第三章流体的热力学性质习题

合集下载

化工热力学第三章 纯流体的热力学性质计算

化工热力学第三章 纯流体的热力学性质计算
z 令 M x y


z y N x
dz=Mdx+Ndy
(3-5)
在x不变时,M对y求偏微分: 在y不变时,N对x求偏微分: 对于连续函数:
z xy
2
M y
z y x x y x

式 (3-22)
但必须解决真实气体与等压热容的关系。
对理想气体
C p f T
对真实气体
Cp f T , p
为了解决真实气体一定状态下H,S值的计算, 必须引入一个新的概念——剩余性质。

• ⒈剩余性质(MR)
计算原理
(Residual properties)
• 定义:在相同的 T,p 下真实气体的热力学性质与理想气体 的热力学性质的差值 • 数学定义式:
(定义,马氏第二关系)

V dS dT dp T T p Cp
(3-24)
S的基本关系式
在特定条件下,可以对此进行相应的简化:
V dS dp T不变, T p
p不变,
dቤተ መጻሕፍቲ ባይዱ
Cp T
ig
dT

R V dS dT dT dp dp 对理想气体, T T p T p
• 无论参考态的温度选取多少,其压力应该是足够低,
这样才可视为理想气体。
dH ig C id dT p

H ig
H0
ig id dH C ig p dT T0
T
H ig H 0ig C id p dT
T0
T
同理:

化工热力学马沛生第一版第三章习题答案

化工热力学马沛生第一版第三章习题答案

习题3-1. 单组元流体的热力学基本关系式有哪些? 答:单组元流体的热力学关系包括以下几种:(1)热力学基本方程:它们适用于封闭系统,它们可以用于单相或多相系统。

V p S T U d d d -= p V S T H d d d += T S V p A d d d --= T S p V G d d d -=(2)Helmholtz 方程,即能量的导数式pV S H S U T ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂= T S V A V U p ⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂=- TS p G p H V ⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂= p V T G T A S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=- (3)麦克斯韦(Maxwell )关系式 V S S p V T ⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ p S S V p T ⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ TV V S T p ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ Tp p S T V ⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ 3-2. 本章讨论了温度、压力对H 、S 的影响,为什么没有讨论对U 的影响?答:本章详细讨论了温度、压力对H 、S 的影响,由于pV H U -=,在上一章已经讨论了流体的pVT 关系,根据这两部分的内容,温度、压力对U 的影响便可以方便地解决。

3-3. 如何理解剩余性质?为什么要提出这个概念?答:所谓剩余性质,是气体在真实状态下的热力学性质与在同一温度、压力下当气体处于理想气体状态下热力学性质之间的差额,即:),(),(p T M p T M M ig R -=M 与M i g 分别表示同温同压下真实流体与理想气体的广度热力学性质的摩尔量,如V 、U 、H 、S 和G 等。

需要注意的是剩余性质是一个假想的概念,用这个概念可以表示出真实状态与假想的理想气体状态之间热力学性质的差额,从而可以方便地算出真实状态下气体的热力学性质。

化工热力学复习习题

化工热力学复习习题

5
4
1
3(T降低
)
2
V
1)过热蒸汽等温冷凝为过冷液体;
2)过冷液体等压加热成过热蒸汽;
T
4
3)饱和蒸汽可逆绝热膨胀;
C 5 4)饱和液体恒容加热;
5)在临界点进行的恒温膨胀
1
2
3(T降低
)
S
第四章 流体混合物(溶液)的热力学性质
一. 基本概念
1.偏mol性质定义
2.化学位
3.混合性质变化: M M
xi
M i
0
4.超额性质:
M E M M id
5.混合过程的超额性质变化 M E M M id
6.恒T、P下,G—D Eq
XidMi 0
化学位
偏摩尔性质
i

[

(nU ni
)
]nV
,nS
,n
j

i
i U i
化学位:在V,S和其它组
Ui

(nU ) [ ni ]T ,P ,nj i
45 188.45
50 209.33
95 397.96
解:以1kg水为计算基准,
输入的功 放出的热
(3)基团贡献关联式
判断、选择、填空题 1、正规溶液混合焓变为零,混合体积为零。 ×
2、对于理想溶液,i组分在溶液中的逸度系数和i纯组分的逸度系数
相等。 √ 3、偏摩尔量的定义可写为:
Mi


nM ni
T , p ,n ji
4、不同状态下的理想气体混合,焓、熵都守恒。 ×
第二章 流体的pVT关系
一.p、V、T、CP是流体的最基本性质,是热力学计算基础 查找文献 实验得(实测) 计算 (由第二章介绍方法计算)

《化工热力学》复习题

《化工热力学》复习题

《化工热力学》复习题第1章 绪论一、单项选择题1、下列各式中不受理想气体条件限制的是( A )A .H U P V ∆=∆+∆ B.P V C C R -= C.21ln()V W nRT V = D.PV γ=常数 2、对封闭体系而言,当过程的始态和终态确定后,不能确定的值是( A )A .Q B.∆U C.∆H D.∆S3、封闭体系中,1mol 理想气体由T 1 ,p 1和V 1可逆地变化至p 2,过程的12ln P W RT P =-,则该过程为( B )A .等容过程 B.等温过程 C.绝热过程 D.等压过程4、封闭体系中,1mol 理想气体由T 1 ,p 1和V 1等温可逆地变化至p 2,过程的W 为( B )A .12ln P RT P B.─12ln P RT P C.0 D.21ln V RT V 5、封闭体系中,1mol 理想气体由T 1 ,p 1和V 1等温可逆地变化至p 2,过程的Q 为( A )A .12ln P RT P B.─12ln P RT P C.0 D.21ln V RT V 6、封闭体系中,1mol 理想气体由T 1 ,p 1和V 1等温可逆地变化至p 2,过程的∆U 为( C )A .12ln P RT P B.─12ln P RT P C.0 D.21ln V RT V 7、封闭体系中,1mol 理想气体由T 1 ,p 1和V 1等温可逆地变化至p 2,过程的∆H 为( C )A .12ln P RT P B.─12ln P RT P C.0 D.21ln V RT V 8、封闭体系中,1mol 理想气体由T 1 ,p 1和V 1等容可逆地变化至p 2,过程的W 为( C )A .12ln P RT P B.─12ln P RT P C.0 D .21ln V RT V 9、封闭体系中,1mol 理想气体由T 1 ,p 1和V 1绝热可逆地变化至p 2,过程的Q 为( C )A .12ln P RT P B.─12ln P RT P C.0 D .21ln V RT V 二、填空题1、孤立系统的自由能 (是 ∕ 不是)一定值。

化工热力学3-1Chapter3纯流体的热力学性质计算(1-2)

化工热力学3-1Chapter3纯流体的热力学性质计算(1-2)

热力学的四个基本公式
对热力学四个基本公式的说明: (1) 虽然在四个基本公式的推导过程中采用了可逆过程,
如 d Qr = TdS 和 d W膨胀 = pdV ,但这些公式适用于包括可逆过
程和不可逆过程在内的任何过程。这是因为公式中的物理量皆 为状态函数,其变化值仅取决于始态和终态。
注意:只有在可逆过程中,上述公式中的 TdS 才代表热效 应,pdV 才代表膨胀功。若是不可逆过程,则根据热力学第二
y
(3 6)
02:12
11
§3.1 热力学性质间的关系 Chapter3.纯流体的热力学性质计算
3.1.2 点函数间的数学关系式
(1)全微分关系式与偏微分原理——Green定律
式(3-5)、(3-6)即为Green定律,其意义:
①若x、y、Z都是点函数,热力学即为状态函数或称 系统性质,且Z是自变量x、y的连续函数,则Z必有 全微分式且存在式(3-6);
dU=TdS-pdV (3-1) dH=TdS+Vdp (3-2) dA=SdTpdV (3-3) dG=SdT+Vdp (3-4)
注意基本微分方程的应用条件及其含义:
定量、定组成、单相、无非体积功的体系!
定量——封闭体系或稳流体系;
只有
定组成——无化学反应;
状态
单相——无相变
变化
02:12
无需 可逆 条件
dH=T·dS+V ·dp 等温时两边除dp (H/p)T=V+T (S/p)T
S p
T
V T
p
H p
T
V
T V T
p
H
T2 T1
cpdT
p2 p1
V

化工热力学讲义-3-第三章-纯流体的热力学性质

化工热力学讲义-3-第三章-纯流体的热力学性质

第三章 纯流体的热力学性质3.1热力学性质间的关系3.1.1单相流体系统基本方程 根据热力学第一、二定律,对单位质量定组成均匀流体体系,在非流动条件下,其热力学性质之间存在如下关系: pdV TdS dU -=;Vdp TdS dH +=pdV SdT dA --=;Vdp SdT dG +-=上述方程组是最基本的关系式,所有其他的函数关系式均由此导出。

上述基本方程给我们的启示是:p-V-T 关系数据可以通过实验测定,关键是要知道S 的变化规律,若知道S 的变化规律,则U 、H 、A 、G 也就全部知道了。

下面所讲主要是针对S 的计算。

3.1.2点函数间的数学关系式对于函数:()y x f z ,=,微分得:dy y z dx x z dz xy ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=如果x 、y 、z 都是点函数,且z 是自变量x 、y 的连续函数,Ndy Mdx +是z (x ,y )的全微分,则M 、N 之间有:该式有两种意义:①在进行热力学研究时,如遇到(1)式,则可以根据(2)式来判断dz 是否全微分,进而可判定z 是否为系统的状态函数;②如已知z 是状态函数,则可根据(2)式求得x 与y 之间的数学关系。

以下循环关系式也经常遇到:3.1.3Maxwell 关系式由于U 、H 、A 和G 都是状态函数,将(2)式应用于热力学基本方程,则可获得著名的Maxwell 方程:V S S p V T ⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂;p S S V p T ⎪⎭⎫⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ T V V S T p ⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂;Tp p S T V ⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂能量方程的导数式:T S H S U pV =⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂;p V A V U T S -=⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂V p G p H TS =⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂;S T A T G V p -=⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 在实际工程应用中,Maxwell 方程应用之一是用易于实测的某些数据来代替或计算那些难于实测的物理量。

化工热力学纯流体的热力学性质

化工热力学纯流体的热力学性质



Байду номын сангаас
2.解:始态1→终态2的焓变为ΔHT H2=H1+ΔHT 或者采用剩余焓HR计算
H1
状态1 T1,p1 理想气体
ΔHT
状态2 T1,p2 真实气体
H2
因为p1较 低,故可 以视为id.g
ΔH
id
HR
=0
ΔH T = ΔH id + H R = H R
理想气体 T1,p2
H2=H1+ΔHT=H1+HR
Chemical Engineering Thermodynamics
第三章 纯流体的 热力学性质
通过本章的学习,可以实现:由一个状态方程 EOS和Cpid 的信息推算任意状态下的热力学性 质(有些性质是基于参考态的相对值)。 真实气体热力学性质的计算方法一般有两种 偏离函数法(偏差函数法) 剩余性质法(残余函数法) 依据:H, U和S均为状态函数,与路程无关
ΔH = ∫ C dT = ∫ (0.571 + 0.0009T )dT
' 12 T2 T1 l p 9.4 88
ΔH’12=-48.33 kcal/kg≠0
与ΔH=0不符,说明必然有汽化发生 假设节流后为饱和蒸汽,则焓变为 ΔH”12= ΔH’12+ ΔHV ΔHV可根据克-克方程求出
ΔH V dp S = dT T (V V − V L )
⎛ dB 0 dB1 ⎞ SR = − pr ⎜ ⎟ ⎜ dT + ω dT ⎟ R r ⎠ ⎝ r
(3 - 62)
得到:
H1R = -2690.6 J/mol S1R = -4.668 J/mol.K
●过程二:理想气体变化过程

化工热力学-总复习1

化工热力学-总复习1

总复习
16
第7章 蒸汽动力循环与制冷循环
总复习
气体的膨胀
对外不做功的绝热节流膨胀
H2 H1
J
T p
h
1 Cp
T
V T
p
对外做功的绝热可逆膨胀
V
JJ
0, 0,
冷 零
J 0, 热
S2 S1
效应
效 应TH 效应
p2
p1
J dp
s
T p
s
1 Cp
T V T
p
总 有 s 0, 冷效 应



气相区
汽液共存区
恒温线
A 饱和液相线AC
B 饱和气相线BC
3
第2章 流体的p-V-T关系
总复习
p-V-T关系及计算
R-K方程:已知V、T和质量,求压力。
公式:
p
RT V b
a
T 0.5V V
b
注意:(1)p、V、T单位,V为mol体积。
a b
0.42748R 2Tc 2.5 pc
0.08664RTc
功源有效能 ExW W 与功源总能量相等;
热量有效能 有效能损失
ExQ
Q 1 - T0 T
典型题:作业6-9、6-11,习题课 第六、七章第6题。
El Ex WS WL T0St
有效能效率
(等价于t )
EX
Ex Ex
获 得 提 供
1-
El
Ex


不可可逆逆过过程程EEXX
100% 100%
f p
ˆi
fˆi xi p
f与fˆi、与ˆi的 关 系
ln f
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 流体的热力学性质
一、选择题(共7小题,7分)
1、(1分)对理想气体有( )。

)/.(<∂∂T P H A 0)/.(>∂∂T P H B 0)/.(=∂∂T P H C 0)/.(=∂∂P T H D
2、(1分)对单位质量,定组成的均相流体体系,在非流动条件下有( )。

A . dH = TdS + Vdp
B .dH = SdT + Vdp
C . dH = -SdT + Vdp D. dH = -TdS -Vdp
3、(1分)对1mol 符合)/(b V RT P -=状态方程的气体,T P S )(∂∂应是( )
A.R/V ;
B.R ;
C. -R/P ;
D.R/T 。

4、(1分)对1molVan der Waals 气体,有 。

A. (∂S/∂V)T =R/(v-b)
B. (∂S/∂V)T =-R/(v-b)
C. (∂S/∂V)T =R/(v+b)
D. (∂S/∂V)T =P/(b-v)
5、(1分)对理想气体有
A. (∂H/∂P)T <0
B. (∂H/∂P)T >0
C. (∂H/∂P)T =0
6、(1分)对1mol 理想气体
T V S )(∂∂等于__________ A R V
- B V R C R p D R p -
二、填空题(共3小题,3分)
1、(1分)常用的 8个热力学变量 P 、V 、T 、S 、h 、U 、A 、G 可求出一阶偏导数336个,其中独立的偏导数共112个,但只有6个可通过实验直接测定,因此需要用 将不易测定的状态性质偏导数与可测状态性质偏导数联系起来。

2、(1分)麦克斯韦关系式的主要作用是 。

3、(1分)纯物质T-S 图的拱形曲线下部称 区。

三、名词解释(共2小题,8分)
1、(5分)剩余性质:
2、(3分)广度性质
四、简答题(共1小题,5分)
1、(5分)简述剩余性质的定义和作用。

(5分)
五、计算题(共1小题,12分)
1、(12分)(12分)在T-S 图上画出下列各过程所经历的途径(注明起点和箭头方向),并说明过程特点:如ΔG=0
(1)饱和液体节流膨胀;(3分)
(2)饱和蒸汽可逆绝热膨胀;(3分)
(3)从临界点开始的等温压缩;(3分)
(4)过热蒸汽经冷却冷凝为过冷液体(压力变化可忽略)。

(3分)
参考答案
一、选择题(共7小题,7分)
1、(1分)C
2、(1分)A
3、(1分)C
4、(1分)A
5、(1分)C
6、(1分)B
二、填空题(共3小题,3分)
1、(1分)Maxwell 关系式
2、(1分)将不易测定的状态性质偏导数与可测状态性质偏导数联系起来.
3、(1分)气液平衡共存
三、名词解释(共2小题,8分)
1、(5分) *
M M M R -= 指气体真实状态下的热力学性质M 与同一T ,P 下当气体处于理想状态下热力学性质M* 之间的差额。

2、(3分)无
四、简答题(共1小题,5分)
1、(5分)剩余性质定义, *M M M R -= 指气体真实状态下的热力学性质M 与同一T ,P 下当气体处于理想状态下热力学性质M* 之间的差额。

如果求得同一T ,P 下M R ,则可由理想气体的M* 计算真实气体的M 或ΔM 。

五、计算题(共1小题,12分)
1、(12分) (1) ∆H=0 (2) ∆S=0 (3) ∆T=0 (4) ∆P=0
1
2
3
45
6
0123456S
T。

相关文档
最新文档