22=π8BC 2,∴S Ⅰ=1AB ·AC ,S Ⅲ=πBC 2-1AB ·AC , S Ⅱ=π8AB 2+π8AC 2-π8BC 2-12AB ·AC =12AB ·AC.∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=SⅠS 总,p 2=SⅡS 总.∴p 1=p 2.9.(2018·江苏·T3)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .【答案】90【解析】由题中茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为89+89+90+91+91=90.10.(2018·全国1·理T3文T3)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【答案】A【解析】设建设前经济收入为1,则建设后经济收入为2,建设前种植收入为0.6,建设后种植收入为2×0.37=0.74,故A 不正确;建设前的其他收入为0.04,养殖收入为0.3,建设后其他收入为0.1,养殖收入为0.6,故B,C 正确;建设后养殖收入与第三产业收入的总和所占比例为58%,故D 正确,故选A. 11.(2018·浙江·T7)设0<p<1,随机变量ξ的分布列是则当p 在(0,1)内增大时,( )A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小 【答案】D【解析】由题意可知,E(ξ)=0×(1-p 2)+1×12+2×p 2=12+p,D(ξ)=(0-12-p)2×1-p 2+(1-12-p)2×12+(2-12-p)2×p2=12(-2p 2+2p +12)=-(p 2-p +14-12) =-(p -12)2+12,p ∈(0,1).故当p 在(0,1)内增大时,D(ξ)先增大后减小.12.(2018·全国3·理T8)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.3 【答案】B【解析】由题意,得DX=np(1-p)=10p(1-p)=2.4,∴p(1-p)=0.24,由p(X=4)<p(X=6)知C 104p 4·(1-p)6<C 106p 6(1-p)4,即p2>(1-p)2,∴p>0.5,∴p=0.6(其中p=0.4舍去).13.(2018·全国3·文T5)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A.0.3 B.0.4 C.0.6 D.0.7 【答案】B【解析】设不用现金支付的概率为P,则P=1-0.45-0.15=0.4.14.(2017·全国3·理T3文T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】由题图可知2014年8月到9月的月接待游客量在减少,故A错误.15.(2017·山东·文T8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为( )A.3,5B.5,5C.3,7D.5,7【答案】A【解析】甲组数据为56,62,65,70+x,74;乙组数据为59,61,67,60+y,78.若两组数据的中位数相等,则65=60+y,所以y=5.又两组数据的平均值相等,所以56+62+65+70+x+74=59+61+67+65+78,解得x=3.16.(2017·全国1·理T2文T4)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π4【答案】B【解析】不妨设正方形边长为2,则圆半径为1,正方形的面积为2×2=4,圆的面积为π×12=π.由图形的对称性,可知图中黑色部分的面积为圆面积的一半,即12πr 2=12π,所以此点取自黑色部分的概率为π24=π8.17.(2017·全国2·文T11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110 B .15C .310D .25【答案】D【解析】从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图所示.总共有25种情况,其中第一张卡片上的数大于第二张卡片上的数的情况有10种,故所求的概率为1025=25. 18.(2017·天津·文T3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ) A.45 B.35C.25D.15【答案】C【解析】从5支彩笔中任取2支不同颜色的彩笔,共有(红黄),(红蓝),(红绿),(红紫),(黄蓝),(黄绿),(黄紫),(蓝绿),(蓝紫),(绿紫)10种不同情况,记“取出的2支彩笔中含有红色彩笔”为事件A,则事件A 包含(红黄),(红蓝),(红绿),(红紫)4个基本事件,则P(A)=4=2.故选C.19.(2017·山东·理T5)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归 直线方程为y ^=b ^x+a ^.已知∑i=110x i =225,∑i=110y i =1 600,b ^=4,该班某学生的脚长为24,据此估计其身高为( ) A.160B.163C.166D.170【答案】C【解析】由已知得x =110∑i=110x i =22.5,y =110·∑i=110y i =160,又b ^=4,所以a ^=y −b ^x =160-4×22.5=70,故当x=24时,y ^=4×24+70=166.故选C .20.(2016·全国1·文T3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56【答案】C【解析】总的基本事件是红黄,白紫;红白,黄紫;红紫,黄白,共3种.满足条件的基本事件是红黄,白紫;红白,黄紫,共2种.故所求事件的概率为P=23.21.(2016·全国3·文T5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.130【答案】C【解析】密码的前两位共有15种可能,其中只有1种是正确的密码,因此所求概率为115.故选C.22.(2016·北京·文T6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )A.15B.25C.825D.925【答案】B【解析】从甲、乙等5名学生中选2人有10种方法,其中2人中包含甲的有4种方法,故所求的概率为410=25.23.(2016·全国1·理T4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34【答案】B【解析】这是几何概型问题,总的基本事件空间如图所示,共40分钟,等车时间不超过10分钟的时间段为7:50至8:00和8:20至8:30,共20分钟,故他等车时间不超过10分钟的概率为P=2040=12,故选B.24.(2016·全国2·理T10)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4nm B.2nmC.4mnD.2mn【答案】C【解析】利用几何概型求解,由题意可知,14S圆S正方形=14π×1212=mn,所以π=4mn.25.(2016·山东·理T3文T3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A.56B.60C.120D.140【答案】D【解析】自习时间不少于22.5小时为后三组,其频率和为(0.16+0.08+0.04)×2.5=0.7,故人数为200×0.7=140,选D.26.(2016·全国2·文T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.7B.5C.38D.310【答案】B【解析】因为红灯持续时间为40秒,所以这名行人至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.27.(2016·全国3·理T4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个【答案】D【解析】由题图可知,0 ℃在虚线圈内,所以各月的平均最低气温都在0 ℃以上,A正确;易知B,C正确;平均最高气温高于20 ℃的月份有3个,分别为六月、七月、八月,D错误.故选D.28.(2015·全国2·理T3文T3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【答案】D【解析】由柱形图知,2006年以来我国二氧化硫年排放量呈减少趋势,故其排放量与年份负相关,故D错误.29.(2015·陕西·理T2文T2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167【答案】C【解析】由题图知,初中部女教师有110×70%=77人;高中部女教师有150×(1-60%)=60人.故该校女教师共有77+60=137(人).故选C.30.(2015·北京·理T8)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/时.相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】对于选项A,从图中可以看出乙车的最高燃油效率大于5,故A项错误;对于选项B,同样速度甲车消耗1升汽油行驶的路程比乙车、丙车的多,所以行驶相同路程,甲车油耗最少,故B项错误;对于选项C,甲车以80千米/小时的速度行驶,1升汽油行驶10千米,所以行驶1小时,即行驶80千米,消耗8升汽油,故C项错误;对于选项D,速度在80千米/小时以下时,相同条件下每消耗1升汽油,丙车行驶路程比乙车多,所以该市用丙车比用乙车更省油,故D 项正确.31.(2015·湖北·理T2)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A.134石 B.169石 C.338石 D.1 365石【答案】B【解析】由条件知254粒内夹谷28粒,可估计米内夹谷的概率为28254=14127,所以1 534石米中夹谷约为14127×1 534≈169(石).32.(2015·陕西·理T11)设复数z=(x-1)+yi(x,y ∈R),若|z|≤1,则y ≥x 的概率为( ) A.34+12π B.12+1πC.12−1π D.14−12π【答案】D【解析】由|z|≤1,得(x-1)2+y2≤1.不等式表示以C(1,0)为圆心,半径r=1的圆及其内部,y ≥x 表示直线y=x 左上方部分(如图所示). 则阴影部分面积S=14π×12-S △OAC=14π-12×1×1=π4−12.故所求事件的概率P=S 阴S圆=π4-12π×12=14−12π. 33.(2015·山东·文T7)在区间[0,2]上随机地取一个数x,则事件“-1≤lo g 12(x +12)≤1”发生的概率为( ) A.34 B.23C.13D.14【答案】A【解析】由-1≤lo g 12(x +12)≤1,得lo g 122≤lo g 12(x +12)≤lo g 1212,所以12≤x+12≤2,所以0≤x ≤32.由几何概型可知,事件发生的概率为32-02-0=34.34.(2015·福建·文T8)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f(x)={x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A.16 B.14C.38D.12【答案】B【解析】如图,设f(x)与y 轴的交点为E,则E(0,1). ∵B(1,0),∴yC=1+1=2.∴C(1,2). 又四边形ABCD 是矩形, ∴D(-2,2).∴S △DCE =12×[1-(-2)]×1=32.又S 矩形=3×2=6,∴由几何概型概率计算公式可得所求概率P=326=14.故选B .35.(2015·湖北·文T4)已知变量x 和y 满足关系y=-0.1x+1,变量y 与z 正相关.下列结论中正确的是( ) A.x 与y 负相关,x 与z 负相关 B.x 与y 正相关,x 与z 正相关 C.x 与y 正相关,x 与z 负相关 D.x 与y 负相关,x 与z 正相关 【答案】A【解析】由y=-0.1x+1知y 与x 负相关,又因为y 与z 正相关,故z 与x 负相关.36.(2015·湖北·文T8)在区间[0,1]上随机取两个数x,y,记p 1为事件“x+y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( ) A.p 1<p 2<12B.p 1<12<p 2 C.p 2<12<p 1 D.12<p 2<p 1【答案】B【解析】设点P 的坐标为(x,y),由题意x,y ∈[0,1], 所以点P 在正方形OABC 内,S 正方形OABC=1×1=1. 画出直线x+y=12与正方形交于D ,E 两点,画出曲线xy=12与正方形交于M,N两点.而Rt△OAC的面积S=12.由图可知:S△OED<S△OAC<S曲边形OCMNA,所以p1<12<p2.故选B.37.(2015·全国1·文T4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120【答案】C【解析】从1,2,3,4,5中任取3个数共有10种不同的取法,其中的勾股数只有3,4,5,因此3个数构成一组勾股数的取法只有一种,故所求概率为110.38.(2015·广东·文T7)已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为( )A.0.4B.0.6C.0.8D.1【答案】B【解析】设正品分别为A1,A2,A3,次品分别为B1,B2,从中任取2件产品,基本事件共有10种,分别为{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},而其中恰有一件次品的基本事件有6种,由古典概型概率公式,得P=610=0.6.39.(2015·湖南·文T2)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( )A.3B.4C.5D.6【答案】B【解析】依题意,应将35名运动员的成绩由好到差排序后分为7组,每组5人.然后从每组中抽取1人,其中成绩在区间[139,151]上的运动员恰好是第3,4,5,6组,因此,成绩在该区间上的运动员人数是4.40.(2015·北京·文T4)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )A.90B.100C.180D.300【答案】C【解析】由已知分层抽样中青年教师的抽样比为3201600=15, 由分层抽样的性质可得老年教师的抽样比也等于15, 所以样本中老年教师的人数为900×15=180.故选C.41.(2015·安徽·理T6)若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为( ) A.8 B.15C.16D.32【答案】C【解析】设数据x 1,x 2,…,x 10的平均数为x ,标准差为s,则2x 1-1,2x 2-1,…,2x 10-1的平均数为2x -1,方差为[(2x 1-1)-(2x -1)]2+[(2x 2-1)-(2x -1)]2+…+[(2x 10-1)-(2x -1)]210=4(x 1-x )2+4(x 2-x )2+…+4(x 10-x )210=4s 2,因此标准差为2s=2×8=16.故选C.42.(2015·全国1·理T4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A.0.648 B.0.432 C.0.36 D.0.312 【答案】A【解析】由条件知该同学通过测试,即3次投篮投中2次或投中3次.故P=C 320.62(1-0.6)+C 330.63=0.648.43.(2015·湖北·理T4)设X~N(μ1,σ12),Y~N(μ2,σ22),这两个正态分布密度曲线如图所示,下列结论中正确的是( )A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≤t)≥P(Y≤t)D.对任意正数t,P(X≥t)≥P(Y≥t)【答案】C【解析】由曲线X的对称轴为x=μ1,曲线Y的对称轴为x=μ2,可知μ2>μ1.∴P(Y≥μ2)<P(Y≥μ1),故A错;由图象知σ1<σ2且均为正数,∴P(X≤σ2)>P(X≤σ1),故B错;对任意正数t,由题中图象知,P(X≤t)≥P(Y≤t),故C正确,D错.44.(2015·山东·理T8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56%B.13.59%C.27.18%D.31.74%【答案】B【解析】由正态分布N(0,32)可知,ξ落在(3,6)内的概率为P(μ-2σ<ξ<μ+2σ)-P(μ-σ<ξ<μ+σ)2=13.59%.=95.44%-68.26%245.(2014·陕西·文T9)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为x和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A.x,s2+1002B.x+100,s2+1002C.x,s2D.x+100,s2【答案】D【解析】由题意,得x=x1+x2+…+x1010,y i=x i+100,所以y1,y2,…,y10的均值为x+100,方差不变.故选D.46.(2014·重庆·文T3)某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )A.100B.150C.200D.250【答案】A【解析】由题意知,抽样比为703500=150,所以n3500+1500=150,即n=100.故选A.47.(2014·湖南·文T3)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3【答案】D【解析】由随机抽样的原则可知简单随机抽样、分层抽样、系统抽样都必须满足每个个体被抽到的概率相等,即p1=p2=p3.48.(2014·广东·文T6)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.20【答案】C【解析】由题意知分段间隔为100040=25,故选C.49.(2014·全国1·理T5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18B.38C.58D.78【答案】D【解析】4名同学各自在周六、周日两天中任选一天参加活动的情况有24=16(种),其中4名同学都在周六或周日参加活动各有1种情况.所以所求概率为P=16-216=78.50.(2014·陕西·文T6)从正方形4个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )A.15B.25C.35D.45【答案】B【解析】设正方形的四个顶点为A,B,C,D,中心为O,从这5个点中任取2个点,一共有10种不同的取法:AB,AC,AD,AO,BC,BD,BO,CD,CO,DO,其中这2个点的距离小于该正方形边长的取法共有4种:AO,BO,CO,DO.因此由古典概型概率计算公式,可得所求概率P=410=25,故选B.51.(2014·湖南·文T5)在区间[-2,3]上随机选取一个数X,则X≤1的概率为( )A.45B.35C.25D.15【答案】B【解析】由几何概型的概率公式可得P(X≤1)=35,故选B.52.(2014·辽宁·文T6)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8【答案】B【解析】所求概率为S半圆S长方形=12π×122×1=π4,故选B.53.(2014·全国2·理T5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8B.0.75C.0.6D.0.45【答案】A【解析】设某天空气质量为优良为事件A,随后一天空气质量为优良为事件B,由已知得P(A)=0.75,P(AB)=0.6,所求事件的概率为P(B|A)=P(AB)P(A)=0.60.75=0.8,故选A.54.(2013·陕西·理T5)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是()A .1-π4B .π2-1C .2-π2D .π4【答案】A【解析】S 矩形ABCD =1×2=2,S 扇形ADE =S 扇形CBF =π4.由几何概型可知该地点无信号的概率为P=S矩形ABCD-S扇形ADE-S扇形CBFS矩形ABCD=2-π22=1-π4.55.(2013·四川·理T9)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 ( ) A.14 B.12C.34D.78【答案】C【解析】设两串彩灯第一次闪亮的时刻分别为x,y,则由题意可得,0≤x ≤4,0≤y ≤4;而所求事件“两串彩灯同时通电后,第一次闪亮相差不超过2秒”={(x,y)||x-y|≤2},由图示得,该事件概率P=S阴影S正方形=16-416=34.56.(2013·湖南·文T9)已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则ADAB =( ) A.12B.14C.√32D.√74【答案】D【解析】如图,设AB=2x,AD=2y. 由于AB 为最大边的概率是12,则P 在EF 上运动满足条件,且DE=CF=12x ,即AB=EB 或AB=FA.∴2x=√(2y )2+(32x)2,即4x 2=4y 2+94x 2,即74x 2=4y 2,∴y 2x 2=716.∴y x =√74.又AD AB =2y 2x =y x =√74,故选D .57.(2013·全国1·文T3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A .12B .13C .14D .16【答案】B【解析】由题意知总事件数为6,分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为158.(2013·全国1·理T3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ) A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样【答案】C【解析】因为学段层次差异较大,所以宜采用按学段分层抽样.59.(2013·江西·理T4文T5)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.08B.07C.02D.01【答案】D【解析】选出的5个个体的编号依次是08,02,14,07,01,故选D.60.(2013·陕西·理T4)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ) A.11B.12C.13D.14【答案】B【解析】840÷42=20,把1,2,…,840分成42段,不妨设第1段抽取的号码为l,则第k 段抽取的号码为l+(k-1)·20,1≤l ≤20,1≤k ≤42.令481≤l+(k -1)·20≤720,得25+1-l20≤k≤37-l20.由1≤l≤20,则25≤k≤36.满足条件的k 共有12个.61.(2012·山东·理T4)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B 的人数为 ( ) A.7 B.9 C.10 D.15【答案】C【解析】由题意可得,抽样间隔为30,区间[451,750]恰好为10个完整的组,所以做问卷B 的有10人,故选C.62.(2012·北京·理T2)设不等式组{0≤x ≤2,0≤y ≤2表示的平面区域为D.在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A.π4 B.π-22C.π6D.4-π4【答案】D【解析】由题意知此概型为几何概型,设所求事件为A,如图所示,边长为2的正方形区域为总度量μΩ,满足事件A 的是阴影部分区域μA,故由几何概型的概率公式得P (A )=22-14×π×2222=4-π4.63.(2012·辽宁·文T11)在长为12 cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC,CB 的长,则该矩形面积大于20 cm2的概率为( ) A.16 B.13C.23D.45【答案】C【解析】此概型为几何概型,由于在长为12 cm 的线段AB 上任取一点C,因此总的几何度量为12,满足矩形面积大于20 cm2的点在C1与C2之间的部分,如图所示. 因此所求概率为812,即23,故选C .64.(2012·安徽·文T10)袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于 ( )。

相关文档
最新文档