lin总线终端电阻的影响
LIN和CAN车载网络介绍

浅谈车载网络为了在提高性能与控制线束数量之间寻求一种有效的解决途径,在20世纪80年代初,出现了一种基于数据网络的车内信息交互方式——车载网络。
车载网络采取基于串行数据总线体系的结构,最早的车载网络是在UART(Universal Asynchronous Receiver/Transmitter)的基础上建立,如通用汽车的E&C、克莱斯勒的CCD等车载网络都是UART在汽车上的应用实例。
由于汽车具有强大的产业背景,随后车载网络由借助通用微处理器/微控制器集成的通用串行数据总线,逐渐过渡到根据汽车具体情况,在微处理器/微控制器中定制专用串行数据总线。
20世纪90年代中期,为了规范车载网络的研究设计与生产应用,美国汽车工程师协会(SAE)下属的汽车网络委员会按照数据传输速率划分把车载网络分为Class A、Class B、Class C三个级别:Class A的数据速率通常低于20Kbps,如LIN,主要用于车门控制、空调、仪表板;Class B的数据速率为10Kbps~125Kbps,如低速CAN(ISO 11898),主要是事件驱动和周期性的传输;Class C的数据速率为125Kbps~1Mbps,如高速CAN(ISO898),主要用于引擎定时、燃料输送、ABS等需要实时传输的周期性参数。
拥有更高传输速率的MOST和FlexRay主要适用于音视频数据流的传输。
目前与汽车动力、底盘和车身密切相关的车载网络主要有CAN、LIN和FlexRay。
从全球车载网络的应用现状来看,通过20多年的发展,CAN已成为目前全球产业化汽车应用车载网络的主流。
CAN,全称为“Controller Area Network”,即控制器局域网,CAN 数据总线又称为CAN—BUS总线,20世纪80年代初由德国Bosch 公司开发,作为一种由ISO定义的串行通讯总线,其通信介质可以是双绞线、同轴电缆或光导纤维。
汽车电器维修:认知汽车CAN总线、LIN总线、MOST总线的应用及其性能特点

汽车电器基础
CAN总线的特点: ①使用双绞线、同轴电缆以及光纤作为网线,适用 于大数据量短距离通信或者长距离小数据量。
②高速串行数据接口功能:CAN总线支持从几百到 1Mbit/s的数据传输速率,反应速度快,发送时不需 等待令,对请求反应迅速。 ③数据帧短,短数据帧有利于减小延时,提高实时 性,但降低了有效数据传输速率。 ④具有独立性,每个子系统都可以独立工作,某个子系 统出现故障时并不影响其他系统的正常工作。
②单线传输:LIN网络中使用的是非屏蔽的单根导线 联接主、从模块,总线不与诊断仪连接。
③低速传输:LIN网络控制的大多数是舒适系统,对 数据传输速度要求不高,它的传输速率在10Kbit/s 左右,属于A类总线。 ④LIN总线无需仲裁。
汽车电器基础
⑤与CAN总线的橙色不同,
LIN总线主色为紫色。
5
⑥在LIN系统中,加入新节点,不需要 其他从节点作任何软件或硬件的改动。 6
汽车电器基础
学习目标2:认知汽车CAN总线、 LIN总线、MOST总线的应用及其性
能特点
汽车电器基础
8.1.2 总线的应用及其性能特点
1.CAN总线 (1)CAN总线的应用 电子控制器局域网络CAN是德国BOSCH公司提出并推广应用的,它是 专门为车辆系设计的,来为汽车的控制器之间提供数据交换。
CAN-BUS系统
⑦整个网络的配置信息只包含在主节点中, 从节点可以自由地接入或脱离网络而不影 7 响网络中的通信LIN的网络结构。
⑧基于通用UART接口。几乎所有微控制
8
器都具备LIN必需的硬件,价格低廉、结
构简单。
汽车电器基础
3.MOST总线 (1)MOST总线的应用 MOST是一种用于多媒体数据传送的网络系统,专门针对汽车而开发的, 采用光纤(不受电磁辐射干扰与搭铁环的影响)作为物理层的传输介质,将 视听设备、通信设备以及信息服务设备相互连接起来。
汽车LIN总线技术原理

汽车LIN总线原理与应用-- LIN 的通信任务
几个概念
主机节点:控制网络中各节点通信的节点 一个LIN网络上的通讯总是由主发送任务所发起的
在主节点上可执行主通信任务和从通信任务
可控制整个总线网络和协议; 主通信任务: 在主节点上运行的,用于控制总线上所有的通信,负责报文的进度表、 发送报文头的任务称为主任务。 常见主任务:如定义传输速率,发送同步时间间隔、同步场、标识符 ID场,监控并通过检查校验和(check sum)验证数据的有效性。
汽车LIN总线原理与应用
2.3 LIN 的报文传输
•报文头包含同步间隙、同步字节和报文标识符(0~63)。 •响应报文由1-9个字节构成: •其中2、4或8个字节的数据场和 •1个校验和场。 •报文帧之间有帧间间隔分隔; •报文与响应之间有帧内响应空间分隔; •最小帧间间隔和帧内响应空间均为0; •最大长度收到报文帧的最大长度FRAME_max限制。
School of Electrical and Information
汽车LIN总线原理与应用
报文头(HEADER FIELDS) 标识符场(IDENTIFIER FIELD) 定义了报文的内容和长度。
6个标识符位(ID0~ID5)和2个标识符奇偶校验位(P0 P1); ID4和ID5定义了数据场的数据长度;
汽车LIN总线原理与应用
2.1 LIN 概述
LIN ( Local Interconnect Network 局部互联网) 是面向汽车低端分 布式应用的低成本(0.5美元)、低速率(20kbps)、串行通信总 线。
School of Electrical and Information
LIN总线

LIN总线的认识与分析LIN总线简介LIN(Local Interconnect Network)是低成本的汽车网络,它是现有的汽车复用网络功能上的补充。
为了获得更多的质量提高和降低成本,LIN将是在汽车中使用汽车分级网络的启动因素。
LIN的标准化将减少重复使用现有的低端复用解决方案,而且将减低汽车电子的开发、生产、服务和后勤成本。
LIN标准包括传输协议规范、传输介质规范、开发工具接口规范和软件编程接口规范。
LIN在硬件和软件上保证了网络节点的互操作性,并能预测EMC。
这个规范包包括了3个主要部分:LIN协议规范部分——介绍了LIN的物理层和数据链路层。
LIN配置语言描述部分——介绍了LIN配置文件的格式。
LIN配置文件用于配置整个网络并作为OEM和各种网络节点供应厂商的通用接口,以及作为开发和分析工具的输入。
LIN API部分——介绍了网络和应用程序之间的接口。
这个概念可以实现开发和设计工具之间的无缝连接,并提高了开发的速度,增强了网络的可靠性。
LIN协会创建于1998年末,最初的发起人为为宝马、Volvo、奥迪、VW、戴姆勒-克莱斯勒、摩托罗拉和 VCT等,五家汽车制造商,一家半导体厂商以及一家软件工具制造商。
该协会将主要目的集中在定义一套开放的标准,该标准主要针对车辆中低成本的内部互联网络(LIN, local interconnect networks),这些地方无论是带宽还是复杂性都不必要用到CAN网络。
LIN标准包括了传输协议的定义、传输媒质、开发工具间的接口、以及和软件应用程序间的接口。
LIN提升了系统结构的灵活性,并且无论从硬件还是软件角度而言,都为网络中的节点提供了相互操作性,并可预见获得更好的EMC(电磁兼容)特性。
LIN补充了当前的车辆内部多重网络,并且为实现车内网络的分级提供了条件,这可以有助于车辆获得更好的性能并降低成本。
LIN协议致力于满足分布式系统中快速增长的对软件的复杂性、可实现性、可维护性所提出的要求,它将通过提供一系列高度自动化的工具链来满足这一要求。
从应用角度了解下LIN总线

从应用角度了解下LIN总线主要内容o LIN总线概述o LIN总线的应用o示例:LIN总线和CAN总线的窗户控制o LIN总线的信号报文o记录LIN总线数据o LIN总线数据记录应用案例本文将介绍LIN(Local Interconnect Network,本地连接网络)协议的基本知识,包括LIN总线和CAN总线的对比、LIN总线的应用案例、LIN是如何运行的以及LIN中的6种帧类型;另外,这是一篇偏实用的简介,所以里面还会介绍到LIN总线数据记录的基础知识。
什么是LIN总线LIN总线是CAN总线的补充,它的可靠性以及性能较低,但成本也是比较低的。
下面我们将简单介绍下LIN总线的特点以及其和CAN总线之间的异同。
•更低的成本(如果对速度或者容错性的要求较低)•常用在车辆的窗户、雨刮器、空调等•LIN集群中只有一个主节点和最多有16个从节点•只有一根信号线(需要配合地线),波特率为1-20 kbit/s,线缆最长能达40米•由时间出发的调度表能保证报文间延迟的时间•可变的数据长度(2、4、8字节)•LIN总线支持错误检查、校验和配置•工作电压为12V•物理层是基于ISO 9141(K线)•支持睡眠模式和唤醒•现在的新车上都还有10个以上的LIN节点LIN总线和CAN总线的对比•LIN总线的成本更低(线束更少、不需要购买许可以及节点更便宜)•CAN总线使用双绞屏蔽线-5V,LIN总线使用单线-12V•LIN总线中的主节点通常也是一个CAN、LIN的网关•LIN总线报文发送的顺序是确定的,不是事件驱动的,即没有总线仲裁•LIN总线中主节点只能有一个,而CAN总线没有主从的概念•CAN总线会使用11或29位的标识符,LIN总线中的标识符是6位的•CAN总线的波特率能达1Mbit/s而LIN总线的波特率最大也就20 kbit/sLIN总线的历史下面我们简要的回顾下LIN总线规范的历史吧~1999年:LIN 1.0由LIN联盟(宝马、大众、奥迪、沃尔沃、梅赛德斯奔驰、瑞典的火山汽车以及摩托罗拉)发布•2000年:LIN协议被更新了(LIN 1.1和LIN1.2)•2002年:发布了LIN1.3,主要是修改了物理层•2003年:发布了LIN 2.0,可以说是全新一代,也被广泛使用•2006年:发布了LIN 2.1•2010年:发布了LIN 2.2A,是现在广泛采用的版本•2010-12年:基于LIN 2.0,SAE将LIN标准化为SAE J2602•2016年:CAN in Automation(CiA)也将LIN标准化了(ISO 17987:2016)LIN总线的未来LIN总线正在为当代车辆提供低成本的功能扩展中,起到越来越重要的作用。
LIN简介

LIN简介LIN协会创建于1998年末,最初的发起人为为宝马、Volvo、奥迪、VW、戴姆勒-克莱斯勒、摩托罗拉和VCT等,五家汽车制造商,一家半导体厂商以及一家软件工具制造商。
该协会将主要目的集中在定义一套开放的标准,该标准主要针对车辆中低成本的内部互联网络(LIN,local interconnect networks),这些地方无论是带宽还是复杂性都不必要用到CAN网络。
LIN标准包括了传输协议的定义、传输媒质、开发工具间的接口、以及和软件应用程序间的接口。
LIN提升了系统结构的灵活性,并且无论从硬件还是软件角度而言,都为网络中的节点提供了相互操作性,并可预见获得更好的EMC(电磁兼容)特性。
LIN补充了当前的车辆内部多重网络,并且为实现车内网络的分级提供了条件,这可以有助于车辆获得更好的性能并降低成本。
LIN协议致力于满足分布式系统中快速增长的对软件的复杂性、可实现性、可维护性所提出的要求,它将通过提供一系列高度自动化的工具链来满足这一要求。
LIN(Local Interconnect Network)Bus是一种串行通讯总线,它有效地支持汽车应用中分布式机械电子节点的控制。
它的使用范围是带单主机节点和一组从机节点的多点总线,其系统结构如图1-1所示。
图1-1LIN Bus系统结构LIN Bus系统主要特性有:■单主机多从机组织(即没有总线仲裁),配置灵活;■基于普通UART/SCI接口的低成本硬件实现低成本软件协议;■带时间同步的多点广播接收,从机节点无需石英或陶瓷谐振器,可以实现自同步;■保证信号传输的延迟时间。
可选的报文帧长度:2、4和8字节;■数据校验和的安全性和错误检测,自动检测网络中的故障节点;■使用最小成本的半导体组件(小型贴片,单芯片系统)。
■速度高达20kbit/s;LIN网络由一个主节点以及一个或多个从节点组成,媒体访问由主节点控制--从节点中不必有仲裁或冲突管理。
可以保证最差状态下的信号传输延迟时间。
LIN总线系统简析

物联网领域:随着物联 网技术的不断发展, LIN总线系统在智能家 居、智能城市等领域的 应用也将得到拓展。
工业自动化:LIN总 线系统在工业自动化 领域的应用也将进一 步深化,助力实现工 业自动化和智能化。
新能源领域:随着新 能源技术的不断发展 ,LIN总线系统在新 能源领域的应用也将 得到更多的关注和应 用。
LIN总线系统在 汽车空调控制系 统中实现了多路 复用通信,提高 了通信效率。
LIN总线系统通 过分布式控制方 式,实现了汽车 空调的智能控制, 提高了控制精度Байду номын сангаас和响应速度。
LIN总线系统在 汽车空调控制系 统中应用,减少 了线束的使用, 降低了汽车的成 本和重量。
LIN总线系统在汽 车空调控制系统 中应用,提高了 系统的可靠性和 稳定性,减少了 故障发生的概率。
智能家居领域:LIN总线系统也可用于智能 家居控制系统,实现家电设备间的通信和控 制
工业自动化领域:在工业自动化领域,LIN 总线系统可用于各种自动化设备和传感器之 间的通信,提高生产效率和设备可靠性
物联网领域:随着物联网技术的发展,LIN 总线系统在物联网领域的应用也越来越广泛, 如智能城市、智能农业等领域的设备通信和 控制
LIN总线电缆
定义:LIN总线电缆是用于LIN总线系统的线缆,用于连接LIN总线上的各个节点。
特点:LIN总线电缆采用单线传输方式,结构简单,成本低,适用于对实时性要求不高的场 合。
传输距离:LIN总线电缆的传输距离一般在几十米以内,适用于汽车内部传感器和执行器的 通信。
连接方式:LIN总线电缆采用差分信号传输方式,需要使用专门的LIN总线连接器和插座进 行连接。
LIN总线诊断工具
诊断工具种类: 示波器、万用表、 解码器等
lin总线负载

lin总线负载
LIN总线(Local Interconnect Network)是一种低速、短距离通信协议,通常用于汽车电子系统中,特别是在车内网络中。
LIN总线的负载是指在LIN总线上连接的所有节点设备所共享的电流负载。
负载的计算通常涉及以下几个方面:
1. 节点数量:负载的大小与在LIN总线上连接的节点数量有关。
每个节点设备都会消耗一定的电流。
2. 电流消耗:每个节点设备在通信时消耗的电流是一个关键因素。
不同的设备可能会消耗不同数量的电流,具体取决于其设计和功能。
3. 电源电压:LIN总线通常在12V电压下运行,但也可以在其他电压下运行。
电源电压的不同会影响节点设备的电流需求。
4. 线路电阻:LIN总线上的线路电阻会影响总线的电压降低和电流传输。
电线的电阻越大,电流传输能力越差,因此需要更小的负载。
5. 电流限制器:有些LIN总线接口设备具有内置的电流限制器,可以限制总线上的电流。
这些电流限制器可以帮助保护总线免受电流过载的影响。
在设计LIN总线系统时,需要考虑这些因素,以确保负载在规定的范围内。
如果负载过大,可能会导致总线电压下降,通信不稳定,甚至导致节点设备损坏。
因此,必须仔细计划和管理总线上的负载,确保系统的正常运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
lin总线终端电阻的影响
总线终端电阻对总线系统有着重要的影响,影响主要体现在以
下几个方面:
1. 信号质量,总线终端电阻的设置会影响总线上的信号质量。
当总线终端电阻的阻值与总线特性阻抗匹配时,可以有效地减少信
号反射和干扰,提高信号的稳定性和可靠性。
如果终端电阻设置不当,会导致信号反射,从而影响总线上信号的准确传输。
2. 总线波特率,总线终端电阻的选择也会对总线的工作波特率
产生影响。
合适的终端电阻能够帮助总线系统更好地适应高速传输,提高总线的工作效率和稳定性。
3. 电气特性,总线终端电阻的设置会对总线系统的电气特性产
生影响。
正确设置终端电阻可以保证总线系统在高频环境下的电气
特性满足要求,减少串扰和干扰,提高总线系统的抗干扰能力。
4. 系统稳定性,总线终端电阻的作用还体现在系统的稳定性上。
合适的终端电阻能够有效地减少总线系统中的电磁干扰,保证系统
的稳定性和可靠性。
总的来说,总线终端电阻的设置对总线系统的性能、稳定性和可靠性都有着重要的影响,因此在设计和应用总线系统时,需要根据具体情况合理选择和设置总线终端电阻,以确保总线系统的正常工作。