数学建模课程及答案
数学建模习题集及标准答案

3.动态模型:描述对象特征随时间(空间)的演变过程,分析对象特征的变化规律,预报对象特征的未来性态,研究控制对象特征的手段;微分方程建模:模根据函数及其变化率之间的关系确定函数,根据建模目的和问题分析作出简化假设,按照内在规律或用类比法建立微分方程。
4.按照你的观点应从那几个方面来建立传染病模型。
5.叙述Leslie人口模型的特点。并讨论稳定状况下种群的增长规律。
6.试比较连续形式的阻滞增长模型(Logistic模型)和离散形式阻滞增长模型,并讨论离散形式阻滞增长模型平衡点及其稳定性。
第二部分
1.优点:短期预报比较准确;缺点:不适合中长期预报;原因:预报时假设人口增长率为常数,没有考虑环境对人口增长的制约作用。
(4)你能提出其他的方法吗。用你的方法分配上面的名额。
2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
根据上述分析我们可以看出,该博弈比较明确可以预测的结果有这样几种情况:
(1) ,此时本博弈的结果是乙在第一阶段不愿意借给对方,结束博弈,双方得益
(1,0),不管这时候b的值是多少;(2) ,此时博弈的结果仍然是乙在第一阶段选择不借,结束博弈,双方得益(1,0);(3) ,此时博弈的结果是乙在第一阶段选择借,甲在第二阶段选择不分,乙在第三阶段选择打,最后结果是双方得益
数学建模课后习题答案

实验报告姓名:和家慧 专业:通信工程 学号:20121060248 周一下午78节实验一:方程及方程组的求解一 实验目的:学会初步使用方程模型,掌握非线性方程的求解方法,方程组的求解方法,MA TLAB 函数直接求解法等。
二 问题:路灯照明问题。
在一条20m 宽的道路两侧,分别安装了一只2kw 和一只3kw的路灯,它们离地面的高度分别为5m 和6m 。
在漆黑的夜晚,当两只路灯开启时 (1)两只路灯连线的路面上最暗的点和最亮的点在哪里? (2)如果3kw 的路灯的高度可以在3m 到9m 之间变化,如何路面上最暗点的亮度最大? (3)如果两只路灯的高度均可以在3m 到9m 之间变化,结果又如何?三 数学模型解:根据题意,建立如图模型P1=2kw P2=3kw S=20m 照度计算公式:2sin r p k I α= (k 为照度系数,可取为1;P 为路灯的功率)(1)设Q(x,0)点为两盏路灯连线上的任意一点,则两盏路灯在Q 点的照度分别为21111sin R p k I α= 22222sin R p k I α=22121x h R += 111sin R h =α22222)(x s h R -+= 222sin R h =αQ 点的照度:3232322222322111))20(36(18)25(10))((()(()(x x x s h h P x h h P x I -+++=-+++=要求最暗点和最亮点,即为求函数I(x)的最大值和最小值,所以应先求出函数的极值点5252522222522111'))20(36()20(54)25(30))(()(3)(3)(x x x x x s h x s h P x h x h P x I -+-++-=-+-++-=算法与编程利用MATLAB 求得0)('=x I 时x 的值代码:s=solve('(-30*x)/((25+x^2)^(5/2))+(54*(20-x))/((36+(20-x)^2)^(5/2))'); s1=vpa(s,8); s1计算结果运行结果: s1 =19.97669581 9.338299136 8.538304309-11.61579012*i .2848997038e-1 8.538304309+11.61579012*i因为x>=0,选取出有效的x 值后,利用MATLAB 求出对应的I(x)的值,如下表:综上,x=9.33m 时,为最暗点;x=19.97m 时,为最亮点。
数学建模课后答案

数学建模课后答案数学建模课后答案【篇一:《数学模型》习题解答】t>1.学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). 1中的q值方法;(3).d’hondt方法:将a、b、c各宿舍的人数用正整数n=1,2,3,??相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中a、b、c行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑n=10的分配方案,p1?235,p2?333,p3?432,方法一(按比例分配)第二章(1)(2008年9月16日)pi?13i1000.q1?p1npi?132.35,q2?p2nipi?133.33, q3?p3nipi?134.32i分配结果为: n1?3, n2?3, n3?4 方法二(q值方法)9个席位的分配结果(可用按比例分配)为:n1?2,n2?3, n3?4第10个席位:计算q值为235233324322q1??9204.17, q2??9240.75, q3??9331.22?33?44?5q3最大,第10个席位应给c.分配结果为 n1?2,n2?3,n3?5方法三(d’hondt方法)此方法的分配结果为:n1?2,n2?3,n3?5此方法的道理是:记pi和ni为各宿舍的人数和席位(i=1,2,3代表a、b、c宿舍).pi是ni每席位代表的人数,取ni?1,2,?,从而得到的pip中选较大者,可使对所有的i,i尽量接近. nini再考虑n?15的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2.试用微积分方法,建立录像带记数器读数n与转过时间的数学模型. 解:设录像带记数器读数为n时,录像带转过时间为t.其模型的假设见课本.考虑t到t??t时间内录像带缠绕在右轮盘上的长度,可得vdt?(r?wkn)2?kdn,两边积分,得tvdt?2?k?(r?wkn)dnn2?rk?wk22n22vv《数学模型》作业解答第二章(2)(2008年10月9日)15.速度为v的风吹在迎风面积为s的风车上,空气密度是? ,用量纲分析方法确定风车获得的功率p与v、s、?的关系.解: 设p、v、s、?的关系为f(p,v,s,?)?0,其量纲表达式为: [p]=mlt 23, [v]=lt1,[s]=l,[?]=ml,这里l,m,t是基本量纲.2?3量纲矩阵为:1?2?10a=?3?1(p)(v)齐次线性方程组为:2?3?(l)01??(m) 00??(t)(s)(??2y1?y2?2y3?3y4?0y1?y4?03y?y?012?它的基本解为y?(?1,3,1,1) 由量纲pi定理得p?1v3s1?1,?p??v3s1?1 ,其中?是无量纲常数.16.雨滴的速度v与空气密度?、粘滞系数?和重力加速度g有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v的表达式.解:设v,?,?,g 的关系为f(v,?,?,g)=0.其量纲表达式为[v]=lmt,[?]=lmt,0-1-3[?]=mlt(ltl)l=mlltt=lmt,[g]=lmt,其中l,m,t是基本量纲.-2-1-1-1-2-2-2-1-10-2量纲矩阵为1?3?11?(l)?0?(m)110?a=? ???10?1?2(t)??(v)(?)(?)(g)齐次线性方程组ay=0 ,即y1-3y2-y3?y4?0?0 ?y2?y3-y-y-2y?034?1的基本解为y=(-3 ,-1 ,1 ,1) 由量纲pi定理得*v?3??1?g. ?v??3g,其中?是无量纲常数. ?16.雨滴的速度v与空气密度?、粘滞系数?、特征尺寸?和重力加速度g有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v的表达式.解:设v,?,?,?,g 的关系为f(v,?,?,?,g)?0.其量纲表达式为[v]=lmt,[?]=lmt,[?]=mlt(ltl)l=mlltt=lmt,[?]=lm0t0 ,[g]=lmt0-1-3-2-1-1-1-2-2-2-1-10-2其中l,m,t是基本量纲. 量纲矩阵为1?0a=1(v)齐次线性方程组ay=0 即(l)?(m)?00?1?2?(t)?(?)(?)(?)(g)1?3?10111y1?y2?3y3?y4?y5?0?y3?y4?0 ?y1?y4?2y5?0?的基本解为11?y?(1,?,0,0,?)?12231?y2?(0,?,?1,1,?)22?得到两个相互独立的无量纲量1?v??1/2g?1/23/2?1?1/2g??2??即 v?1) g?1,?3/2?g1/2??1??2?1. 由?(?1,?2)?0 , 得 ?1??(?2g?(?3/2?g1/2??1) , 其中?是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t,摆长l, 质量m,重力加速度g,阻力系数k的关系为f(t,l,m,g,k)?0其量纲表达式为:[t]?l0m0t,[l]?lm0t0,[m]?l0mt0,[g]?lm0t?2,[k]?[f][v]?1?mlt?2(lt 1 )1l0mt?1,其中l,m,t是基本量纲.量纲矩阵为0?0a=1(t)?(l)?(m)?00?2?1??(t)(l)(m)(g)(k)10011001齐次线性方程组y2?y4?0??y3?y5?0 ?y?2y?y?045?1的基本解为11?y?(1,?,0,,0)?122 ?11y2?(0,,?1,?,1)22?得到两个相互独立的无量纲量tl?1/2g1/2??11/2?1?1/2lmgk??2∴t?kl1/2l1, ?1??(?2), ?2?gmg1/2∴t?lkl1/2(1/2) ,其中?是未定函数 . gmg考虑物理模拟的比例模型,设g和k不变,记模型和原型摆的周期、摆长、质量分别为t,t;l?kl?1/2l,l;m,m. 又t() 1/2gm?g当无量纲量m?l?t?l?gl?时,就有 ?.mltgll《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k,其它假设及符号约定同课本.10 对于不允许缺货模型,每天平均费用为:【篇二:数学建模习题答案】t>中国地质大学能源学院华文静1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?解:模型假设(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形(2)地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。
数学建模答案(完整版)

1 建立一个命令M 文件:求数60.70.80,权数分别为1.1,1.3,1.2的加权平均数。
在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入s=60*1.1+70*1.3+80*1.2;ave=s/3然后保存即可2 编写函数M 文件SQRT.M;函数 x=567.889与0.0368处的近似值(保留有()f x =效数四位)在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入syms x1 x2 s1 s2 zhi1 zhi2 x1=567.889;x2=0.368;s1=sqrt(x1);s2=sqrt(x2);zhi1=vpa(s1,4)zhi2=vpa(s2,4)然后保存并命名为SQRT.M 即可3用matlab 计算的值,其中a=2.3,b=4.89.()f x >> syms a b >> a=2.3;b=4.89;>> sqrt(a^2+b^2)/abs(a-b)ans = 2.08644用matlab 计算函数在x=处的值.()f x =3π>> syms x >> x=pi/3;>> sqrt(sin(x)+cos(x))/abs(1-x^2)ans = 12.09625用matlab 计算函数在x=1.23处的值.()arctan f x x =+>> syms x >> x=1.23;>> atan(x)+sqrt(log(x+1))ans = 1.78376 用matlab 计算函数在x=-2.1处的值.()()f x f x ==>> syms x >> x=-2.1;>> 2-3^x*log(abs(x))ans =1.92617 用蓝色.点连线.叉号绘制函数在[0,2]上步长为0.1的图像.>> syms x y>> x=0:0.2:2;y=2*sqrt(x);>> plot(x,y,'b.-')8 用紫色.叉号.实连线绘制函数在上步长为0.2的图像.ln 10y x =+[20,15]-->> syms x y>> x=-20:0.2:-15;y=log(abs(x+10));>> plot(x,y,'mx-')ln 10[20,y x =+--9 用红色.加号连线 虚线绘制函数在[-10,10]上步长为0.2的图像.sin(22x y π=->> syms x y;>> x=-10:0.2:10;y=sin(x/2-pi/2);>> plot(x,y,'r+--')10用紫红色.圆圈.点连线绘制函数在上步长为0.2的图像.sin(2)3y x π=+[0,4]πsin(2)sin()[0,4]322x y x y πππ=+=->> syms x y >> x=0:0.2:4*pi;y=sin(2*x+pi/3);>> plot(x,y,'mo-.')11 在同一坐标中,用分别青色.叉号.实连线与红色.星色.虚连线绘制y=与.y =>> syms x y1 y2>> x=0:pi/50:2*pi;y1=cos(3*sqrt(x));y2=3*cos(sqrt(x));>> plot(x,y1,'cx-',x,y2,'r*--')12 在同一坐标系中绘制函数这三条曲线的图标,并要求用两种方法加234,,y x y x y x ===各种标注.234,,y x y x y x ===>> syms x y1 y2 y3;>> x=-2:0.1:2;y1=x.^2;y2=x.^3;y3=x.^4;plot(x,y1,x,y2,x,y3);13 作曲线的3维图像2sin x t y t z t ⎧=⎪=⎨⎪=⎩>> syms x y t z >> t=0:1/50:2*pi;>> x=t.^2;y=sin(t);z=t;>> stem3(x,y,z)14 作环面在上的3维图像(1cos )cos (1cos )sin sin x u v y u v z u =+⎧⎪=+⎨⎪=⎩(0,2)(0,2)ππ⨯>> syms x y u v z>> u=0:pi/50:2*pi;v=0:pi/50:2*pi;>>x=(1+cos(u)).*cos(v);y=(1+cos(u)).*sin(v);z=sin(u);>> plot3(x,y,z)15 求极限0lim x +→0lim x +→>> syms x y >> y=sin(2^0.5*x)/sqrt(1-cos(x));>> limit(y,x,0,'right') ans = 216 求极限1201lim (3x x +→>> syms y x >> y=(1/3)^(1/(2*x));>> limit(y,x,0,'right') ans = 017求极限lim x >> syms x y >> y=(x*cos(x))/sqrt(1+x^3);>> limit(y,x,+inf) ans = 018 求极限21lim (1x x x x →+∞+->> syms x y >> y=((x+1)/(x-1))^(2*x);>> limit(y,x,+inf) ans = exp(4)19 求极限01cos 2lim sin x xx x →->> syms x y >> y=(1-cos(2*x))/(x*sin(x));>> limit(y,x,0) ans = 220 求极限 x →>> syms x y >> y=(sqrt(1+x)-sqrt(1-x))/x;>> limit(y,x,0) ans = 121 求极限2221lim 2x x x x x →+∞++-+>> syms x y >> y=(x^2+2*x+1)/(x^2-x+2);>> limit(y,x,+inf) ans = 122 求函数y=的导数5(21)arctan x x -+>> syms x y >> y=(2*x-1)^5+atan(x);>> diff(y) ans = 10*(2*x - 1)^4 + 1/(x^2 + 1)23 求函数y=的导数2tan 1x x y x=+>> syms y x>> y=(x*tan(x))/(1+x^2);>> diff(y)ans =tan(x)/(x^2 + 1) + (x*(tan(x)^2 + 1))/(x^2 + 1) - (2*x^2*tan(x))/(x^2 + 1)^224 求函数的导数3tan x y e x -=>> syms y x >> y=exp^(-3*x)*tan(x)>> y=exp(-3*x)*tan(x) y = exp(-3*x)*tan(x) >> diff(y) ans = exp(-3*x)*(tan(x)^2 + 1) - 3*exp(-3*x)*tan(x)25 求函数y=在x=1的导数22ln sin 2x x π+>> syms x y >> y=(1-x)/(1+x);>> diff(y,x,2) ans = 2/(x + 1)^2 - (2*(x - 1))/(x + 1)^3 >> syms x y >> y=2*log(x)+sin(pi*x/2)^2;>> dxdy=diff(y) dxdy = 2/x + pi*cos((pi*x)/2)*sin((pi*x)/2)zhi=subs(dxdy,1)zhi = 226 求函数y=的二阶导数01cos 2lim sin x x x x →-11x x-+>> syms x y>> y=(1-x)/(1+x);>> diff(y,x,2) ans = 2/(x + 1)^2 - (2*(x - 1))/(x + 1)^327 求函数的导数;>> syms x y >> y=((x-1)^3*(3+2*x)^2/(1+x)^4)^0.2;>> diff(y) ans = (((8*x + 12)*(x - 1)^3)/(x + 1)^4 + (3*(2*x + 3)^2*(x - 1)^2)/(x + 1)^4 - (4*(2*x + 3)^2*(x - 1)^3)/(x + 1)^5)/(5*(((2*x + 3)^2*(x - 1)^3)/(x + 1)^4)^(4/5))28在区间()内求函数的最值.,-∞+∞43()341f x x x =-+>> f='-3*x^4+4*x^3-1';>> [x,y]=fminbnd(f,-inf,inf)x =NaN y = NaN >> f='3*x^4-4*x^3+1';>> [x,y]=fminbnd(f,-inf,inf)x = NaN y = NaN29在区间(-1,5)内求函数发的最值.()(f x x =->> f='(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x =0.3750y = -0.3470>> >> f='-(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x = 4.9999y = -10.505930 求不定积分(ln 32sin )x x dx -⎰(ln 32sin )x x dx -⎰>> syms x y >> y=log(3*x)-2*sin(x);>> int(y) ans = 2*cos(x) - x + x*log(3) + x*log(x)31求不定积分2sin x e xdx ⎰>> syms x y>> y=exp(x)*sin(x)^2;>> int(y)ans =-(exp(x)*(cos(2*x) + 2*sin(2*x) - 5))/1032. 求不定积分 >> syms x y >> y=x*atan(x)/(1+x)^0.5;>> int(y)Warning: Explicit integral could not be found. ans = int((x*atan(x))/(x + 1)^(1/2), x)33.计算不定积分2(2cos )x x x e dx --⎰>> syms x y >> y=1/exp(x^2)*(2*x-cos(x));>> int(y)Warning: Explicit integral could not be found. ans = int(exp(-x^2)*(2*x - cos(x)), x)34.计算定积分10(32)xe x dx -+⎰>> syms x y >> y=exp(-x)*(3*x+2);>> int(y,0,1) ans = 5 - 8*exp(-1)10(32)x e x dx -+⎰35.计算定积分0x →120(1)cos x arc xdx+⎰>> syms y x>> y=(x^2+1)*acos(x);>> int(y,0,1)ans =11/936.计算定积分10cos ln(1)x x dx +⎰>> syms x y >> y=(cos(x)*log(x+1));>> int(y,0,1)Warning: Explicit integral could not be found. ans = int(log(x + 1)*cos(x), x == 0..1)37计算广义积分;2122x x dx +∞++-∞⎰>> syms y x >> y=(1/(x^2+2*x+2));>> int(y,-inf,inf) ans = pi 38.计算广义积分;20x dx x e +∞-⎰>> syms x y>> y=x^2*exp(-x);>> int(y,0,+inf)ans =2。
数学建模答案

数学建模答案一、解释下列词语,并举例说明(每小题满分5分,共15分)1.模型模型指为了某种特定目的将原型的某一部分信息简化,压缩,提炼而构成的原型替代物。
如地图,苯分子图。
2.数学模型由数字、字母、或其他数学符号组成的,描述现实对象(原型)数量规律的数学结构。
具体地说,数学模型也可以描述为:对于现实世界的一个特定对象,为了一个特定的目的,根据特有的内在规律,做出一些简化假设后,运用适当的数学工具,得到的一个数学结构称之为数学模型,如概率论的功利化定义3.抽象模型抽象模型也称为物理模型,主要指科技工作者为一定的目的根据相似原理构造的模型,它不仅可以显示原型的外形或某些特征,而且可以用来进行模拟实验,间接地研究原型的某些规律,如波浪水箱中的舰艇模型用来模拟波浪冲击下舰艇的航行性能,风洞中的飞机模型用来试验飞机在气流中的空气动力学特征。
二、简短回答问题(每个子问题满分8分,共24分)1.模型的分类根据模型替代原型的方式,模型可以简单地分为图像模型和抽象模型。
物理模型和分子模型;抽象模型:思维模型、符号模型、数学模型等2.数学建模的基本步骤1.建模准备:建立建模主题的过程;2、根据建模的目的对原型进行抽象、简化。
有目的性原则、简明性原则、真实性原则和全面性原则;3.模型构建:在建模假设的基础上,进一步分析建模假设的条件,选择合适的数学工具和模型构建方法对其进行表征,并根据已知条件和数据构建数学模型,分析模型的特征和模型的结构特征,设计或选择数学模型来解决模型并描述实际问题;4、模型求解:构造数学模型之后,方法和算法,并借助计算机完成对模型的求解;5.模型分析:根据建模的目的和要求,对模型求解的数字结果进行稳定性分析、系统参数敏感性分析、误差分析等。
6、模型检验:模型分析符合要求之后,还必须回到客观实际中去对模型进行检验,看它是否符合客观实际;7.模型应用:模型应用是数学建模的目的。
用于分析、研究和解决实际问题,充分发挥数学建模在生产和科研中的特殊作用。
数学建模课后答案

第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。
试构造模型并求解。
答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。
f 和g 都是连续函数。
椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。
不妨设0)0(,0)0(g >=f 。
当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。
这样,改变椅子的位置使四只脚同时着地。
就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。
证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。
根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。
第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。
《数学建模》实训题答案

实践训练1、对以下问题,编写M文件:(1) 用起泡法对10个数由小到大排序。
即将相邻两个数比较,将小的调到前头。
a=rand(1,10);for i=1:10for j=1:10-i;if a(j)>a(j+1);t=a(j);a(j)=a(j+1);a(j+1)=t;endendenda(2) 有一个4×5矩阵,编程求其最大值及其所处的位置。
a= 10000*rand(4,5)max=a(1:1,1:1);hang=1;lie=1;for i=1:4;for j=1:5;x=a(i:i,j:j);if x>max;max=x;hang=i;lie=j;endendendmaxhanglie(3) 编程求∑=201!n n 。
sum=0;for i=1:20,part=1;for j=1:i;part=part*j;endsum=sum+part;fprintf('part(%d)=%d.\n',i,part);endfprintf('The total sum is %d.\n',sum);(4) 一球从100米高度自由落下,每次落地后反跳回原高度的一半,再落下。
求它在第10次落地时,共经过多少米?第10次反弹有多高?x0=100;distance=x0;n=1;while n<10n=n+1;x0=x0/2;distance=distance + x0;endalldistance=distancelast=x0/2(5) 有一函数y,(2+=,写一程序,输入自变量的值,+)yxyxxsinf2输出函数值。
①function f=fun(x,y)f=x.^2+sin(x.*y)+2*y;②保存一下。
③在matlab命令窗口给fun(x,y)赋值。
例如:输入fun(1,0),就可以计算当x=1,y=0时的值,得到的结果是ans =12、在同一平面中的两个窗口分别画出心形线和马鞍面。
数学建模 答案与解析

设 = 1 (第 个备选校址被选用)或0 (第 个备选校址没被选用)。
2.5.3模型的建立
Hale Waihona Puke 目标函数:min z= + + + + +
约束条件:
s.t + +
+
+
+
+ +
+
=1
+ +
2.5.4利用Matlab解得结果如下,源程序见t2_6.m
x =
1.0000
0.0000
0.0000
1.6.3符号规定
表示飞机携带 型炸弹轰炸 目标所消耗的汽油数;
表示摧毁目标的可能性
1.6.4模型的建立
约束条件:
总的炸弹数是有限的,因此重型炸弹:
轻型炸弹:
油量限制:
即:
目标函数:
题中已经指出,只要有一个目标被炸毁就算任务完成,因此目标函数为:
线性规划模型:
将此方程化为线性方程,得线性规划模型为:
每一个机器只能分一次,因此,表格中的每一行之和为1
有这样一种可能,即一个工厂分了6台机器,因此,在这种情况下,每个工厂的机器数必须小于总的机器数,即:
目标函数:
要求的目标是利润最大,即
因此,所列的线性规划模型为:
2.6.5利用Matlab解得结果如下,源程序见t2_6.m
解得
即将1机器分给丁厂,2机器分给甲厂,3机器分给丙厂,4机器分给丙厂,5机器分给乙厂,6机器分给乙厂。
1.9.6分析
所以货物1不装,货物2装15吨,货物3装15.9474吨,货物4装3.0526吨,此时货机飞行利润是最大的,为12.152万元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学建模课程》练习题一一、填空题1. 设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若人口增长率是常数r ,那麽人口增长问题的马尔萨斯模型应为 。
2. 设某种商品的需求量函数是,1200)(25)(+-=t p t Q 而供给量函数是3600)1(35)(--=t p t G ,其中)(t p 为该商品的价格函数,那麽该商品的均衡价格是 。
3. 某服装店经营的某种服装平均每天卖出110件,进货一次的手续费为200元,存储费用为每件0.01元/天,店主不希望出现缺货现象,则最优进货周期与最优进货量分别为 。
4. 一个连通图能够一笔画出的充分必要条件是 .5.设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若允许的最大人口数为m x ,人口增长率由sx r x r -=)(表示,则人口增长问题的罗捷斯蒂克模型为 .6. 在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关:(1)参加展览会的人数n ; (2)气温T 超过C10; (3)冰淇淋的售价p .由此建立的冰淇淋销量的比例模型应为 .7、若银行的年利率是x %,则需要 时间,存入的钱才可翻番. 若每个小长方形街路的8. 如图是一个邮路,邮递员从邮局A 出发走遍所有长方形街路后再返回邮局. 边长横向均为1km ,纵向均为2km ,则他至少要走 km.. A9. 设某种新产品的社会需求量为无限,开始时的生产量为100件,且设产品生产的增长率控制在0.1,t 时刻产品量为)(t x ,则)(t x = .10. 商店以10元/件的进价购进衬衫,若衬衫的需求量模型是802,Q p p =-是销售单价(元/件),为获得最大利润,商店的出售价是 .二、分析判断题1.从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料(至少列举3个),要做些甚麽建模的具体的前期工作(至少列举3个) ,建立何种数学模型:一座高层办公楼有四部电梯,早晨上班时间非常拥挤,该如何解决。
2.某种疾病每年新发生1000例,患者中有一半当年可治愈.若2000年底时有1200个病人,到2005年将会出现甚麽结果?有人说,无论多少年过去,患者人数只是趋向2000人,但不会达到2000人,试判断这个说法的正确性.3.一条公路交通不太拥挤,以至人们养成“冲过”马路的习惯,不愿意走临近的“斑马线”。
交管部门不允许任意横穿马路,为方便行人,准备在一些特殊地点增设“斑马线”,以便让行人可以穿越马路。
那末“选择设置斑马线的地点”这一问题应该考虑哪些因素?试至少列出3种。
4. 某营养配餐问题的数学模型为minZ=4x 1+3x 2s .t .⎪⎪⎩⎪⎪⎨⎧≥≥+≥+≥+0,)3(,4256)2(,4085)1(,5051021212121x x x x x x x x其中21,x x 表示参与配餐的两种原料食品的采购量,约束条件(1)、(2)、(3)依次表示铁、蛋白质和钙的最低摄入量。
并用图解法给出了其最优解T x )6,2(*=,试分析解决下述问题:(1) 假如本题的目标函数不是求最小而是求最大值类型且约束条件不变,会出现什么结果?(2) 本题最后定解时,只用了直线(1)与直线(3),而直线(2)未用上,这件事说明了什么?试从实际问题背景给以解释.5.据绘画大师达芬奇的说法,在人体躯干与身高的比例上,肚脐是理想的黄金分割点。
也就是说,这个比值越接近0.618,就越给人以一种美的感觉。
很可惜,一般人的躯干(由脚底至肚脐的长度)与身高比都低于此数值,大约只有0.58—0.60左右。
设躯干长为x ,身高为l ,一位女士的身高为1.60()m ,其躯干与身高之比:0.60x l =,若其所穿的高跟鞋高度为(单位与x ,l 相同),那么,她该穿多高的高跟鞋(d =?)才能产生最美的效应值。
三、应用题1.从厂家A 往B 、C 、D 三地运送货物,中间可经过9个转运站123123123,,,,,,,,E E E F F F G G G .从A 到321,,E E E 的运价依次为3、8、7;从1E 到21,F F 的运价为4、3;从2E 到321,,F F F 的运价为2、8、4;从3E 到32,F F 的运价为7、6;从1F 到21,G G 的运价为10、12;从2F 到321,,G G G 的运价为13、5、7;从3F 到32,G G 的运价为6、8;从1G 到C B ,的运价为9、10;从2G 到D C B ,,的运价为5、10、15;从3G 到D C ,的运价为8、7。
试利用图模型协助厂家制定一个总运费最少的运输路线。
2. 试求如表2所示运输问题的最优运输方案和最小运输费用:表2单位:百元/吨3.某工厂计划用两种原材料B A ,生产甲、乙两种产品,两种原材料的最高供应量依次为22和20个单位;每单位产品甲需用两种原材料依次为1、1个单位,产值为3(百元)乙的需要两依次为3、1个单位,产值为9(百元);又根据市场预测,产品乙的市场需求量最多为6个单位,而甲、乙两种产品的需求比不超过5:2,试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况.4. 两个水厂21,A A 将自来水供应三个小区,,,321B B B 每天各水厂的供应量与各小区的需求量以及各水厂调运到各小区的供水单价见表.试安排供水方案,使总供水费最小?5、有某种物资从城市1v 运往城市9v .中间可以通过28,,v v 七个城市运抵目的地。
各城市之间的可通道路及其间距离如图所示(单位:km ).试设计一个从1v 到9v 的运输路线,使得总运输路程最短,并求出最短路线.《数学建模课程》练习题二一、填空题 1. 若,,x z z y ∝∝则y 与x 的函数关系是2. 有人观察到鱼尾每摆动一次,鱼所移动的距离几乎与鱼身的长度相等,则鱼尾摆动的次数T (次/秒)、鱼身的长度L 和它的速度V 的关系式为 .3. 已知行星的质量与它的密度和它的半径的立方成正比.若某行星的直径是地球直径的d 倍,且它的平均密度是地球的s 倍,则此行星质量是地球的 倍.4. 马尔萨斯与逻辑斯蒂克两个人口增长模型的主要区别是假设了5. 设S 表示挣的钱数,x 表示花的钱数,则“钱越多花的也就越多”的数学模型可以简单表示为 .6. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒秒,则加入较快队1的条件是 .7. 在建立人口增长问题的逻辑斯蒂克模型时,假设人口增长率r 是人口数量)(t x 的递减函数,若最大人口数量记作,m x 为简化模型,采用的递减函数是 .8. 一次晚会花掉100元用于食品和饮料,其中食品至少要花掉40%,饮料起码要花30元,用f 和d 列出花在食品和饮料上的费用的数学模型是9. 设某种商品的需求量函数是()25()1200Q t p t =-+(万件),其中)(t p 为该商品的价格函数,那么该商品的社会最大需求量是 .10. 设某种商品的供给量函数是()36(1)3600G t p t =--,其中)(t p 为该商品的价格函数,那麽该商品下一时段的价格达到 ,才能迫使供给商停止供给。
二、分析判断题1.地方公安部门想知道,当紧急事故发生时,人群从一个建筑物中撤离所需要的时间,假设有足够的安全通道.若指挥者想尽可能多且快地将人群撤离,应制定甚麽样的疏散计划.请就这个计划指出至少三个相关因素,并使用数学符号表示. 2. 假设某个数学模型建成为如下形式:.])1(1[)(22122x e ax x M x P --=试在适当的假设下将这个模型进行简化.3. 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种.4. 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是),/(100/56ml mg 又过两个小时,含量降为),/(100/40ml mg 试判断,当事故发生时,司机是否违反了酒精含量的规定(不超过80/100)/(ml mg .5、为了节约用水,业内人士提出水费应按照阶梯式进行收费。
譬如对于居民用水收费,在一般月用水量的平均值之内按照原价格收取,超出部分要加大收费力度。
对此问题建立模型应该考虑那些问题和因素?至少列举三个。
三、应用题1. 某铝合金加工单位要加工一批成套窗料,每套窗料含有)(2.2m 和)(5.1m 长度的料各两根,总计要加工20套,所用原料的长度均为),(6.4m 试建立整数规划模型以给出一个截料方案,使得所用原料最少?2. 求如图所示网络中1v 到9v 的最短路线及其路长.3. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位.试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(3) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (4) 原材料的利用情况.4. 三个砖厂321,,A A A 向三个工地321,,B B B 供应红砖.各砖厂的供应量与各工地的需求量以及各砖厂调运红砖到各工地的单价见表.试安排调运方案,使总费用最小?5、求解以下线性规划模型,并回答所给两个问题:12121212max 12824,3212,5,0,1,2.j z x x x x x x x x x j =++≥⎧⎪+≤⎪⎨+≤⎪⎪≥=⎩ (1)该模型的最优解是否唯一?为什么?若有两个以上最优解,请至少给出两个。
(2)若其中的12,x x 代表两种商品的产量,且2x 的销售情况比较1x 要差些,那么你选择哪一个最优方案?为什么?(3)若每个约束条件的右端项依次表示生产所需三种材料,那么对于你所选择的最优解,这些材料的利用情况怎样?《数学建模课程》练习题一答案一、填空题: 1.;)()0(,00rt e x t x x x rx dtdx=⇒== 2. 80; 3. .2090,19**=≈Q T 4、图中奇点个数为0或2. 5..)1(1)()0(),1(00rtm mme x xx t x x x x xrx dt dx --+=⇒=-=6. ),10(,/)10(0C T P T Kn N ≥-= K 是比例常数; 7、%)1ln(/2ln x +; 8、42.9.0.1()100;t x t e = 10. 25p =;二、分析判断题:1、1)要研究的问题:如何设置四部电梯的停靠方式,使之发挥最大效益2)所需资料为:每天早晨乘电梯的总人数、各层上、下电梯的人数、电梯的速度、楼层的高度、层数等3)要做的具体建模前期工作:观察和统计所需资料,一般讲,需要统计一周内每天的相关资料 4)可以建立概率统计模型,亦可在适当的假设下建立确定性模型 2、根据题意可知:下一年病人数==当年患者数的一半+新患者.于是令n X 为从2000年起计算的n 年后患者的人数,可得到递推关系模型:10005.01+=+n n X X由,12000=X 可以算出2005年时的患者数19755=X 人. 递推计算的结果有, ).211(2000210n n n x X -+=容易看出,,2000→n n X X ,且是单调递增的正值数列故结论正确.3. (1)车流的密度 (2)车的行驶速度 (3)道路的宽度 (4)行人穿越马路的速度(5)设置斑马线地点的两侧视野等。