导函数构造函数

合集下载

导数中的构造函数

导数中的构造函数

导数中的构造函数【方法综述】函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现,尤其是在导数题型中.在导数小题中构造函数的常见结论:出现()()nf x xf x '+形式,构造函数()()F nx x f x =;出现()()xf x nf x '-形式,构造函数()()F nf x x x=;出现()()f x nf x '+形式,构造函数()()F nx x e f x =;出现()()f x nf x '-形式,构造函数()()F nxf x x e=. 【解答策略】类型一、利用()f x 进行抽象函数构造 1.利用()f x 与x (n x )构造 常用构造形式有()xf x ,()f x x ;这类形式是对u v ⋅,uv型函数导数计算的推广及应用,我们对u v ⋅,u v 的导函数观察可得知,u v ⋅型导函数中体现的是“+”法,uv型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造u v ⋅型,当导函数形式出现的是“-”法形式时,优先考虑构造uv. 例1. 设是定义在上的可导偶函数,若当时,,则函数的零点个数为A .0B .1C .2D .0或2 【举一反三】的定义域是,其导函数为,若,且(其中是自然对数的底数),则A .B .C .当时,取得极大值D .当时,2.利用()f x 与x e 构造()f x 与x e 构造,一方面是对u v ⋅,uv函数形式的考察,另外一方面是对()x x e e '=的考察.所以对于()()f x f x '±类型,我们可以等同()xf x ,()f x x的类型处理, “+”法优先考虑构造()()F xx f x e =⋅, “-”法优先考虑构造()()F xf x x e =.例2、 已知是函数的导函数,且对任意的实数都有 是自然对数的底数),,若不等式的解集中恰有两个整数,则实数的取值范围是( )A .B .C .D .【举一反三】 已知函数是定义在上的可导函数,对于任意的实数x ,都有,当时,若,则实数a 的取值范围是( )A .B .C .D .3.利用()f x 与sin x ,cos x 构造sin x ,cos x 因为导函数存在一定的特殊性,所以也是重点考察的范畴,我们一起看看常考的几种形式.()()F sin x f x x =,()()()F sin cos x f x x f x x ''=+;()()F sin f x x x =,()()()2sin cos F sin f x x f x xx x'-'=; ()()F cos x f x x =,()()()F cos sin x f x x f x x ''=-;()()F cos f x x x =,()()()2cos sin F cos f x x f x xx x'+'=.例3、已知函数()y f x =对于任意,22x ππ⎛⎫∈-⎪⎝⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式不成立的是( ) A .234f f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭B .234f f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭ C .()024f f π⎛⎫< ⎪⎝⎭ D .()023f f π⎛⎫< ⎪⎝⎭类型二 构造具体函数关系式这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题.1.直接法:直接根据题设条件构造函数 例4、α,,22ππβ⎡⎤∈-⎢⎥⎣⎦,且sin sin 0ααββ->,则下列结论正确的是( ) A .αβ> B .22αβ> C .αβ< D .0αβ+>【举一反三】 已知函数,,若关于的方程在区间内有两个实数解,则实数的取值范围是( )A .B .C .D .2. 参变分离,构造函数 例5. 设为函数的导函数,且满足,若恒成立,则实数的取值范围是( )A.B.C.D.【举一反三】设函数,有且仅有一个零点,则实数的值为()A.B.C.D.【强化训练】一、选择题1.已知函数,若对任意的,恒成立,则的取值范围为()A.B.C.D.2.已知函数的导函数满足对恒成立,则下列判断一定正确的是()A.B.C.D.3.若函数有三个零点,则实数的取值范围是( )A.B.C.D.2.4.已知函数,若是函数的唯一极值点,则实数k的取值范围是()A.B.C.D.3.5.已知函数,若函数在上无零点,则()A.B.C.D.4.6.已知,若关于的不等式恒成立,则实数的取值范围是()A.B.C.D.7.已知函数为上的偶函数,且当时函数满足,,则的解集是()A.B.C.D.5.8.若函数在区间上单调递增,则的最小值是()A.-3 B.-4 C.-5 D.6.9.定义域为的奇函数,当时,恒成立,若,,则()A.B.C.D.10.已知定义在上的函数关于轴对称,其导函数为,当时,不等式.若对,不等式恒成立,则正整数的最大值为()A.B.C.D.11.已知定义在上的可导函数的导函数为,若当时,,则函数的零点个数为A.0 B.1 C.2 D.0或2二、填空题12.若关于x的不等式对任意的实数及任意的实数恒成立,则实数a的取值范围是______.13.定义在R上的奇函数的导函数满足,且,若,则不等式的解集为______.7.14.已知定义在R上的奇函数满足f(1)=0,当x>0时,,则不等式的解集是______.8.15.设是定义在上的函数,其导函数为,若,,则不等式(其中为自然对数的底数)的解集为______.9.16.设为整数,若对任意的,不等式恒成立,则的最大值是__________.导数中的构造函数答案【方法综述】函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现,尤其是在导数题型中.在导数小题中构造函数的常见结论:出现()()nf x xf x '+形式,构造函数()()F nx x f x =;出现()()xf x nf x '-形式,构造函数()()F nf x x x=;出现()()f x nf x '+形式,构造函数()()F nxx e f x =;出现()()f x nf x '-形式,构造函数()()F nxf x x e =. 【解答策略】类型一、利用()f x 进行抽象函数构造 1.利用()f x 与x (n x )构造常用构造形式有()xf x ,()f x x ;这类形式是对u v ⋅,uv型函数导数计算的推广及应用,我们对u v ⋅,u v 的导函数观察可得知,u v ⋅型导函数中体现的是“+”法,uv型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造u v ⋅型,当导函数形式出现的是“-”法形式时,优先考虑构造uv. 例2. 设是定义在上的可导偶函数,若当时,,则函数的零点个数为A .0B .1C .2D .0或2 【答案】A 【解析】 设,因为函数为偶函数,所以也是上的偶函数,所以.由已知,时,,可得当时,,故函数在上单调递减,由偶函数的性质可得函数在上单调递增.所以,所以方程,即无解,所以函数没有零点.故选A.【指点迷津】设,当时,,可得当时,,故函数在上单调递减,从而求出函数的零点的个数.【举一反三】的定义域是,其导函数为,若,且(其中是自然对数的底数),则A.B.C.当时,取得极大值D.当时,【答案】C【解析】设,则则又得即,所以即,由得,得,此时函数为增函数由得,得,此时函数为减函数则,即,则,故错误,即,则,故错误当时,取得极小值即当,,即,即,故错误当时,取得极小值此时,则取得极大值本题正确选项: 2.利用()f x 与x e 构造()f x 与x e 构造,一方面是对u v ⋅,uv函数形式的考察,另外一方面是对()x x e e '=的考察.所以对于()()f x f x '±类型,我们可以等同()xf x ,()f x x的类型处理, “+”法优先考虑构造()()F xx f x e =⋅, “-”法优先考虑构造()()F xf x x e =.例3、 已知是函数的导函数,且对任意的实数都有 是自然对数的底数),,若不等式的解集中恰有两个整数,则实数的取值范围是( )A .B .C .D .【答案】C 【解析】令,则,可设,∵,∴.∴,∴.可得:时,函数取得极大值,时,函数取得极小值.,,,.∴时,不等式的解集中恰有两个整数,.故的取值范围是,故选C.【指点迷津】令,可得,可设,,解得,,利用导数研究其单调性极值与最值并且画出图象即可得出.【举一反三】已知函数是定义在上的可导函数,对于任意的实数x,都有,当时,若,则实数a的取值范围是()A .B .C .D .【答案】B 【解析】 令,则当时,,又,所以为偶函数,从而等价于,因此选B.3.利用()f x 与sin x ,cos x 构造sin x ,cos x 因为导函数存在一定的特殊性,所以也是重点考察的范畴,我们一起看看常考的几种形式.()()F sin x f x x =,()()()F sin cos x f x x f x x ''=+;()()F sin f x x x =,()()()2sin cos F sin f x x f x xx x'-'=;()()F cos x f x x =,()()()F cos sin x f x x f x x ''=-;()()F cos f x x x =,()()()2cos sin F cos f x x f x xx x'+'=.例3、已知函数()y f x =对于任意,22x ππ⎛⎫∈-⎪⎝⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式不成立的是( ) A .234f f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭B .234f f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭ C .()024f f π⎛⎫< ⎪⎝⎭ D .()023f f π⎛⎫< ⎪⎝⎭【答案】B【指点迷津】满足“()()cos sin 0f x x f x x '+>”形式,优先构造()()F cos f x x x=,然后利用函数的单调性和数形结合求解即可.注意选项的转化. 类型二 构造具体函数关系式这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题.1.直接法:直接根据题设条件构造函数 例4、α,,22ππβ⎡⎤∈-⎢⎥⎣⎦,且sin sin 0ααββ->,则下列结论正确的是( ) A .αβ> B .22αβ> C .αβ< D .0αβ+> 【答案】B【解析】构造()sin f x x x =形式,则()sin cos f x x x x '=+,0,2x π⎡⎤∈⎢⎥⎣⎦时导函数()0f x '≥,()f x 单调递增;,02x π⎡⎫∈-⎪⎢⎣⎭时导函数()0f x '<,()f x 单调递减.又()f x 为偶函数,根据单调性和图象可知选B .【指点迷津】根据题目中不等式的构成,构造函数()sin f x x x =,然后利用函数的单调性和数形结合求解即可. 【举一反三】 已知函数,,若关于的方程在区间内有两个实数解,则实数的取值范围是( )A .B .C .D .【答案】A【解析】易知当≤0时,方程只有一个解,所以>0.令,,令得,为函数的极小值点,又关于的方程=在区间内有两个实数解,所以,解得,故选A.【指点迷津】根据题目中方程的构成,构造函数,然后利用函数的单调性和数形结合求解即可.2. 参变分离,构造函数例5. 设为函数的导函数,且满足,若恒成立,则实数的取值范围是()A.B.C.D.【答案】A【解析】,由,可得的对称轴为,所以,所以,所以,由可得,变形可得,即,设,,易得函数在区间上单调递增,在区间上单调递减,所以,故实数b的取值范围为,故选A【指点迷津】根据,变形可得,通过构造函数,进一步确定的最大值,利用导数,结合的单调性,即可求解.【举一反三】设函数,有且仅有一个零点,则实数的值为()A.B.C.D.【答案】B【解析】∵函数,有且只有一个零点,∴方程,,有且只有一个实数根,令g(x)=,则g′(x)=,当时,g′(x)0,当时,g′(x)0,∴g(x)在上单调递增,在上单调递减,当x=时,g(x)取得极大值g()=,又g(0)= g()=0,∴若方程,,有且只有一个实数根,则a=故选B.【强化训练】一、选择题1.已知函数,若对任意的,恒成立,则的取值范围为()A.B.C.D.【答案】D【解析】令,,.当时,,则在上单调递增,又,所以恒成立;当时,因为在上单调递增,故存在,使得,所以在上单调递减,在上单调递增,又,则,这与恒成立矛盾,综上.故选D.10.已知函数的导函数满足对恒成立,则下列判断一定正确的是()A.B.C.D.【答案】B【解析】由题意设,则,所以函数在上单调递增,所以,即.故选B.11.若函数有三个零点,则实数的取值范围是( ) A.B.C.D.【答案】D【解析】由得,设,则,由得得或,此时函数为增函数,由得得,此时函数为减函数,即当时,取得极小值,当时,取得极大值,当,且,函数图象如下图所示:要使有三个零点,则,即实数a的取值范围是,故本题选D.12.已知函数,若是函数的唯一极值点,则实数k的取值范围是()A.B.C.D.【答案】A【解析】解:∵函数的定义域是∴,∵是函数的唯一一个极值点∴是导函数的唯一根,∴在无变号零点,即在上无变号零点,令,因为,所以在上单调递减,在上单调递增所以的最小值为,所以必须,故选:A.13.已知函数,若函数在上无零点,则()A.B.C.D.【答案】A【解析】解:因为f(x)<0在区间(0,)上恒成立不可能,故要使函数f(x)在(0,)上无零点,只要对任意的x∈(0,),f(x)>0恒成立,即对x∈(0,),a>2恒成立.令l(x)=2,x∈(0,),则l′(x),再令m(x)=2lnx2,x∈(0,),则m′(x)0,故m(x)在(0,)上为减函数,于是m(x)>m()=2﹣2ln2>0,从而l′(x)>0,于是l(x)在(0,)上为增函数,所以l(x)<l()=2﹣4ln2,故要使a>2恒成立,只要a∈[2﹣4ln2,+∞).14.已知,若关于的不等式恒成立,则实数的取值范围是()A.B.C.D.【答案】D【解析】由恒成立得,恒成立,设,则.设,则恒成立,在上单调递减,又,当时,,即;当时,,即,在上单调递增,在上单调递减,,,故选:D15.已知函数为上的偶函数,且当时函数满足,,则的解集是()A.B.C.D.【答案】A【解析】设,则,∴,化简可得.设,∴,∴时,,因此为减函数,∴时,,因此为增函数,∴,∴,∴在上为增函数.∵函数是偶函数,∴函数,∴函数关于对称,又∵,即,又在上为增函数,∴,由函数关于对称可得,,故选A.16.若函数在区间上单调递增,则的最小值是()A.-3 B.-4 C.-5 D.【答案】B【解析】函数在上单调递增,所以在上恒成立,即在上恒成立,令,其对称轴为,当即时,在上恒成立等价于,由线性规划知识可知,此时;当即时,在上恒成立等价于,,即;当即时,在上恒成立等价于,此时;综上可知,,故选.17.定义域为的奇函数,当时,恒成立,若,,则()A.B.C.D.【答案】D【解析】构造函数因为是奇函数,所以为偶函数当时,恒成立,即,所以在时为单调递减函数在时为单调递增函数根据偶函数的对称性可知,所以所以选D18.已知定义在上的函数关于轴对称,其导函数为,当时,不等式.若对,不等式恒成立,则正整数的最大值为()A.B.C.D.【答案】B【解析】因为,所以,令,则,又因为是在上的偶函数,所以是在上的奇函数,所以是在上的单调递增函数,又因为,可化为,即,又因为是在上的单调递增函数,所以恒成立,令,则,因为,所以在单调递减,在上单调递增,所以,则,所以.所以正整数的最大值为2.故选:B19.已知定义在上的可导函数的导函数为,若当时,,则函数的零点个数为A.0 B.1 C.2 D.0或2【答案】A【解析】由题意,设,则.由已知,所以当时,,当时,,又因为在上可导,故函数在上单调递增,在上单调递减,所以,所以无解,即方程无解,即方程无解,所以函数无零点.故选A.二、填空题12.若关于x的不等式对任意的实数及任意的实数恒成立,则实数a的取值范围是______.【答案】【解析】关于x的不等式对任意的实数及任意的实数恒成立,先看成b的一次函数,可得即为,可得恒成立,设,,,可得时,,递增;时,,递减,又,,可得在的最小值为,可得.即有a的范围是.故答案为:.20.定义在R上的奇函数的导函数满足,且,若,则不等式的解集为______.【答案】【解析】的周期为定义在上的奇函数①时,令,则,即单调递减又不等式的解集为②时,时,不等式成立综上所述:本题正确结果:21.已知定义在R上的奇函数满足f(1)=0,当x>0时,,则不等式的解集是______.【答案】【解析】设,则,结合可得为减函数.因为为奇函数,所以为偶函数,作出简图如下:结合简图,所以的解集是.22.设是定义在上的函数,其导函数为,若,,则不等式(其中为自然对数的底数)的解集为______.【答案】【解析】令g(x)=e x f(x)﹣e x,则g′(x)=e x f(x)+e x f′(x)﹣e x=e x(f(x)+f′(x)﹣1),∵f(x)+f′(x)<1,∴f(x)+f′(x)﹣1<0,∴g′(x)<0,g(x)在R上为单调递减函数,∵g(0)=f(0)﹣1=2018﹣1=2017∴原不等式可化为g(x)>g(0),根据g(x)的单调性得x<0, ∴不等式(其中为自然对数的底数)的解集为,故答案为.23.设为整数,若对任意的,不等式恒成立,则的最大值是__________.【答案】1【解析】由题意对任意的,不等式恒成立,则x=1时,不等式也成立,代入x=1得e+3,又为整数,则a,这是满足题意的一个必要条件,又为整数,只需验证a=1时,对任意的,不等式恒成立,即证,变形为对任意的恒成立,令g(x),x∈,则g′(x),在(0,1)上小于0,在(1,)上大于0,故g(x)在(0,1)递减,在(1,)递增,∴g(x)g(1)=3>0,∴对任意的恒成立,故a=1满足题意.故答案为1.。

导数构造函数

导数构造函数

导数构造函数题型一、出现导函数,结构明显,模式固定。

常用模型如下:(1)条件:f ′(x )>a (a ≠0):构造函数:h (x )=f (x )-ax .(2)条件:f ′(x )±g ′(x )>0:构造函数:h (x )=f (x )±g (x ).(3)条件:f ′(x )+f (x )>0:构造函数:h (x )=e x f (x ).(4)条件:f ′(x )-f (x )>0:构造函数:h (x )=f x e x .(5)条件:xf ′(x )+f (x )>0:构造函数:h (x )=xf (x ).(6)条件:xf ′(x )-f (x )>0:构造函数:h (x )=f x x. 例1、已知()f x '是函数()f x 的导函数,且对任意的实数x 都有()()()23x f x e x f x '=++,()01f =,则不等式()5x f x e <的解集为( )A .()4,1- B .(1,4)- C .(,4)(1,)-∞-+∞U D .(,1)(4,)-∞-+∞U解:令()()x f x G x e =,则()()()23x f x f x G x x e'-'==+,可设2()3G x x x c =++(0)(0)1G f ==Q ,1c ∴= 所以2()()31x f x G x x x e ==++解不等式()5x f x e <,即()5x f x e <,解得41x -<<,所以不等式的解集为()4,1-例2、已知函数()f x 满足()()f x f x =-,且当(],0x ∈-∞时,()()0f x xf x '+<成立,若()()0.60.622a f =⋅,()()ln2ln2b f =⋅,118822log log c f ⎛⎫⎛⎫=⋅ ⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系是( )。

高考数学深度:函数——导函数与构造函数

高考数学深度:函数——导函数与构造函数

B . ( , 2 ]
C . [ 1, )
D . [ 2, )
类型四 利用导数解超越不等式的常考题型和相应处理技巧
例题
1.已知函数 f(x )
x3
2x
ex
1 ex
,其中
e
是自然数对数的底数,若
f(a 1) f(2a2) 0 ,则实数a 的取值范围是

9
Pointing Series | 高中数学
ln 4 5
...
ln n n 1
n(n 1) 4
构造函数:f(x ) ln x (x 1)
10
7.
求证:(1
1 )(1 24
1 34
)...(1
1 n4
)
e
构造函数:f(x ) ln(1 x 2 ) x
Pointing Series | 高中数学
高中数学
Pointing Series
例题 2.设函数 f(x)在 R 上的导函数为 f′(x),且 2f(x)+xf′(x)>x2,下 面的不等式在 R 内恒成立的是( ) A.f(x)>0 B.f(x)<0 C.f(x)>x D.f(x)<x
例题 3.若定义在 R 上的函数 f(x)满足 f(0)=﹣1,其导函数 f′(x)满足 f′ (x)>k>1,则下列结论中一定错误的是( )
Pointing Series
高中数学
【小试牛刀】
例题 1.设函数f(x )定义在(0,)上,f(1)=0 ,导函数f (x )
1 x

g(x ) f(x) f (x )
(1)求 g(x )的单调区间和最值;
(2)讨论 g(x )与g( 1 )的大小关系; x

高考数学导数构造秒杀技巧

高考数学导数构造秒杀技巧

导数构造一、 基础知识常见导数结构1. 对于不等式)0(,)(≠>'k k x f ,构造函数b kx x f x g +−=)()(2. 对于不等式,0)()(>+'x f x f x ,构造函数)()(x xf x g =3. 对于不等式,0)()(>−'x f x f x ,构造函数xx f x g )()(=4. 对于不等式,0)()(>+'x nf x f x ,构造函数)()(x f x x g n= 5. 对于不等式,0)()(>−'x nf x f x ,构造函数n)()(x x f x g =6. 对于不等式,0)()(>+'x f x f ,构造函数)()(x f e x g x= 7. 对于不等式,0)()(>−'x f x f ,构造函数xe xf xg )()(=8. 对于不等式,0)()(>+'x kf x f ,构造函数)()(x f e x g kx= 9. 对于不等式,0)(2)(>+'x xf x f ,构造函数)()(2x f ex g x =10. 对于不等式,0)(ln )(>⋅+'x f a x f ,构造函数)()(x f a x g x= 11. 对于不等式,0tan )()(>⋅'+x x f x f ,构造函数)(sin )(x f x x g ⋅= 12. 对于不等式,0)(tan )(>⋅−'x f x x f ,构造函数)(cos )(x f x x g ⋅=13. 对于不等式,0)()(>'x f x f ,构造函数)(ln )(x f x g = 14. 对于不等式,0)(ln )(>+'xx f x x f ,构造函数)(ln )(x f x x g ⋅=二、课堂练习 1. 加减构造法 例1.已知函数21()2f x x alnx =+,若对任意两个不相等的正数1x ,2x ,都有1212()()4f x f x x x −>−恒成立,则a 的取值范围为( ) A .[4,)+∞B .(4,)+∞C .(−∞,4]D .(,4)−∞变式1.已知函数()2x f x e ax =+−,其中a R ∈,若对于任意的1x ,2[1x ∈,)+∞,且12x x <,都有211212()()()x f x x f x a x x −<−成立,则a 的取值范围是( ) A .[1,)+∞ B .[2,)+∞C .(−∞,1]D .(−∞,2]2.指数乘除法构造例1. 已知()f x 为R 上的可导函数,且x R ∀∈,均有()()f x f x >',则以下判断正确的是() A .2019(2019)(0)f e f > B .2019(2019)(0)f e f < C .2019(2019)(0)f e f =D .(2019)f 与2019(0)e f 大小无法确定变式1.函数()y f x =的导函数为()f x ',满足x R ∀∈,()()f x f x '>且f (1)e =,则不等式()f lnx x >的解集为( )A .(,)e +∞B .(1,)+∞C .(0,)eD .(0,1)变式2.定义在[0,)+∞上的可导函数,且()()x f x f x '+<,则对任意正实数a ,下列式子恒成立的是( )A .f (a )(0)a e f <B .f (a )(0)a e f >C .a e f (a )(0)f <D .a e f (a )(0)f > 3.指数升级构造法例1.对定义在R 上的可导函数()f x 恒有(4)()()0x f x xf x −+'>,则()(f x ) A .恒大于等于0 B .恒小于0C .恒大于0D .和0的大小关系不能确定变式1.设()f x '是函数()f x 的导函数,且()2()()f x f x x R '>∈,1()(2f e e =为自然对数的底数),则不等式2()f lnx x <的解集为( )A .(0,)2eB .C .1(e ,)2eD .(2e4.幂函数乘除法构造例题1.已知函数()y f x =对任意的(0,)x ∈+∞满足()()f x xf x >'(其中()f x '为函数()f x 的导函数),则下列不等式成立的是( )A .1()22f f >(1)B .1()22f f <(1)C .12()(12f f <D .12()2f f >(1)变式1.已知定义在R 上的偶函数()y f x =的导函数为()f x ',函数()f x 满足:当0x >时,()()1x f x f x '+>,且f (1)2018=.则不等式2017()1||f x x <+的解集是( ) A .(1,1)−B .(,1)−∞C .(1−,0)(0⋃,1)D .(−∞,1)(1−⋃,)+∞5.对数乘除法构造例1.已知定义在[e ,)+∞上的函数()f x 满足()()0f x xf x lnx '+<且f (4)0=,其中()f x '是函数()f x 的导函数,e 是自然对数的底数,则不等式()0f x >的解集为( ) A .[e ,4)B .(4,)+∞C .(,4)eD .[e ,1)e +变式1.已知定义在[e ,)+∞上的函数()f x 满足()()0f x xf x lnx '+<且f (4)0=,其中()f x '是函数()f x 的导函数,e 是自然对数的底数,则不等式()0f x >的解集为( )A .[e ,4)B .(4,)+∞C .(,4)eD .[e ,1)e +6.对数升级构造法例1.已知函数()f x 的导函数为()f x ',e 为自然对数的底数,若函数()f x 满足()()lnxxf x f x x '+=,且f (e )1e=,则不等式(1)(1)f x f e x e +−+>−的解集是( ) A .(0,)e B .(0,1)e + C .(1,)e − D .(1,1)e −+变式1.设()f x 是R 上的连续可导函数,当0x ≠时,()()0f x f x x '+>,则函数1()()g x f x x=+的零点个数为( ) A .0B .1C .2D .37.三角函数乘除构造法例1.定义在(0,)2π上的函数()f x ,()f x '是它的导函数,且恒有()()tan 0f x f x x +'<成立,则下列结论一定正确的是( )A(1)()4f f π>B.()()63f ππ>C()()46f ππ>D()()34ππ>变式1.定义在(0,)2π上的函数()f x ,()f x '是它的导函数,且恒有()()tan f x f x x '<−成立,则( )A()()36f ππ>B()()36f ππ<Cf (1)cos1()4f π> D()()64ππ<例2定义在(0,)2π上的函数()f x ,()f x '是它的导函数,且恒有()()tan f x f x x <'成立,则( )A()()43ππ>B .f (1)2()sin16f π>C ()()64f ππ>D ()()63f ππ>变式1.定义在(0,)2π上的函数()f x ,已知()f x '是它的导函数,且恒有cos ()sin ()0x f x x f x '+<成立,则有( )A .()()64f ππ>B ()()63f ππ>C .()()63f ππ>D .()()64f ππ>二、 课后练习1.已知()f x '为函数()f x 的导函数,当0x >时,有()()0f x xf x '−>恒成立,则下列不等式成立的是( ) A .1()2(1)2f f >B .1()2(1)2f f <C .12()(1)2f f <D .12()(1)2f f >2.已知()f x '是函数()(f x x R ∈且0)x ≠的导函数,当0x >时,()()0xf x f x '−<,记0.2220.222(log 5)(2)(0.2),,20.2log 5f f f a b c ===,则( ) A .a b c << B .b a c << C .c a b << D .c b a <<3.已知函数()y f x =是定义在实数集R 上的奇函数,且当0x >时,()()0f x x f x +'>(其中()f x '是()f x 的导函数)恒成立.若2211()()a ln f ln e e =,2(2)b f =,5(5)c lg f lg =,则a ,b ,c 的大小关系是( ) A .a b c >>B .c a b >>C .c b a >>D .a c b >>4.已知函数()f x 的定义域为R ,()f x '为函数()f x 的导函数,当[0x ∈,)+∞时,2sin cos ()0x x f x −'>且x R ∀∈,()()cos21f x f x x −++=.则下列说法一定正确的是( ) A .1532()()4643f f ππ−−>−− B .1534()()4643f f ππ−−>−− C .313()()4324f f ππ−>− D .133()()2443f f ππ−−>− 5.已知偶函数()f x 是定义在{|0}x R x ∈≠上的可导函数,其导函数为()f x '.当0x <时,()()f x f x x '<恒成立.设1m >,记4(1)1mf m a m +=+,b =,4(1)()1mc m f m =++,则a ,b ,c 的大小关系为( ) A .a b c <<B .a b c >>C .b a c <<D .b a c >>6.已知定义在R 上的奇函数()f x 的导函数为()f x ',当0x <时,()f x 满足2()()f x xf x x +'<,则()f x 在R 上的零点个数为( ) A .1B .3C .5D .1或37.设函数()f x '是奇函数()()f x x R ∈的导函数,当0x >时,1()()lnx f x f x x'<−,则使得2(1)()0x f x −>成立的x 的取值范围是( )A .(1−,0)(0⋃,1)B .(−∞,1)(1−⋃,)+∞C .(1−,0)(1⋃,)+∞D .(−∞,1)(0−⋃,1)8.已知偶函数()f x 是定义在{|0}x R x ∈≠上的可导函数,其导函数为()f x ',当0x <时,()()f x f x x '>恒成立,设1m >,记4(1)1m f m a m +=+,2(2)b m f m =,4(1)()1mc m f m =++,则a ,b ,c 的大小关系为( ) A .a b c <<B .a b c >>C .b a c <<D .b a c >> 9.已知()y f x =为R 上的可导函数,当0x ≠时,()()0f x f x x'+>,则关于的函数2()()g x f x x=+的零点个数为( ) A .0 B .1 C .2 D .0或 210.设函数()f x '是奇函数()()f x x R ∈的导函数,当0x >时,()()0f x xlnx f x '+<,则使得2(1)()0x f x −<成立的x 的取值范围是( )A .(−∞,1)(1−⋃,)+∞B .(−∞,1)(0−⋃,1)C .(1−,0)(0⋃,1)D .(1−,0)(1⋃,)+∞11.已知()f x 的导函数为()f x ',当0x >时,2()()f x xf x >',且f (1)1=,若存在x R +∈,使2()f x x =,则x 的值为 .12.设函数()f x '是函数()()f x x R ∈的导函数,(0)1f =,且3()()3f x f x '=−,则6()()f x f x '>的解集为( ) A .(0,)+∞B .(1,)+∞C .(,)e +∞D .(,)3e+∞13.知函数()f x 的定义域为R ,(2)2021f −=,对任意(,)x ∈−∞+∞,都有()2f x x '>成立,则不等式2()2017f x x >+的解集为( ) A .(2,)−+∞B .(2,2)−C .(,2)−∞−D .(,)−∞+∞14.已知定义在R 上的函数()y f x =可导函数,满足当0x ≠时,()()0f x f x x'+>,则关于x 的函数2()()g x f x x=−的零点个数为( ) A .0 B .1 C .2 D .不确定15.定义在R 上的函数()f x ,()f x '是其导函数,且满足()()2f x f x +'>,f (1)42e=+,则不等式()42x x e f x e >+的解集为( ) A .(,1)−∞B .(1,)+∞C .(,2)−∞D .(2,)+∞16.已知函数()f x 在(0,)2π上单调递减,()f x '为其导函数,若对任意(0,)2x π∈都有()()tan f x f x x <',则下列不等式一定成立的是( )A .()()36f ππ>B .()()46f f ππ>C .()()326f f ππ>D .()()46f ππ>16.已知函数()f x 是R 上的可导函数,且()f x 的图象是连续不断的,当0x ≠时,有()()0f x f x x '=>,则函数1()()F x xf x x=+的零点个数是( ) A .0 B .1 C .2 D .317.设函数()f x '是函数()()f x x R ∈的导函数,(0)1f =,且3()()3f x f x ='−,则4()()f x f x >'的解集为( )A .4(3ln ,)+∞ B .2(3ln ,)+∞ C .(2,)+∞ D .(3,)+∞ 18.设函数()f x '是函数()()f x x R ∈的导函数,(0)1f =,且3()()3f x f x ='−,则4()()f x f x >'的解集为( )A .4(3ln ,)+∞ B .2(3ln ,)+∞ C .,)+∞ D .,)+∞ 19.已知()f x '是函数()f x 的导函数,且对任意的实数x 都有()(23)()x f x e x f x '=++,(0)1f =,则不等式()5x f x e <的解集为( )A .(4,1)−B .(1,4)−C .(−∞,4)(1−⋃,)+∞D .(−∞,1)(4−⋃,)+∞20.设函数()f x '是函数()()f x x R ∈的导函数,e 为自然对数的底数,若函数()f x 满足()()lnx xf x f x x '+=,且1()f e e =,则不等式1()x x f e e e e>−+的解集为( ) A .(,1)−∞ B .(0,1) C .(1,)+∞ D .(,0)−∞21.定义域为R 的可导函数()y f x =的导函数为()f x ',满足()()f x f x >',且(0)3f =,则不等式()3x f x e <的解集为( ) A .(,0)−∞B .(,2)−∞C .(0,)+∞D .(2,)+∞22.若对定义在R 上的可导函数()f x ,恒有(4)(2)2(2)0x f x xf x −+'>,(其中(2)f x '表示函数()f x 的导函数()f x '在2x 的值),则()(f x ) A .恒大于等于0 B .恒小于0C .恒大于0D .和0的大小关系不确定23.已知定义在R 上的连续奇函数()f x 的导函数为()f x ',当0x >时,()()0f x f x x'+>,则使得2(2)(13)(31)0xf x x f x +−−>成立的x 的取值范围是( ) A .(1,)+∞ B .1(1,)(1,)5−+∞C .1(,1)5D .(,1)−∞24.设函数()f x 满足()2()xe xf x f x x'+=,2(2)4e f =,则0x >时()(f x )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值25.定义在(0,)2π上的函数()f x ,()f x '是它的导函数,且恒有cos ()sin ()0x f x x f x '+<成立,则有( )A ()2()64f ππ>B ()()63f ππ>C .()()63f ππ>D ()()64ππ>26.设()f x '是函数()f x 的导函数,且()2()()f x f x x R '>∈,1()(2f e e =为自然对数的底数),则不等式2()f lnx x <的解集为 .27.已知()f x 是定义在R 上的函数,()f x '是()f x 的导函数.给出如下四个结论:①若()()0f x f x x'+>,且(0)f e =,则函数()xf x 有极小值0; ②若()2()0xf x f x '+>,则14(2)(2)n n f f +<,*n N ∈;③若()()0f x f x '−>,则(2017)(2016)f ef >;④若()()0f x f x '+>,且(0)1f =,则不等式()x f x e −<的解集为(0,)+∞.所有正确结论的序号是 .28.已知函数()f x 的导函数为()f x ',e 为自然对数的底数,若函数()f x 满足()()lnxxf x f x x'+=,且f (e )1e =,则不等式(1)(1)f x f e x e +−+>−的解集是 .29.已知函数()f x 的导函数为()f x ',e 为自然对数的底数,若函数()f x 满足()()lnxxf x f x x'+=,且f (e )1e =,则不等式1()f x x e e −>−的解集是 .。

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧导数与构造函数是微积分中的重要概念,它们在证明不等式中起着重要作用。

本文将介绍一些导数与构造函数在证明不等式中的技巧,并通过具体的例子来加深理解。

1. 利用导数的性质进行不等式证明在证明不等式时,可以通过导数的性质来进行推导。

当需要证明一个函数在某个区间上单调递增或单调递减时,可以通过求导数并分析导数的正负性来进行证明。

假设一个函数f(x)在区间[a, b]上可导,求出其导数f'(x)并分析f'(x)的正负性,如果f'(x)恒大于零,那么函数f(x)在区间[a, b]上就是单调递增的;如果f'(x)恒小于零,那么函数f(x)在区间[a, b]上就是单调递减的。

通过这种方法,可以利用导数的性质来证明函数的单调性质,从而进一步推导出不等式。

2. 构造函数进行不等式证明构造函数是指通过一些技巧将原函数进行变形,从而更好地应用各种数学性质来进行不等式证明。

当需要证明一个不等式时,可以通过构造一个辅助函数来简化原不等式的证明过程。

通过巧妙地构造函数,可以使得不等式的证明更加直观、简单。

例1:证明当x>0时,有e^x>1+x。

解:可以通过在函数f(x) = e^x - (1+x)上应用导数的性质来证明这个不等式。

求导数得f'(x) = e^x - 1,显然f'(x)恒大于零,因此f(x)在区间(0, +∞)上单调递增。

又当x=0时,有f(0) = e^0 - (1+0) = 0,因此在区间(0, +∞)上有f(x)>0,即e^x>1+x。

通过导数的性质,成功证明了不等式e^x>1+x。

通过以上两个例子,可以看到导数与构造函数在不等式证明中的重要作用。

通过分析导数的性质以及巧妙地构造辅助函数,可以更好地理解、应用和证明各种不等式。

在实际的数学问题中,通常会遇到各种复杂的不等式,通过灵活运用导数与构造函数的技巧,可以更加轻松地解决这些问题。

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧导数是微积分中的一个重要概念。

它可以描述函数在各个点上的变化率,也可以用来求函数的最大值、最小值以及拐点等重要信息。

而构造函数则是数学中一种非常常见的证明不等式的方法。

本文将介绍一些常用的导数和构造函数证明不等式的技巧。

一、使用导数证明不等式1. 求导数确定函数的单调性对于一个函数$f(x)$,如果它在某个区间上的导数$f'(x)$大于0,说明它在该区间上单调递增;如果导数$f'(x)$小于0,则说明它在该区间上单调递减。

因此,如果要证明一个不等式在某个区间上成立,可以先求出函数在该区间上的导数,确定其单调性,然后再比较函数在两个端点处的取值即可。

例如,对于函数$f(x)=x^2-4x+3$,我们可以求出它的导数为$f'(x)=2x-4$。

由于$f'(x)>0$时$f(x)$单调递增,因此当$x<2$时,$f(x)<f(2)$,当$x>2$时,$f(x)>f(2)$,即$f(x)$在$x<2$和$x>2$的区间上都小于$f(2)$,因此我们可以得到不等式$f(x)<f(2)$,即$x^2-4x+3<1$。

2. 求导数判断函数的最值对于一个函数$f(x)$,如果它在某个点$x_0$处的导数$f'(x_0)=0$,且$f^{''}(x_0)>0$(即$f(x)$的二阶导数大于0)则$f(x)$在$x_0$处取得一个局部最小值;如果$f^{''}(x_0)<0$,则$f(x)$在$x_0$处取得一个局部最大值。

因此,如果要证明一个不等式最值的存在性,可以先求出函数的导数,再找出导数为0的点即可。

3. 构造特殊的函数如果一个不等式的两边都是多项式,可以考虑构造一个较为特殊的函数,来证明不等式的成立性。

例如,对于不等式$\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\leq\dfrac{3}{2\sqrt[3]{abc}}$,我们可以考虑构造一个函数$f(x)=\dfrac{1}{a+b+x}+\dfrac{1}{b+c+x}+\dfrac{1}{c+a+x}-\dfrac{3}{2\sqrt[3]{(a+x)(b+x)(c+x)}}$,并证明$f(x)\leq 0$。

运用导数运算法则构造函数的五种题型

运用导数运算法则构造函数的五种题型

【例
1】已知函数
f
(x)
的定义域为
R
,
f
1 2
=

1 2
,对任意的
x R 满足
f
( x)
4x
.当
[0, 2 ] 时,不等
式 f (sin ) + cos 2 0 的解集为( )
A.
7 6
, 11 6
B.
4 3
,
5 3
C.
3
,
2 3
D.
6
,
5 6
【答案】D
【分析】根据题意构造函数 g(x) = f (x) − 2x2 + 1 ,则 g(x) = f (x) − 4x 0 ,所以得到 g(x) 在 R 上为增函
所以 y = g(x) 在 x (− ,− )上单调递增, 22
又因为 f (0) = 0 ,
所以 g(0) = f(0) • cos 0 = 0 , 所以当 x (− , 0) 时, g(x) 0 ,
2 当 x (0, ) 时, g(x) 0 ,
2
f
(x)
=
[ g(x)] cos x
∴ g ( x) 2018 的解集为 (0, + ) ,即不等式 ex f ( x) 2ex + 2018 的解集为 (0, + ) .
故选 A.
【点评】若 f ( x) + f ( x) k ,可构造 y = f ( x) ex − kx . 【变式训练】定义在 R 上的奇函数 f ( x) 的导函数满足 f ( x) f ( x) ,且 f ( x) = f ( x + 4) ,若 f (2019) = −e ,

2022年高考数学利用导数构造函数解不等式

2022年高考数学利用导数构造函数解不等式

D. (-∞ ,+∞)
所以 g(x) 为 R 的单调递增函数,又因为 g(-1) = f(-1) - 2 × (-1) = 4 所以不等式的解集为 (-1,+∞)
【答案】选 A
【例9】:已知 f(x) 定义域为 (0,+∞),f(x) 为 f(x) 的导函数,且满足 f(x) < -xf(x),则不等式 f(x + 1) > (x - 1)f(x2 1) 的解集是 ( )
1
所以 f(x)g(x) < 0 的解集是 (-3,+∞)
【例3】:已知定义为 R 的奇函数 f(x) 的导函数为 f(x),当 x ≠ 0 时,f(x) +
f (x) x
> 0,若 a =
1 2
f
1 2
,b = -2f(-2) ,c
=
ln
1 2
f(ln2),则下列关于 a,b,c 的大小关系正确的是
1 4
x2 ≥ 0,即
f(x) > 0
【例6】:已知函数 f(x) 的定义域为 R,且 f(x) > 1 - f(x) ,f(0) = 4,则不等式 f(x) > 1 + eln3-x 的解集为 ( )
A. (0,+∞)
B.
1 2
,+∞
C. (1,+∞)
【解析】f(x) > 1 + eln3-x ⇒ ex f(x) > ex + eln3 ⇒ ex f(x) - ex > 3
x+1>0
x > -1
g(x + 1) > g(x2 - 1) , x2 - 1 > 0 ⇒ x > 1 或 x < -1 ⇒ x > 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

已知函数()f x 是定义在(0,)+∞上的非负可导函数,且满足()()0xf x f x '+≤,对任意正数,a b 。

若a b <,则必有( A ),()(),()()()()()()A af b bf a B bf a af b C af a f b D bf b f a ≤≤≤≤已知(),()f x g x 分别是定义在R 上的奇函数,偶函数,若0x <时,()()()()0f x g x f x g x ''+>, 且(3)0g -=,则不等式()()0f x g x <的解集是 (,3)(0,3)-∞-⋃ 已知函数()f x 在R 上的奇函数,且(2)0f =,当0x >时,有2()()0xf x f x x'-<,则2()0x f x >的 解集是 (,2)(0,2)-∞-⋃设函数(),y f x x R =∈的导函数为()f x ',且()(),()()f x f x f x f x '-=<,则下列不等式成立的是(D )12212112()(0)(1)(2)()(2)(0)(1)()(2)(1)(0)()(1)(0)(2)A f e f e fB e f f e fC e f e f fD e f f e f ----<<<<<<<<已知函数2()2ln f x x x a x =++,当1t ≥时,不等式(21)2()3f t f t -≥-恒成立, 则实数a 的取值范围为 <=2设1(),(0,1)ln f x x x x x=>≠(1)求()f x 的单调区间;(2)若不等式12ax x >,对任意(0,1)x ∈ 恒成立,求实数a 的取值范围;1111(1)(0,),(,1),(1,)ln 21(2)2ln 2ln ln ln 2ln ln 2a a x x e e ax x a x a e x x x +∞>∴>∴>∴<∴>已知函数21()ln ,()2f x xg x x ==(1)设()()(),(0)F x ag x f x a =->,若()F x 没有零点,求实数a 的取值范围;(2)若120x x >>总有[]121122()()()()m g x g x x f x x f x ->-成立,求实数m 的取值范围;2211122211()ln ,()2()()()()()()()()01a ax F x x x F x a x emg x x f x mg x x f x h x mg x xf x h x m -'=-=∴>->-=-''∴≥∴≥3.已知函数0,1)63()1(3)(23<++++-=m x m x m mx x f 其中。

(1)若)(x f 的单调增区间是(0,1)求m 的值。

(2)当]1,1[-∈x 时,函数)(x f y =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围。

答案:(1)63)1(63)(2+++-='m x m mx x f ),1,0()(的单调增区间是x f063)1(63)(2>+++-=∴m x m mx x f 的解集为(0,1),则0,1是关于x 的方程063)1(632=+++-m x m mx 的两根2-=∴m (2)由已知,当,3)(,]1,1[m x f x >'-∈时02)1(22>++-∴x m mx 又m<0,要使]1,1[02)1(2)(2-∈>++-=x x m mx x g 在上恒成立只需满足034,0)1(0)1(<<-⎩⎨⎧>>-m g g 解得已知函数32()f x x ax bx c =+++(1)若函数()f x 在1,2x x ==-处取得极值,试求,a b 的值; (2)若[3,2]x ∈-时,11()2f x c >-恒成立,求c 的取值范围;3(1),6,(2))2a b c ==-∈⋃+∞7.已知函数321()43cos 32f x x x θ=-+,其中x R ∈,θ为参数,且0≤θ≤2π. (1)当cos 0θ=时,判断函数()f x 是否有极值;(2)要使函数()f x 的极小值大于零,求参数θ的取值范围;(3)若对(2)中所求的取值范围内的任意参数θ,函数()f x 在区间()21,a a -内都是增函数,求实数a 的取值范围。

答案:(1)当cos θ=0时, 4x 3+132在R 上为增函数,无极值;(2)f /(x )=12x (x-2cos θ) 令f /(x )=0,x 1=0,x 2=2cos θ; 列表可知:(列表正确)f (x )极小= f (2cos θ)=132-4cos 3θ>0 ∴3π<θ<2π(3)a <0且2a-1<a ∴a <0或2a-1<a 且2a-1>2cos θ恒成立, ∴ 85<a <1 。

∴a 的取值范围是:a <0 或85<a <1 。

已知函数ax x ax x f -++=2)2121ln()( a (为常数,)0>a(1)当1=a时,求函数)(x f 在1=x 处的切线方程; (2)当)(x f y =在21=x 处取得极值时,若关于x 的方程0)(=-b x f 在[]2,0上恰有两个不相等的实数根,求实数b 的取值范围;(3)若对任意的)2,1(∈a ,总存在⎥⎦⎤⎢⎣⎡∈1,210x ,使不等式)32()(20-+>a a m x f 成立,求实数m 的取值范围。

解: (1)1=a时,x x x x f -++=2)2121ln()(1211)('-++=∴x xx f ,于是23)1('=f ,又0)1(=f ,即切点为()0,1∴切线方程为)1(23-=x y(2)a x ax ax f-++=21)(',01211)21('=-++=a aa f ,即022=--a a ,2,0=∴>a a 此时,x x x x f 21)12(2)('+-=,⎥⎦⎤⎢⎣⎡∈∴21,0x 上减,⎥⎦⎤⎢⎣⎡2,21上增,又25ln )2(,43)21(,21ln )0(=-==f f f 21ln 43≤<-∴b(3)a x axa x f -++=21)('[]ax a ax x ax x a ax +--=+-+=1)2(21)2(22222)1)(2(2122212<+-=--∴<<aa a a a a ,即21222<-a a ( )(x f ∴在⎥⎦⎤⎢⎣⎡1,21上增,a a f x f -++==∴1)2121ln()1()(max ∴只须)32(1)2121ln(2-+>-++a a m a a(法一)设)32(1)2121ln()(2-+--++=a a m a a a h12)14(222111)(2'+-+--=---+=a ma m ma m ma a a h 又0)1(=h ∴)(a h 在1的右侧需先增,81,0)1('-≤∴≥∴m h设m a m maa g 2)14(2)(2-+--=,对称轴1411≤--=ma 又02>-m ,018)1(≥--=m g ∴在)2,1(上,0)(>a g ,即0)('>a h)(a h ∴在)2,1(上单调递增,0)1()(=>∴h a h 即)32(1)2121ln(2-+>-++a a m a a ,于是)32()(20-+>a a m x f 81-≤∴m 已知函数bx x x g x x f -==221)(,ln )((b 为常数). (Ⅰ)函数)(x f 的图象在点()1(,1f )处的切线与函数)(x g 的图象相切,求实数b 的值; (Ⅱ)设)()()(x g x f x h +=,若函数)(x h 在定义域上存在单调减区间,求实数b 的取值范围; (Ⅲ)若1>b ,对于区间[1,2]内的任意两个不相等的实数1x ,2x ,都有|)()(||)()(|2121x g x g x f x f ->-成立,求b 的取值范围.解:(Ⅰ)因为x x f ln )(=,所以xx f 1)('=,因此1)1('=f , 所以函数)(x f 的图象在点()1(,1f )处的切线方程为1-=x y ,由⎪⎩⎪⎨⎧-=-=,21,12bx x y x y 得02)1(22=++-x b x , 由08)1(42=-+=∆b ,得21±-=b ……………………4分 (Ⅱ)因为)0(21ln )()()(2>-+=+=x bx x x x g x f x h , 所以xbx x b x x x h 11)('2+-=-+=,由题意知0)('<x h 在),0(+∞上有解,因为0>x ,设1)(2+-=bx x x u ,因为01)0(>=u ,则只要⎪⎩⎪⎨⎧>-->04)(,022b b ,解得2>b ,所以b 的取值范围是),2(+∞………………8分(Ⅲ)不妨设21x x >,因为函数x x f ln )(=在区间[1,2]上是增函数,所以)()(21x f x f >,函数)(x g 图象的对称轴为b x =,且1>b 。

(i )当2≥b 时,函数)(x g 在区间[1,2]上是减函数,所以)()(21x g x g <, 所以|)()(||)()(|2121x g x g x f x f ->-等价于)()()()(1221x g x g x f x f ->-, 即)()()()(2211x g x f x g x f +>+, 等价于bx x x x g x f x h -+=+=221ln )()()(在区间[1,2]上是增函数, 等价于01)('≥-+=b x xx h 在区间[1,2]上恒成立, 等价于xx b 1+≤在区间[1,2]上恒成立, 所以2≤b ,又2≥b ,所以2=b 。

……………………12分(ii )当21<<b 时,函数)(x g 在区间[1, b]上是减函数,在]2,[b 上为增函数。

① 当b x x ≤<≤121时,|)()(||)()(|2121x g x g x f x f ->-等价于)()()()(2211x g x f x g x f +>+,等价于bx x x x g x f x h -+=+=221ln )()()(在区间[1,b]上是增函数, 等价于01)('≥-+=b x xx h 在区间[1,b]上恒成立, 等价于xx b 1+≤在区间[1,b]上恒成立,所以2≤b ,又21<<b ,所以21<<b ② 当212b x x ≤<≤时,|)()(||)()(|2121x g x g x f x f ->-等价于1122()()()()f x g x f x g x ->-,等价于21()()()ln 2H x f x g x x x bx =-=-+在区间[b,2]上是增函数, 等价于1'()0H x x b x=-+≥在区间[b,2]上恒成立,等价于1b x x ≥-在区间[b,2]上恒成立,所以32b ≥,故322b ≤<, ③ 当2112x b x ≤<<≤时,由()g x 图像的对称性知, 只要|)()(||)()(|2121x g x g x f x f ->-对于①②同时成立, 对于③, 存在[]11,t b ∈,使()()121212|()()||()()|f x f x f t f x g t g x ->->- =()()12g x g x -恒成立;或存在[]2,2t b ∈,使()()121212|()()||()()|f x f x f x f t g x g t ->->-=()()12g x g x -恒成立,因此当322b ≤<时,对于③ 成立 综上,b 的取值范围是322b ≤≤…………………………15分。

相关文档
最新文档