第1章 矢量分析
第1章 矢量分析

§1 .2 标量场的梯度
1 场的概念
在自然界中,许多问题是定义在确定空间区域上的, 在该区域上每一点都有确定的量与之对应,我们称在该区 域上定义了一个场。如电荷在其周围空间激发的电场,电 流在周围空间激发的磁场等。如果这个量是标量我们称该 场为标量场;如果这个量是矢量,则称该场为矢量场。如 果场与时间无关,称为静态场,反之为时变场。从数学上 看,场是定义在空间区域上的函数。
矢量的乘积包括标量积和矢量积。 B
1) 标量积
任意两个矢量A与B的标量积
θ
(Scalar Product) 是一个标
量,它等于两个矢量的大小
Bcos θ
A
与它们夹角的余弦之乘积,
记为
A·B=ABcosθ
§1 .1 矢量及其代数运算
2 矢量的乘积
2) 矢量积 任意两个矢量A与B的矢量积是一 个矢量,矢量积的大小等于两个 矢量的大小与它们夹角的正弦之 乘积,其方向垂直于矢量A与B组 成的平面,记为 C=A×B=enAB sinθ en=eA×eB (右手螺旋)
�� �� ���
���
���
A + B = ex (Ax + Bx ) + ey (Ay + By ) + ez (Az +Bz )
�� �� ��
�ey (Ay − By ) + ez (Az − Bz )
§1 .1 矢量及其代数运算
2 矢量的乘积
3 方向导数
设一个标量函数场u(x, y, z)在P点可微,则u在P点沿
任意� 方向的方向导数为 ∂u / ∂l 。它的值与所选取的方
向 l 有关, 若
� l
=
x�
《电磁场与电磁波》第一章 矢量分析

ey Ay By
ez Az Bz
显然,矢量的矢积不满足交换律。 两个矢量的矢积仍是矢量。
矢积的几何意义 设 则
A A ex
B Bxex By ey
z
A B y B
A B ez A B sin
A
可见,矢积A×B的方向与矢量A及 矢量B构成的平面垂直,由A旋转到B成 右手螺旋关系;大小为 A B sin 。
S
E dS
0
可见,当闭合面中存在正电荷时,通量为正。当闭合面中存在负电 荷时,通量为负。在电荷不存在的无源区中,穿过任一闭合面的通 量为零。
㊀
㊉
二、散度(divergence)
通量仅能表示闭合面中源的总量,不能显示源的分布特性。为 此需要研究矢量场的散度。
如果包围点P的闭合面S所围区域V以任意方式缩小为点P 时, 矢量A通过 该闭合面的通量与该闭合面包围的体积之比的极限称为矢量场A在该点的散度, 以divA表示,即
结合律: ( A B) C A ( B C )
标量乘矢量:
A Ax ex Ay e y Az ez
§1-3 矢量的标积和矢积
一、矢量的标积
A Axex Ay e y Az ez
矢量A与矢量B的标积定义为:
B Bxex By ey Bz ez
则: A A ea ex A cos ey A cos ez A cos 标积的几何意义
y B
设 其中
A A ex
B Bxex By ey
Bx B cos By B cos( ) B sin 2
A
x
所以
A B A B cos
第一章:矢量分析法

f ( x, y , z ) f ( , , z) f ( r , , )
点,平行与Z 轴的方向。
r
O
ˆ
Y
X
矢量场的圆柱坐标系分量
ˆ 圆柱坐标轴单位矢量
ˆ
ˆ z
ˆ : 以Z为轴,半径为 的园柱面在 ( , , z ) 点的外法
线方向。
Z
ˆ : 垂直于Z轴及( , , z )
点组成的平面,沿 增大一侧的方向。
ˆ z
ˆ
P( , , z )
ˆ z : 在 ( , , z )
矢量分析法直角坐标系场点的坐标位置xyz圆柱坐标系圆球坐标系12直角坐标系坐标与圆柱坐标系坐标的关系cossinsincossinarctanarctanxxyyzz垂直于z轴及点组成的平面沿增大一侧的方向
第一章:矢量分析法
1.2 三种坐标系
直角坐标系 场点的坐标位置(x,y,z) 圆柱坐标系 ( , , z ) 圆球坐标系 (r , , )
r xx yy zz
f (r )
距离矢量
R r r n ( x x n)dx ( y y n)dy ( z z n)dz
R r r' ( x x' ) 2 ( y y' ) 2 ( z z' ) 2
直角坐标系坐标与圆柱坐标系坐标的关系
x cos y sin z z
x 2 y 2 y arctan x zz
工程电磁场-第1章-矢量分析和场论基础

04
电磁2
03
静电场
由静止电荷产生的电场, 其电场线不随时间变化。
恒定磁场
由恒定电流产生的磁场, 其磁场线是闭合的,且不 随时间变化。
时变电磁场
由变化的电流或变化的电 荷产生的电场和磁场,其 电场线和磁场线都随时间 变化。
电磁场的分类
按存在形式分类
有源场和无源场。有源场是指其散度非零的场,如静电场和恒定 磁场;无源场是指其散度为零的场,如时变电磁场。
根据场的来源,可以将场分为自然场 和人工场。
场量和场强
场量是描述场中物理量分布的量,如电场强度、磁场强度等 。
场强是描述场作用的强度和方向的物理量,如电场线、磁场 线等。
03
矢量场和标量场
矢量场的性质
02
01
03
矢量场由矢量线组成,具有方向和大小。
矢量场具有旋度或散度,分别表示场中的旋涡或电荷 分布。 矢量场的变化遵循斯托克斯定理和格林定理。
80%
斯托克斯定理
斯托克斯定理是矢量积分的重要 定理之一,它描述了矢量场中某 点处的散度与该点处单位球体体 积内的积分之间的关系。
矢量函数和场
矢量函数
矢量函数是描述空间中矢量场 变化的数学工具,其定义域和 值域都是矢量。
矢量场
矢量场是由空间中一系列点构 成的集合,每个点都有一个与 之相关的矢量。
梯度、散度和旋度
在磁场的边界上,磁场线切线方向的 分量连续,即磁场强度不突变。
05
电磁场的能量和动量
电磁场的能量
电磁场能量的定义
01
电磁场能量是指存在于电磁场中的能量,它与电场和磁场的变
化率有关。
电磁场能量的计算
02
通过计算电场和磁场的能量密度,可以得出整个电磁场的总能
第一章 矢量分析(电磁场与电磁波)

例:已知一矢量场F=axxy-ayzx, 试求: (1) 该矢量场的旋度; (2) 该矢量沿半径为3的四分 之一圆盘的线积分, 如图所 示, 验证斯托克斯定理.
y B r=3
O
A x
四分之一圆盘
第 7,8 学时 , 1.4 标量的方向导数和梯度
1.4.1标量的方向导数和梯度 标量的方向导数和梯度 一个标量场u可以用一个标量函数来表示.在直角坐标 系中, 可将u表示为 u=u(x, y, z) 令 u(x, y, z)=C, C为任意常数.该式在几何上一般表示 一个曲面,在这个曲面上的各点,虽然坐标(x, y, z)不同, 但函数值相等,称此曲面为标量场u的等值面 等值面. 随着C 等值面 的取值不同,得到一系列不同的等值面,如下图所示. 同理,对于由二维函数v=v(x, y)所给定的平面标量场, 可按v(x, y)=C得到一系列不同值的等值线.
S → P
∫ lim
l
A dl
S
称固定矢量R为矢量A 的旋度 旋度,记作 旋度 rotA=R 上式为旋度矢量在n方 向的投影,如图所示, 即
rotA 旋旋旋
n
P l
S → P
∫ lim
l
A dl
S
= rotn A
旋度及其投影
矢量场的旋度 旋度仍为矢量 矢量.在直角坐标系中,旋度的表达式为 旋度 矢量
C C=A× B an aA A (a)
图 1 - 3 矢量积的图示及右手螺旋 (a) 矢量积 (b) 右手螺旋
O
aB B
B A
θ
(b)
矢量积又称为叉积 叉积(Cross Product),如果两个不为零的 叉积 矢量的叉积等于零,则这两个矢量必然相互平行,或者 说,两个相互平行矢量的叉积一定等于零.矢量的叉积 不服从交换律,但服从分配律,即 A×B= -B×A × × A×(B+C)=A×B+A×C × × ×
第一章 矢量分析

立了面积分和线积分的关系。从物理角度可以理解为斯托克 立了面积分和线积分的关系。从物理角度可以理解为斯托克 斯定理建立了区域 S 中的场和包围区域 S 的闭合曲线 l 上的 场之间的关系。因此, 中的场, 场之间的关系。因此,如果已知区域 S 中的场,根据斯托克 上的场,反之亦然。 斯定理即可求出边界 l 上的场,反之亦然。
Ψ = ∫ A ⋅ dS
S
通量可为正、或为负、或为零 当矢量穿出某个闭合面时, 通量可为正、或为负、或为零。当矢量穿出某个闭合面时, 认为该闭合面中存在产生该矢量场的源 认为该闭合面中存在产生该矢量场的源;当矢量进入这个闭合 面时,认为该闭合面中存在汇聚该矢量场的洞 )。闭合 面时,认为该闭合面中存在汇聚该矢量场的洞(或汇)。闭合
惟 一 性 定 理 亥姆霍兹定理 正交曲面 坐标系
10
第一章 矢量分析
标 积 与 矢 积 方向导数与梯度 通 量 与 散 度 环 量 与 旋 度 环 量 与 旋 度 无散场与无旋场 格 林 定 理
2. 旋度:旋度是一个矢量。若以符号 rot A 表示矢量 A 的旋 旋度:旋度是一个矢量。 具有最大环量强度的方向, 度, 则其方向是使矢量 A 具有最大环量强度的方向, 其大小等于对该矢量方向的最大环量强度, 其大小等于对该矢量方向的最大环量强度,即
惟 一 性 定 理 亥姆霍兹定理 正交曲面 坐标系
1
0 A⋅ B = A B
A⊥B
A // B
第一章 矢量分析
标 积 与 矢 积 方向导数与梯度
2.矢量的失积 2.矢量的失积
矢量的失积:代数定义: 矢量的失积:代数定义:
ex A × B = Ax Bx ey Ay By ez Az Bz
第一章 矢量分析
工程数学---------矢量分析与场论
矢径函数 r xi y j zk d r d xi d y j d zk 2 2 2 d r (d x) (d y) (d z)
dA dt
或
A(t )
A(t ) Ax (t )i Ay (t ) j Az (t )k
工程数学---------矢量分析与场论
2.导矢的几何意义 A A t A 与A 同 t 0 t 向, A 与 A 反向, t 0 t A 始终指向 t 增大的方向, t (t ) lim A 为切向量, A 始终指向 t 增大的方向. t 0 t
t t0 t t0 t t0 t t0
工程数学---------矢量分析与场论
极限运算法则
工程数学---------矢量分析与场论
4.连续: 设矢性函数
t t0
在点
的某去心邻域内有定义 ,
且 lim A(t ) A(t0 ), 则称
若 连续.
在 连续.
在某区间上每一点都连续 , 则称它在该区间上
工程数学---------矢量分析与场论
4.导数公式
1) (C ) 0 2) ( A B) A B 3) (uA) u A u A 4) ( A B) A B A B 5) ( A B) A B A B dA du d 6) A(u (t )) du dt dt
工程数学---------矢量分析与场论
2.不定积分公式
第1章-矢量分析
⎝
2⎠
⎝
2⎠
Ay
⎜⎛ x,y+Δy,z ⎟⎞ ⎝ 2⎠
=
Ay
(x,y,z)
+
∂Ay ∂y
(x,y,z)
Δy 2
+
1 2!
∂2 Ay ∂y2
( Δy )2 2
+ ...
得
ΔΨr
=
( Ay
+
∂Ay ∂y
Δy 2
+ .........) ΔxΔz
divA 直角坐标表示式的推导
11
§1.2通量、散度、散度定理
8
§1.2通量、散度、散度定理
作业:1.1-1,1.1-3,1.1-5
S为封闭面时: 若Ψ > 0, 有净通量流出,说明S内有源; 若Ψ < 0, 有净通量流入,说明S内有洞(负源); 若Ψ = 0, 则净通量为零,说明S内无源。
举例:
由《大学物理》知,电通量 Ψe = ∫sD ⋅ ds = Q(高斯定理) 水流的单位时间流量(米3/秒)= v ⋅ d s
A 矢量的模:
γ
β o
Ay
α Ax
y
A = A = Ax2 + Ay 2 + Az 2
x
A 的单位矢量:
Aˆ = A = xˆ Ax + yˆ A y + zˆ Az AA AA
= xˆ cosα + yˆ cos β + zˆ cosγ
2
§1.1矢量代数
二、标量积和矢量积
a) 标量积(点乘)
加减乘除
∂y 4π r 5
∂Dz = q r 2 − 3z 2
∂z 4π r 5
电磁场与电磁波第一章矢量分析
(Cf ) C f
有关散度的公式:
(kF ) k F (k为常量)
( f F ) f F F f
(F G) F G
电磁场与电磁波
第1章 矢量分析
26
4. 散度定理(高斯公式)
矢量场对于空间任意 闭合曲面的通量,等于矢 量场的散度在该闭合曲面 所包围体积中的体积分。
4. 各坐标系单位矢量之间的关系
直角坐标与 圆柱坐标系
eeez
ex
cos sin
0
ey
sin cos
0
ez 0 0
1
直角坐标与 球坐标系
er
ex
sin cos
e cosθ cos
e sin
ey
ez
sin sin cos
cos sin sin
cos
0
15
zy e
eeyz
eer
度规系数 hr 1, h r, h r sin
电磁场与电磁波
第1章 矢量分析
14
面元矢量
dSr
er dl dl
er r 2sin dd
dS
e dlrdl
ez
rsin
drd
dS
e dlr dl
e rdrd
球坐标系中的线元、面元和体积元
体积元
dV r2sindrdd
电磁场与电磁波
第1章 矢量分析
如果表示“场”的物理量是标量,则称为标量场。
例如:温度场、电位场、高度场等。 如果表示“场”的物理量是矢量,则称为矢量场。
例如:流速场、重力场、电场、磁场等。 如果场与时间无关,称为静态场,反之为时变场。
从数学上看,“场”是定义在空间区域上的函数:
第一章 矢量分析
第一章 矢量分析在这门课程中,我们几乎从头到尾和场打交道。
实际上,人们周围的空间也确实存在着各种各样的场,例如自由落体现象,说明存在一个重力场;人们能感觉到室内外的冷暖,说明我们周围分布着一个温度场,等等。
那么到底什么是场呢?从物理意义上理解,场是遍及一个被界定的或无限扩展的空间内的,能够产生某种物理效应的特殊的物质,场是具有能量的。
从数学意义上理解,场是给定区域内各点数值的集合,这些数值规定了该区域内一个特定量的特性。
例如温度场就由T 描述,只要知道了场中各点T 的大小,该温度场就被确定了,这种只有数值大小的物理量称为标量,该场称为标量场;还有一种场,例如本书中讨论的电磁场,电场强度E 是描述电场的物理量之一,人们不仅需要知道它的数值大小,还要知道它的方向,这样才能完全确定它,这样的物理量称为矢量,该场称为矢量场。
在电磁场和电磁波的学习中,我们始终要用到矢量运算,因此掌握矢量分析是十分必要的。
§1.1 矢量的概念1.1.1 标量在电磁场中遇到的特征量可区分为标量和矢量两类。
一个仅用大小就能够完整描述的物理量称为标量。
如电荷、电位和能量等。
这些量中的每一个量,用单纯的一个数就可以完整地描述。
电荷0.5库伦(C ),电位220伏特(V )等都是标量的例子。
1.1.2 矢量一个不仅有大小而且有方向的物理量称为矢量。
力、速度、力矩、电场强度和加速度都是矢量。
一个矢量常用一个带箭头的线段来图示,其长度按适当比例表示它的大小,方向则用箭头指示,如图 1.1(a)所示。
其中,R 代表一个从O 点指向P 点的矢量。
图1.1(b)表示几个平行矢量有同样的大小和方向,它们都代表同一个矢量。
一个大小为零的矢量称为空矢或零矢。
一个大小为1的矢量称为单位矢量。
一个矢量A 可以表示为A Aa = (1.1)其中A 是A的大小,称为模,由式(1.2)表示||A A = (1.2)a 是A 的单位矢量,即方向与A 的方向相同,大小为1的矢量,由式(1.3)表示||A a A =(1.3)§1.2 矢量运算1.2.1 矢量加法矢量加法是矢量的几何和,两个矢量的几何和服从平行四边形规则,如图1.2(a)所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1 .1 矢量及其代数运算
2 矢量代数运算
矢量相加的平行四边形法则,矢量的加法的坐标分 量是两矢量对应坐标分量之和,矢量加法的结果仍 是矢量 ��
�� � �� � �� � A = ex A x + ey A y + ez A z
� � �� � �� � �� � B = e x Bx + e y B y + e z Bz
� � A = Ae
� � � 其中, A是矢量 A的大小; e 代表矢量 A 的方向。 � � e = A / A 大小等于1。
§1 .1 矢量及其代数运算
1 标量和矢量
一个大小为零的矢量称为空矢(Null Vector)或零矢 (Zero Vector),一个大小为1的矢量称为单位矢量 (Unit Vector)。 在直角坐标系中,用单位矢量 ex、 ey 、 ez 表征矢量分 别沿x、y、z轴分量的方向。
r
r=exX+eyY+ezZ
§1 .1 矢量及其代数运算
1 标量和矢量
X、Y、Z是位置矢量r在x、y、z轴上的投影。
任一矢量A在三维正交坐标系中都可以给出其三个分 量。例如,在直角坐标系中,矢量A的三个分量分别 是Ax、Ay、Az,利用三个单位矢量ex、ey、ez可以将矢 量A表示成:
A=exAx+eyAy+ezAz
§1 .2 标量场的梯度
5 梯度的性质
4)标量场的梯度垂直
于通过该点的等值 面(或切平面)
§1 .2 标量场的梯度
6 梯度运算的基本公式
⎧ ⎪ ⎪∇ ⎪∇ ⎪ ⎪∇ ⎪ ⎨∇ ⎪∇ ⎪ ⎪∇ ⎪ ⎪∇ ⎪ ⎩
c = 0 cu = c ∇ u (u ± v ) = ∇ u ± ∇ v (uv ) = u ∇ v + v ∇ u f (u ) = f ' (u )∇ u × ∇ u = 0
第一章 矢量分析
§1 .1 矢量及其代数运算
1 标量和矢量
电磁场中遇到的绝 大 多 数 物 理 量 , 能 够 容 易 地 区 分 为 标 量 (Scalar)和矢量(Vector)。一个仅用大小就能够完整描述的物 理量称为标量,例如电压、温度、时间、质量、电荷等。实际 上,所有实数都是标量。一个有大小和方向的物理量称为矢 量,电场、磁场、力、速度、力矩等都是矢量。例如,矢量 A 可以表示成
§1 .4 矢量场的旋度
2 旋度
引入矢量场旋度,定义为:矢量场在M点处的旋度 为一矢量,其数值为包含M点在内的小面元边界的环量 与小面元比值极限的最大值,其方向为极限取得最大 值时小面积元的法线方向,即: � � ⎡ A ⋅ dl ⎤ ∫ � �⎢ ⎥ l rotA = n ⎢lim ⎥ ∆ s ⎢ ∆s →0 ⎥ ⎣ ⎦ Max
§1 .1 矢量及其代数运算
1 标量和矢量
Z
空 间 的 一 点 P(X,Y,Z) 能 够 由 它在三个相互垂直的轴线上 的投影唯一地确定。从原点 指向点 P 的矢量 r 称为位置矢 量 (Position Vector) , 它 在直角坐标系中表示为
z P(X, Y, Z) Y ay O y
az ax X x
A×B= -B×A A×(B+C)=A×B+A×C
§1 .1 矢量及其代数运算
直角坐标系中的单位矢量有下列关系式:
ex×ey=ez, ey×ez=ex, ez×ex=ey ex×ex=ey×ey=ez×ez= 0
在直角坐标系中,矢量的叉积还可以表示为 ex ey ez A× B = Ax Ay Az Bx By Bz
� � divF ( x, y, z ) = ∇ ⋅ F ( x, y, z )
gradu ( x, y, z ) = ∇u ( x, y, z )
§1 .3 矢量场的散度
3 散度运算的基本公式
⎧∇ ⋅ C = 0(C ) ⎪ ⎪∇ ⋅ (Cf�) = C ⋅ ∇f� ⎪ ⎨∇ ⋅ (αF ) = α∇ ⋅ F (α � � � ⎪∇ ⋅ (φF ) = φ ∇ ⋅ F + F ⋅ ∇ φ ⎪ � � � � ⎪ ⎩∇ ⋅ (F ± G ) = ∇ ⋅ F ± ∇ ⋅ G
�� � � �� � �� � �� � A + B = e x (A x + Bx ) + e y (A y + By ) + ez (A z +Bz ) �� � � �� � �� � �� � A − B = ex (A x − Bx ) + e y (A y − By ) + ez (A z − Bz )
§1 .3 矢量场的散度
Φ>0
表示通过闭合曲 面有净的矢量线 流出 表示通过闭合曲 面有净的矢量线 流入
有正源
Φ<0
有负源
Φ=0
表示流入、流出 的矢量线相等, 或没有矢量线流 入、流出
无源
§1 .3 矢量场的散度
2 散度
为了定量研究场与源之间的关系,需建立场空间任 意点(小体积元)的通量与矢量场(小体积元曲面的 通量)的关系。利用极限方法得到这一关系:
闭曲面
§1 .3 矢量场的散度
1 通量的定义
矢量场对于曲面 ds 的通量为曲 面ds上所有小面积元通的叠加: � � Φ = ∫ dΦ = ∫∫ F (x, y , z ) ⋅ ds
s
� � dΦ=F ( x, y, z ) ⋅ ds
如果曲面S 为闭合曲面,则 ⎧> 0 ⎪ Φ = ∫∫ F ( x , y , z ) ⋅ d s =⎨ = 0 s ⎪< 0 ⎩
§1 .4 矢量场的旋度
1 环量
• 存在另一类不同于通量源的矢量源,它所激发的矢量 场的力线是闭合的,它对于任何闭合曲面的通量为零。 但在场所定义的空间中闭合路径的积分不为零。如磁 场沿任意闭合曲线的积分与通过闭合曲线所围曲面的 电流成正比,即:
∫ B (x , y , z ) ⋅ d L = µ
L
0
I = µ 0 ∫∫ J ( x , y , z ) ⋅ d s
s
上式建立了磁场与电流的关系。
§1 .4 矢量场的旋度
∫ B (x , y , z ) ⋅ d L = µ
L
0பைடு நூலகம்
I = µ 0 ∫∫ J ( x , y , z ) ⋅ d s
s
§1 .4 矢量场的旋度
例:流速场
水流沿平行于水管轴线方向流动
=ex(AyBz-AzBy)+ey(AzBx-AxBz)+ez(AxBy-AyBx)
§1 .2 标量场的梯度
1 场的概念
在自然界中,许多问题是定义在确定空间区域上的, 在该区域上每一点都有确定的量与之对应,我们称在该区 域上定义了一个场。如电荷在其周围空间激发的电场,电 流在周围空间激发的磁场等。如果这个量是标量我们称该 场为标量场;如果这个量是矢量,则称该场为矢量场。如 果场与时间无关,称为静态场,反之为时变场。从数学上 看,场是定义在空间区域上的函数。
§1 .1 矢量及其代数运算
2 矢量的乘积
矢量的乘积包括标量积和矢量积。 1) 标量积 任意两个矢量 A 与 B 的标量积 (Scalar Product) 是一个标 量,它等于两个矢量的大小 与它们夹角的余弦之乘积, 记为
θ B cos θ A B
A·B=ABcosθ
§1 .1 矢量及其代数运算
§1 .2 标量场的梯度
3 方向导数
设一个标量函数场u(x, y, z)在P点可微,则u在P点沿 任意方向的方向导数为 ∂u / ∂l 。它的值与所选取的方
� 向 l 有关, 若
� � � � l = x cos α + y cos β + z cos γ
则
∂u ∂u ∂u ∂u = cos α + cos β + cos γ ∂l ∂x ∂y ∂z
§1 .4 矢量场的旋度
可见, 矢量A的旋度是一个矢量, 其大小是矢量A在 给定点处的最大环量面密度, 其方向就是当面元的取向 � 使环量面密度最大时, 该面元矢量的方向 n 。 它描述 A在该点处的旋涡源强度。 若某区域中各点curlA=0, 称A为无旋场或保守场。
� divF ( x, y, z ) = lim
∆V →0
� � ( ) F x , y , z ⋅ d s ∫∫
s
∆V
∂Fx ∂Fy ∂Fz = + + ∂x ∂y ∂z
称为矢量场的散度。因此散度是矢量通过包含该点的任 意闭合小曲面的通量与曲面元体积之比的极限。
§1 .3 矢量场的散度
2 散度
哈密顿(W.R.Hamilton)引入倒三角算符(读作del(德尔) 或nabla(纳不拉))表示下述矢量形式的微分算子: � ∂ � ∂ � ∂ ∇ = ex + ey + ez ∂x ∂y ∂z 散度 梯度
2 矢量的乘积
2) 矢量积 任意两个矢量A与B的矢量积是一 个矢量,矢量积的大小等于两个 矢量的大小与它们夹角的正弦之 乘积,其方向垂直于矢量A与B组 成的平面,记为
C=A×B=enAB sinθ en=eA×eB (右手螺旋)
§1 .1 矢量及其代数运算
矢量积又称为叉积(Cross Product),如果两个不为零 的矢量的叉积等于零,则这两个矢量必然相互平 行,或者说,两个相互平行矢量的叉积一定等于零。 矢量的叉积不服从交换律,但服从分配律,即
§1 .2 标量场的梯度
1 场的概念
如果场与时间无关,称为静态场,反之为时变场。 静态标量场和矢量场可分别表示为:
u (x, y , z )