(压轴题)高中数学高中数学选修4-5第一章《不等关系与基本不等式》测试(含答案解析)(3)
(压轴题)高中数学高中数学选修4-5第一章《不等关系与基本不等式》测试题(答案解析)(1)

一、选择题1.已知0h >,则||2a b h -<是1a h -<且1b h -<的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件 2.若2a ≠-,(21)(2)m a a =-+,(2)(3)n a a =+-,则m 、n 的大小关系是( )A .m n =B .m n <C .m n >D .m 、n 关系不确定 3.已知函数22()x x a f x x-+=,若[2,)x ∈+∞,()0f x >,则实数a 的取值范围是( ).A .(,0)-∞B .(0,)+∞C .[0,)+∞D .(1,)+∞ 4.设0.3log 0.6m =,21log 0.62n =,则( ) A .m n m n mn ->+>B .m n mn m n ->>+C .m n m n mn +>->D .mn m n m n >->+ 5.已知log e a π=,lne b π=,2e ln c π=,则( ) A .a b c << B .b c a <<C .b a c <<D .c b a << 6.已知非零实数a ,b 满足||1a b >+,则下列不等关系不一定成立的是( ) A .221a b >+ B .122a b +> C .24a b > D .1a b b>+ 7.已知0a b >>,则下列不等式正确的是( )A b a <B .33a b b a -<-C .lg lg a b b a -<-D .lg lg a b b a ->-8.下列四个不等式:①log 10lg 2(1)x x x +>;②a b a b -<+;③2(0)b a ab a b +≠;④121x x -+-≥,其中恒成立的个数是( )A .1B .2C .3D .4 9.若0a <b <,则下列不等式中成立的是( )A .|a |>b -B .1a b <C <D .11a b < 10.已知a ,b ∈R ,下列命题正确的是( )A .若a >b ,则|a|>|b|B .若a >b ,则11a b <C .若|a|>b ,则a 2>b 2D .若a >|b|,则a 2>b 211.已知,a b ∈R ,且2a b P +=,222a b Q +=,则P ,Q 的关系是( ) A .P Q ≥ B .P Q > C .P Q ≤ D .P Q < 12.实数,a b 满足0a b >>,则下列不等式成立的是( )A .1a b <B .1133a b <C .a b a b -<-D .2a ab <二、填空题13.若不等式2240x x m +--≥的解集为R ,则实数m 的取值范围是_______.14.若关于实数x 的不等式|x ﹣5|+|x+3|<a 无解,则实数a 的取值范围是___________. 15.不等式的解集是______.16.对任意实数x ,不等式|1|||1x x a a ++-≥-+恒成立,则实数a 的取值范围是___________.17.若不等式|4||3|x x a +--≤对一切实数x ∈R 恒成立,则实数a 的取值范围是________18.若关于x 的不等式||(,)x a b a b R +<∈的解集为{|35}x x <<,则a b -=________. 19.已知()2|1|f x x =-,记1()()f x f x =,21()(())f x f f x =,…,1()(())n n f x f f x +=,…,若对于任意的*n N ∈,0|()|2n f x ≤恒成立,则实数0x 的取值范围是_______.20.已知|a +b|<-c(a ,b ,c ∈R),给出下列不等式:①a <-b -c ;②a >-b +c ;③a <b -c ;④|a|<|b|-c ;⑤|a|<-|b|-c.其中一定成立的不等式是________(填序号).三、解答题21.已知0a >,0b >,23a b +=.(1)求 22a b +的取值范围;(2)求证:3381416a b ab +≤. 22.设函数()2|1||2|f x x x =-+-. (1)求不等式()2f x >的解集;(2)若不等式()(1)f x a x +的解集非空,求实数a 的取值范围.23.已知数列{}n a 的前n 项和为n S ,14a =,数列{}n S n 是公差为12的等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设21(1)n n b n a =+,求证:对于任意的*n N ∈,12341n b b b +++<. 24.设函数()22124f x x x x a x =------+.(1)当1a =时,求()f x 的最小值;(2)对任意x ∈R ,()0f x ≥恒成立,求a 的取值范围.25.已知函数()|1||3|f x x x =-+-.(1)解不等式()1f x x ≤+;(2)设函数()f x 的最小值为c ,实数,a b 满足0,0,a b a b c >>+=,求证:22111a b a b +≥++. 26.已知函数()212f x x x =-++.(1)求()f x 的最小值;(2)已知0a ≠,若不等式()2211b a b a ax x -++>-++恒成立,求实数x 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用判断充分,必要条件的方向判断,结合绝对值的几何意义,以及绝对值三角不等式证明.【详解】 当2a b h -<,说明a 与b 的距离小于2h ,但a 与b 与1的距离可以大于或等于h ,所以2a b h -<,不能推出1a h -<且1b h -<,反过来,当1a h -<且1b h -<时, ()()11112a b a b a b h -=---≤-+-<,即2a b h -<,所以1a h -<且1b h -<,能推出2a b h -<,所以||2a b h -<是|1|?a h -<且|1|b h -<的必要非充分条件.故选:B【点睛】 关键点点睛:本题的关键是理解绝对值的几何意义,a b -表示数轴上两点间距离,以及绝对值三角不等式a b a b a b -≤±≤+.2.C解析:C【分析】由条件可得22232,6m a a n a a =+-=--,两式作差即可得大小关系.【详解】(21)(2)m a a =-+,(2)(3)n a a =+-,22232,6m a a n a a ∴=+-=--,2244(2)m n a a a ∴-=++=+,由2a ≠-知,2(2)0m n a -=+>,m n ∴>,故选:C【点睛】本题主要考查了利用作差法比较不等式的大小,属于基础题.3.B解析:B【分析】结合已知不等式可转化为即22a x x >-+,结合二次函数的性质求22x x -+ 在[2,)+∞ 上的最大值,即可求解.【详解】解: [2,)x ∈+∞,22()0x x a f x x-+=> [2,)x ∴∈+∞,220x x a -+> 即22a x x >-+在[2,)x ∈+∞上恒成立.结合二次函数的性质可知当2x =时,22x x -+取得最大值为0.即0a >.故选:B .【点睛】本题考查了由不等式恒成立问题求参数的范围.对于关于()f x 的不等式在x 的某段区间上恒成立问题,一般情况下进行参变分离,若()a h x > 在区间上恒成立,只需求出()h x 的最大值,令max ()a h x > 即可; 若()a h x < 在区间上恒成立,只需求出()h x 的最小值,令min ()a h x < 即可.4.A解析:A【分析】根据对数函数的单调性可得0m >,0n <,根据不等式的性质可知m n m n ->+ ;通过比较11m n+ 与1 的大小关系,即可判断m n m n +>,从而可选出正确答案. 【详解】解:0.30.3log 0.6log 10m =>=,2211log 0.6log 1022n =<=,则0mn < ()()20m n m n n --+=->,m n m n ∴->+0.60.60.60.611log 0.3log 4log 1.2log 0.61m n+=+=<= m n mn ∴+> 故选:A.【点睛】本题主要考查了对数的运算,对数函数的单调性.在比较对数的大小时,常常结合对数函数的单调性比较大小.对于()log a f x x =,若01a << ,则(1)当01x << 时,()0f x >; (2)当1x = 时,()0f x =; (3)当1x > 时,()0f x <; 若1a > ,则(1)当01x << 时,()0f x <; (2)当1x = 时,()0f x =; (3)当1x > 时,()0f x >. 5.B解析:B【分析】 因为1b c +=,分别与中间量12做比较,作差法得到12b c <<,再由211log e log e 22a ππ==>,最后利用作差法比较a 、c 的大小即可. 【详解】解:因为1b c +=,分别与中间量12做比较,2223111ln ln e ln 022e 2e b ππ⎛⎫-=-=< ⎪⎝⎭,432211e 1e ln ln e ln 0222c ππ⎛⎫-=-=> ⎪⎝⎭,则12b c <<,211log e log e 22a ππ==>,()112ln ln 20ln ln a c ππππ-=--=+->,所以b c a <<, 故选:B .【点睛】 本题考查作差法比较大小,对数的运算及对数的性质的应用,属于中档题.6.D解析:D【分析】||1a b >+两边平方,结合绝对值的性质,可判断选项A 成立;||11a b b >+>+,再由指数函数的单调性,可判断选项B 正确;由212||b b +≥,结合选项A ,判断选项C 正确; 令5,a =3b =,满足||1a b >+,1a b b>+不成立. 【详解】 ||1a b >+2222||11a b b b ⇔>++>+,A 一定成立;||11a b b >+≥+122a b +⇒>,B 一定成立;又212||b b +≥,故24||4a b b >≥,C 一定成立;令5,a =3b =,即可推得D 不一定成立.故选:D.【点睛】本题考查不等式与不等关系,注意绝对值性质的应用,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法,属于中档题.7.C解析:C【分析】考虑到,C D 中不等号方向,先研究C ,D 中是否有一个正确。
(必考题)高中数学高中数学选修4-5第一章《不等关系与基本不等式》测试(包含答案解析)

一、选择题1.已知函数()()1,f x ax b a b R x =++∈,当1,22x ⎡∈⎤⎢⎥⎣⎦时,设()f x 的最大值为(),M a b ,则(),M a b 的最小值为( )A .18B .14C .12D .12.下列命题中,正确的是( ) A .若a b >,c d >,则a c > B .若ac bc >,则a b > C .若22a b c c<,则a b < D .若a b >,c d >,则ac bd >3.已知0.3log 6a =,2log 6b =,则( ) A .22b a b a ab ->+> B .22b a ab b a ->>+ C .22b a b a ab +>->D .22ab b a b a >->+4.设不等式3412x x a +->-对所有的[1,2]x ∈均成立,则实数a 的取值范围是( )A .15a <-或47a >B .15a <-C .47a >或01a <<D .15a <-或1064a <<5.不等式21x x a <-+的解集是区间()3,3-的子集,则实数a 的取值范围是( ) A .5a ≤B .554a -≤≤C .574a -≤≤D .7a ≤6.已知1a >,实数,x y 满足x y a a >,则下列不等式一定成立的是( ) A .11x y x y+>+ B .()()22ln 1ln 1x y +>+C .sin sin x y >D .33x y >7.若正实数x ,y 满足x y >,则有下列结论:①2xy y <;②22x y >;③1x y>;④11x x y<-.其中正确结论的个数为( ) A .1 B .2C .3D .48.已知x ,y ∈R ,且x >y >0,则( ) A .11x y x y->- B .cos cos 0x y -< C .110x y-> D .ln x +ln y >09.若()0,2x π∈,则不等式sin sin x x x x +<+的解集为( )A .()0,πB .5,44ππ⎛⎫⎪⎝⎭C .3,22ππ⎛⎫⎪⎝⎭D .(),2ππ10.设实数0,0a b c >>>,则下列不等式一定正确....的是( ) A .01ab<< B .a b c c > C .0ac bc -<D .ln0ab> 11.已知实数,a b ,且a b >,则以下不等式恒成立的是( ) A .33a b >B .22a b >C .1133ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D .11a b< 12.若0a b >>,则( )A .11a b>B .22log log a b <C .22a b <D .1122ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭二、填空题13.若不等式2240x x m +--≥的解集为R ,则实数m 的取值范围是_______.14.已知不等式116a x y x y+≥+对任意正实数,x y 恒成立,则正实数a 的最小值为_______. 15.已知R a ∈,若关于x 的方程2210x x a a -+++=有实根,则a 的取值范围是__________.16.已知,,a b c R +∈,设a b c S b c a c a b=+++++,则S 与1的大小关系是__________.(用不等号连接)17.对任意实数x ,不等式|1|||1x x a a ++-≥-+恒成立,则实数a 的取值范围是___________. 18.若函数()()01af x ax a x =+>-在()1,+∞上的最小值为15,则函数()1g x x a x =++-的最小值为___.19.若关于x 的不等式||(,)x a b a b R +<∈的解集为{|35}x x <<,则a b -=________. 20.关于x 的不等式12x x m +--≥恒成立,则m 的取值范围为________三、解答题21.解不等式:122x x -+-≤. 22.已知函数()|1|2|3|f x x x =--+. (1)求不等式()1f x <的解集;(2)若存在实数x ,使得不等式23()0m m f x --<成立,求实数m 的取值范围.23.已知1a ≠且a R ∈,试比较11a-与1a +的大小. 24.求下列关于x 的不等式的解集 (1)|21|3x x +>-; (2)2|5|5x x -.25.已知()13f x x x =++-.(1)求直线8y =与函数()y f x =的图象所围图形的面积; (2)若()211f x a a ≥++-对一切实数x 成立,求a 的取值范围. 26.(1)解不等式239x x -++≥; (2)若1a <,1b <,求证:1ab a b +>+.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 考虑12x =,1,2的函数值的范围,运用绝对值不等式的性质,即可得到所求最小值. 【详解】 函数()()1,f x ax b a b R x=++∈,当1[2x ∈,2]时,()f x 的最大值为(,)M a b ,可得1(,)(2)|2|2M a b f a b ≥=++,11(,)()|2|22M a b f a b ≥=++,(,)(1)|1|M a b f a b ≥=++,可得1(3M a ,2)(3b M a +,)(b M a +,211124)1336333b a b a b a b ≥++++++++211124113363332a b a b a b ≥+++++---=, 即()12,2M a b ≥,即有()1,4M a b ≥,则(,)M a b 的最小值为14, 故选:B 【点睛】关键点睛:解答本题的关键是理解到最大值的含义,熟练掌握绝对值的三角不等式.2.C解析:C 【分析】利用不等式的基本性质进行逐项判断即可,不成立的举反例. 【详解】对于选项A:若2,3,1,2a b c d =-=-==-,满足a b >,c d >,但是a c >不成立,故选项A 错误;对于选项B :若1,3,2c a b =-=-=-,满足ac bc >,但a b >不成立,故选项B 错误; 对于选项C :因为22a b c c<,整理化简可得20a bc -<,因为20c >,所以0a b -<,即a b <成立,故选项C 正确;对于选项D:若1, 1.1,2a b c d ==-=-=-,满足a b >,c d >,但是ac bd >不成立,故选项D 错误; 【点睛】本题考查不等式与不等关系;不等式的基本性质的灵活运用是求解本题的关键;属于中档题、常考题型.3.A解析:A 【分析】容易判断出0a <,0b >,从而得出0ab <,并可得出 1221b a b aba++=<,从而得出2b a ab +>,并容易得出22b a b a ->+,从而得出结论. 【详解】因为0.3log 60a =<,2log 60b =>,所以0ab <,因为666612log 0.32log 2log 1.2log 61a b+=+⨯=<=,即21b aab +<, 又0ab <,所以2b a ab +>,又(2)(2)40b a b a a --+=->,所以22b a b a ->+,所以22b a b a ab ->+>, 故选:A. 【点睛】本题主要考查对数的换底公式,对数函数的单调性,增函数和减函数的定义,以及不等式的性质,属于中档题.4.A解析:A 【分析】根据不等式3412x x a +->-对所有的[1,2]x ∈均成立,取2x =时,可得2431a ->,解得15a <-或47a >,利用换元法把不等式换为281t a t ->-,分47a >和15a <-两种情况讨论2()81h t t t =+-的最大值即可求得实数a 的取值范围. 【详解】解:因为不等式3412x x a +->-对所有的[1,2]x ∈均成立,当2x =时,312x +-有最大值31,不等式显然要成立,即2431a ->,解得15a <-或47a >,当[1,2]x ∈时,令2[2,4]x t =∈, 则24[4,16]x t =∈,328[16,32]x t +=∈,所以3412x x a +->-等价于281t a t ->-,①当47a >时,即281a t t ->-在[2,4]t ∈恒成立, 即281()a t t h t >+-=,即求2()81h t t t =+-的最大值,max ()(4)47h t h ==,所以47a >; ②当15a <-时,281t a t ->-在[2,4]t ∈恒成立, 即281()a t t f t <-+=,即求2()81f t t t =-+的最小值,min ()(4)15f t f ==-; 综上:15a <-或47a >. 故选:A 【点睛】本题考查利用二次函数的最值求绝对值不等式中的参数问题,利用换元法是关键,属于中档题.5.A解析:A 【分析】原不等式等价于210x x a ---<,设()21f x x x a =---,则由题意得()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之即可求得实数a 的取值范围. 【详解】不等式等价于210x x a ---<,设()21f x x x a =---,因为不等式21x x a <-+的解集是区间()3,3-的子集,所以()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之得5a ≤.故选:A. 【点睛】本题主要考查绝对值不等式的解法、二次函数的性质,体现化归与等价转化思想,属中等难度题.6.D【分析】根据指数函数的单调性,得到x y >,再利用不等式的性质,以及特殊值法,即可求解. 【详解】根据指数函数的单调性,由1a >且x y a a >,可得x y >, 对于A 中,由111()()(1)x y x y x y x y x y xy xy-+--=--=--,此时不能确定符号,所以不正确;对于B 中,当x 1,y 2==-时,2211x y +<+,此时()()22ln 1ln 1x y +<+,所以不正确;对于C 中,例如:当2,32x y ππ==时,此时sin sin x y <,所以不正确; 对于D 中,由33222213()()()[()]024x y x y x xy y x y x y y -=-++=--+>,所以33x y >,所以是正确的.故选D . 【点睛】本题主要考查了指数函数的单调性,以及不等式的性质的应用,其中解答中合理利用特殊值法判定是解答的关键,着重考查了推理与运算能力,属于基础题.7.C解析:C 【分析】根据不等式的基本性质,逐项推理判断,即可求解,得到答案. 【详解】由题意,正实数,x y 是正数,且x y >, ①中,可得2xy y >,所以2xy y <是错误的; ②中,由x y >,可得22x y >是正确的; ③中,根据实数的性质,可得1xy>是正确的; ④中,因为0x x y >->,所以11x x y<-是正确的, 故选C. 【点睛】本题主要考查了不等式的性质的应用,其中解答中熟记不等式的基本性质,合理推理是解答的关键,着重考查了推理与运算能力,属于基础题.8.A解析:A结合选项逐个分析,可选出答案. 【详解】结合x ,y ∈R ,且x >y >0,对选项逐个分析:对于选项A ,0x y ->,110y xx y xy--=<,故A 正确; 对于选项B ,取2πx =,3π2y =,则3cos cos cos 2cos 1002x y -=π-π=->,故B 不正确; 对于选项C ,110y xx y xy--=<,故C 错误; 对于选项D ,ln ln ln x y xy +=,当1xy <时,ln 0xy <,故D 不正确. 故选A. 【点睛】本题考查了不等式的性质,属于基础题.9.D解析:D 【分析】由绝对值三角不等式的性质得出sin 0x x <,由02x π<<,得出sin 0x <,借助正弦函数图象可得出答案. 【详解】因为sin sin x x x x +<+成立,所以sin 0x x <, 又(0,2)x π∈,所以sin 0x <,(,2)x ππ∈,故选D . 【点睛】本题考查绝对值三角不等式的应用,再利用绝对值不等式时,需要注意等号成立的条件,属于基础题.10.D解析:D 【分析】对4个选项分别进行判断,即可得出结论. 【详解】 解:由于a >b >0,1ab>,A 错; 当0<c <1时,c a <c b ;当c =1时,c a =c b ;当c >1时,c a >c b ,故c a >c b 不一定正确,B 错;a >b >0,c >0,故ac ﹣bc >0,C 错.lnln10ab>= ,D 对;【点睛】本题考查不等式的性质,考查学生分析解决问题的能力,属于中档题.11.A解析:A 【解析】 【分析】根据幂函数的单调性判断A ;令1a =,1b =-判断,B D ,根据指数函数的单调性判断C .【详解】因为()3f x x =是增函数,所以由b a >可得33b a >,选项A 正确;当1a =,1b =-时,22a b >不成立,选项B 错误;因为1y ()3x =是减函数,由a b >可得11()()33a b<,选项C 错误,1a =,1b =-时,11a b<不成立,选项D 错误,故选A . 【点睛】本题主要考查不等关系与不等式的性质,属于中档题.利用条件判断不等式是否成立主要从以下几个方面着手:(1)利用不等式的性质直接判断;(2)利用函数式的单调性判断;(3)利用特殊值判断.12.D解析:D 【解析】分析:对每一个选项逐一判断得解. 详解:对于选项A,11110,b a a b ab a b--=<∴<,所以选项A 错误. 对于选项B,因为0a b >>,对数函数2log y x =是增函数,所以22log log a b >,所以选项B 错误.对于选项C,2222()()0,a b a b a b a b -=+->∴>,所以选项C 错误.对于选项D, 因为0a b >>,指数函数1()2x y =是减函数,所以 1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以选项D 正确. 故答案为D.点睛:(1)本题主要考查不等式的性质和函数的性质,意在考查学生对这些知识的掌握水平.(2)比较实数的大小,一般利用作差法和作商法,本题利用的是作差法,注意函数的图像和性质的灵活运用.二、填空题13.【分析】构造函数得出函数表示为分段函数的形式并求出函数的最小值可得出实数的取值范围【详解】构造函数由题意得当时当且仅当时等号成立;当时此时函数单调递增则所以函数的最小值为因此故答案为【点睛】本题考查 解析:3m ≤【分析】构造函数()224f x x x =+-,得出()min m f x ≤,函数()y f x =表示为分段函数的形式,并求出函数()y f x =的最小值,可得出实数m 的取值范围. 【详解】构造函数()224f x x x =+-,由题意得()min m f x ≤.当2x ≤时,()()2224133f x x x x =-+=-+≥,当且仅当1x =时,等号成立; 当2x >时,()()222415f x x x x =+-=+-,此时,函数()y f x =单调递增,则()()24f x f >=.所以,函数()y f x =的最小值为()min 3f x =,因此,3m ≤,故答案为3m ≤. 【点睛】本题考查不等式恒成立问题,考查参变量分离与分类讨论思想,对于这类问题,一般转化为最值来求解,考查化归与转化思想,考查运算求解能力,属于中等题.14.【解析】试题分析:由题设知对于任意正实数xy 恒成立所以1+a+≥16由此能求出正实数a 的最小值【解答】解:∵不等式对任意正实数xy 恒成立∴对于任意正实数xy 恒成立∵∴1+a+≥16即又a >0从而故答解析:【解析】试题分析:由题设知()min 116a x y x y ⎛⎫++≥⎪⎝⎭对于任意正实数x ,y 恒成立,所以,由此能求出正实数a 的最小值.【解答】解:∵不等式116a x y x y+≥+对任意正实数x ,y 恒成立, ∴()min116a x y x y ⎛⎫++≥⎪⎝⎭ 对于任意正实数x ,y 恒成立 ∵()111a y ax x y a a x y x y ⎛⎫++=+++≥++ ⎪⎝⎭∴即)530≥ ,又a >0,min 3,9.a ≥=故答案为9点睛::本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.解决二元的范围或者最值问题,常用的方法有:不等式的应用,二元化一元的应用,线性规划的应用,等.15.【解析】试题分析:由已知得即所以故答案为考点:不等式选讲 解析:【解析】试题分析:由已知得,2(2)4(1)0a a ∆=--++≥,即11a a ++≤,所以2111,10a a a a +≤++≤-≤≤,故答案为[1,0]-.考点:不等式选讲.16.【解析】因为所以与1的大小关系是故答案为 解析:1S >【解析】因为,,a b c R +∈,所以1a b c a b c S b c a c a b a b c a b c a b c=++>++=+++++++++,S 与1的大小关系是1S > ,故答案为1S >.17.【分析】结合绝对值三角不等式得即求即可【详解】由绝对值三角不等式得即恒成立当时去绝对值得解得故;当时此时无解综上所述故答案为:【点睛】关键点睛:本题考查由绝对值不等式恒成立求参数取值范围绝对值三角不 解析:0a ≥【分析】结合绝对值三角不等式得|1|||1x x a a ++-≥+,即求11a a +≥-+即可 【详解】由绝对值三角不等式得()()|1|||11x x a x x a a ++-≥+--=+,即11a a +≥-+恒成立,当1a ≥-时,去绝对值得11a a +≥-+,解得0a ≥,故0a ≥;当1a <-时,11a a --≥-+,此时无解,综上所述,0a ≥ 故答案为:0a ≥ 【点睛】关键点睛:本题考查由绝对值不等式恒成立求参数取值范围,绝对值三角不等式的使用,应掌握以下公式:a b a b a b +≥±≥-,使用绝对值三角不等式的目的在于,消去无关变量,如本题中的x .18.6【分析】首先利用基本不等式求函数的最小值解得的值再根据含绝对值三角不等式求函数的最小值【详解】当且仅当时即时取等号此时满足所以函数的最小值是6故答案为:6【点睛】方法点睛:本题考查基本不等式求最值解析:6【分析】首先利用基本不等式求函数的最小值,解得a 的值,再根据含绝对值三角不等式求函数()g x 的最小值.【详解】()11131f x a x a a x ⎛⎛⎫=-++≥= ⎪ -⎝⎭⎝, 当且仅当111x x -=-时,即2x =时取等号, 此时满足3155a a =⇒=,()()()51516g x x x x x =++-≥+--=,所以函数()g x 的最小值是6.故答案为:6【点睛】方法点睛:本题考查基本不等式求最值以及含绝对值不等式求最值,其中基本不等式求最值需注意一下几点:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方19.【分析】利用绝对值的性质解不等式后与已知比较可求得【详解】由得即所以解得所以故答案为:【点睛】本题考查解绝对值不等式掌握绝对值的性质是解题关键 解析:5-【分析】利用绝对值的性质x a a x a <⇔-<<解不等式后与已知比较可求得,a b .【详解】由||x a b +<得b x a b -<+<,即a b x a b --<<-+,所以35a b a b --=⎧⎨-+=⎩,解得41a b =-⎧⎨=⎩,所以5a b -=-. 故答案为:5-.【点睛】本题考查解绝对值不等式,掌握绝对值的性质是解题关键.20.【分析】由题意得由绝对值三角不等式求出函数的最小值从而可求出实数的取值范围【详解】由题意得由绝对值三角不等式得因此实数的取值范围是故答案为【点睛】本题考查不等式恒成立问题同时也考查了利用绝对值三角不解析:(],3-∞-【分析】 由题意得()min 12m x x ≤+--,由绝对值三角不等式求出函数12y x x =+--的最小值,从而可求出实数m 的取值范围.【详解】 由题意得()min 12m x x ≤+--, 由绝对值三角不等式得()()12123x x x x +--≥-+--=-,3m ∴≤-, 因此,实数m 的取值范围是(],3-∞-,故答案为(],3-∞-.【点睛】本题考查不等式恒成立问题,同时也考查了利用绝对值三角不等式求最值,解题时要结合题中条件转化为函数的最值来求解,考查化归与转化数学思想,属于中等题.三、解答题21.15,22⎛⎫ ⎪⎝⎭【分析】按1,2x x --的零点分区间,分类讨论转化为解一元一次不等式即可.【详解】当1x ≤时,122x x -+-<,解得1>2x ,所以112x <≤; 当12x <<时,122x x -+-<,即10-<,所以12x <<; 当2x ≥时,1+22x x --< ,解得52x <,所以522x ≤<; 综上,原不等式的解集是15,22⎛⎫⎪⎝⎭. 【点睛】本题考查绝对值不等式的求解,分类讨论去绝对值是解题的关键,考查计算求解能力,属于中档题.22.(1)(,6)(2,)-∞--+∞;(2)(1,4)-.【分析】(1)将函数()y f x =的解析式表示为分段函数,然后分3x ≤-、31x -<<、1≥x 三段求解不等式()1f x <,综合可得出不等式()1f x <的解集;(2)求出函数()y f x =的最大值max ()f x ,由题意得出2max 3()m m f x -<,解此不等式即可得出实数m 的取值范围.【详解】7,3()12335,317,1x x f x x x x x x x +≤-⎧⎪=--+=---<<⎨⎪--≥⎩. (1)当3x ≤-时,由()71f x x =+<,解得6x <-,此时6x <-;当31x -<<时,由()351f x x =--<,解得2x >-,此时21x -<<;当1≥x 时,由()71f x x =--<,解得8x >-,此时1≥x .综上所述,不等式()1f x <的解集(,6)(2,)-∞--+∞.(2)当3x ≤-时,函数()7f x x =+单调递增,则()(3)4f x f ≤-=;当31x -<<时,函数()35f x x =--单调递减,则(1)()(3)f f x f <<-,即8()4f x -<<;当1≥x 时,函数()7f x x =--单调递减,则()(1)8f x f ≤-=-.综上所述,函数()y f x =的最大值为max ()(3)4f x f =-=,由题知,2max 3()4m m f x -<=,解得14-<<m .因此,实数m 的取值范围是(1,4)-.【点睛】本题主要考查含有两个绝对值的不等式的求解,以及和绝对值不等式有关的存在性问题的求解,意在考查学生分类讨论思想的应用,转化能力和运算求解能力,属于中等题. 23.答案见解析【分析】利用“作差法”,通过对a 分类讨论即可得出. 【详解】 21(1)11a a a a-+=--. ①当0a =时,201a a=-,∴111a a =+-. ②当1a <且0a ≠时,201a a>-,∴111a a >+-. ③当1a >时,201a a<-,∴111a a <+-. 综上所述,当0a =时,111a a =+-; 当1a <且0a ≠时,111a a >+-; 当1a >时,111a a<+-. 【点睛】本题考查“作差法”比较两个数的大小、分类讨论等基础知识与基本技能方法,属于中档题.24.(1)()2,4,3⎛⎫-∞-⋃+∞ ⎪⎝⎭;(2)55,2⎡+⎢⎣⎦⎣⎦【分析】 (1)分30x -<和30x -,把绝对值的不等式转化为关于x 的不等式组求解; (2)把2|5|5x x -转化为关于x 的不等式组求解.【详解】解:(1)由|21|3x x +>-,得30x -<①,或30213x x x-⎧⎨+>-⎩②,或30213x x x -⎧⎨+<-+⎩③. 解①得3x >,解得②得233x <,解③得4x <-. |21|3x x ∴+>-的解集为()2,4,3⎛⎫-∞-⋃+∞⎪⎝⎭; (2)由2|5|5x x -,得225555x x x x ⎧--⎨-⎩①②, 解①5352x +②得552x -或552x +. 取交集,得2|5|5x x -的解集为,55,2⎡+⎢⎣⎦⎣⎦【点睛】 本题考查绝对值不等式的解法,考查分类讨论的数学思想方法与数学转化思想方法,属于中档题.25.(1)24;(2)4433a -≤≤. 【分析】(1)利用零点分段法将()f x 表示为分段函数的形式,由此画出直线8y =与函数()y f x =的图象.根据等腰梯形面积公式求得所围图形的面积.(2)先求得()f x 的最小值,由此得到4211a a ≥++-,由零点分段法进行分类讨论,由此求得a 的取值范围.【详解】(1)因为()22,14,1322,3x x f x x x x -+≤-⎧⎪=-<≤⎨⎪->⎩,如图所示:直线8y =与函数()y f x =的图象所围图形是一个等腰梯形,令228x -+=,得3x =-;令228x -=,得5x =, 所以等腰梯形的面积()1484242S =⨯+⨯=. (2)要使()211f x a a ≥++-对一切实数x 成立,只须()min 211f x a a ≥++-,而()13134f x x x x x =++-≥+-+=,所以()min 4f x =,故4211a a ≥++-.①由122114a a a ⎧<-⎪⎨⎪---+≤⎩,得4132a -≤<-; ②由1122114a a a ⎧-≤≤⎪⎨⎪+-+≤⎩,得112a -≤≤; ③由12114a a a >⎧⎨++-≤⎩,得413a <≤, 故4433a -≤≤.【点睛】本小题主要考查含有绝对值的不等式的解法,考查不等式恒成立问题的求解,考查分类讨论的数学思想方法,属于中档题.26.(1){5x x ≤-或}4x ≥;(2)见解析.【分析】(1)按照3x ≤-、32x -<<、2x ≥分类讨论,分别解不等式即可得解;(2)两边同时平方后作差可得()()22221110ab a b a b +-+=-->,即可得证.【详解】(1)当3x ≤-时,原不等式可转化为239x x ---≥解得5x ≤-;当32x -<<时,原不等式可转化为239x x -++≥,不等式不成立;当2x ≥时,原不等式可转化为239x x -++≥,解得4x ≥; 所以原不等式的解集为{5x x ≤-或}4x ≥;(2)证明:由题意()()2222111ab a b a b +-+=--, 因为1a <,1b <,所以210a -<,210b -<,所以()()22110a b -->,所以2210ab a b +-+>即221ab a b +>+, 所以1ab a b +>+.【点睛】本题考查了含绝对值不等式的求解与证明,考查了分类讨论思想和转化化归思想,属于中档题.。
(压轴题)高中数学高中数学选修4-5第一章《不等关系与基本不等式》测试(有答案解析)

一、选择题1.某单位计划今明两年购买某物品,现有甲、乙两种不同的购买方案,甲方案:每年购买的数量相等;乙方案:每年购买的金额相等,假设今明两年该物品的价格分别为1p 、2p ()12p p ≠,则这两种方案中平均价格比较低的是( )A .甲B .乙C .甲、乙一样D .无法确定2.关于x 的不等式13x x a -+-≥恒成立,则实数a 的取值范围是( ) A .(][),42,-∞-+∞B .(][),24,-∞+∞C .(][),33,-∞-+∞D .(][),24,-∞-⋃+∞3.下列结论中一定正确的是( ) A .若,0a b c <≠,则ac bc < B .若33a b >,则a b > C .若,0a b c >≠,则a b c c> D .若a bc d>⎧⎨>⎩,则a c b d ->- 4.若0,0,0a b m n >>>>,则a b ,b a ,b m a m ++,a n b n++按由小到大的顺序排列为( ) A .b b m a n a a a m b n b ++<<<++ B .b a n b m a a b n a m b ++<<<++ C .b b m a a n a a m b b n++<<<++ D .b a a n b m a b b n a m++<<<++ 5.等差数列{a n }的前n 项和S n ,且4≤S 2≤6,15≤S 4≤21,则a 2的取值范围为( ) A .94788⎡⎤⎢⎥⎣⎦,B .233388⎡⎤⎢⎥⎣⎦, C .93388⎡⎤⎢⎥⎣⎦,D .234788⎡⎤⎢⎥⎣⎦, 6.已知01x y a <<<<,log log a a m x y =+,则有( ) A .0m <B .01m <<C .12m <<D .2m >7.已知全集U =R ,{|13}P x x x =+-<,{|213}Q x x =-<,则集合P ,Q 之间的关系为( )A .集合P 是集合Q 的真子集B .集合Q 是集合P 的真子集C .P Q =D .集合P 是集合Q 的补集的真子集8.下列三个不等式中( )①(),,0,a m a a b m b a b m b +>>>+;②30)x x x +≥≠;③()0,0a ba b d c c d>>>>> 恒成立的个数为( ) A .3B .2C .1D .09.不等式230x x -<的解集为( ) A .{}03x x <<B .{}3003x x x -<<<<或C .{}30x x -<<D .{}33x x -<<10.若正实数x ,y 满足x y >,则有下列结论:①2xy y <;②22x y >;③1xy>;④11x x y<-.其中正确结论的个数为( ) A .1B .2C .3D .411.不等式536x x -++≥的解集是 ( ) A .[]5,7- B .(),-∞+∞C .()(),57,-∞-+∞D .[]4,6-12.已知a b R ∈,,且a b >,则下列不等式中恒成立的是( ) A .22a b >B .()lg a b 0->C .a b 22--<D .a 1b> 二、填空题13.若不等式2213111a a x x x x a+--+-+++≥对任意使式子有意义的实数a 恒成立,则实数x 的取值范围是__________14.若关于x 的不等式14x x a -++<的解集是空集,则实数a 的取值范围是__________. 15.已知11()22f x x a x a x a x x =+-+--+-0x >()的最小值为32,则实数a =____. 16.若规定a bad bc c d =-,则不等式211log 01x<的解集为__________. 17.若存在实数x ,使得12-++<x x a 成立,则实数a 的取值范围为______. 18.如图,边长为(00)1a b a b ++>>,的正方形被剖分为9个矩形,这些矩形的面积如图所示,则3572468152S S S S S S S S S +++++的最小值是______.19.某种商品在某一段时间内进行提价,提价方案有三种:第一种:先提价%m ,再提价%n ;第二种:先提价%2m n +,再提价%2m n+;第三种:一次性提价()%+m n .已知0m n >>,则提价最多的方案是第__________种.20.若a >0,b >0,则lg 12a b +⎛⎫+⎪⎝⎭________12 [lg(1+a)+lg(1+b)].(选填“≥”“≤”或“=”) 三、解答题21.设函数()2|1||2|f x x x =-+-. (1)求不等式()2f x >的解集;(2)若不等式()(1)f x a x +的解集非空,求实数a 的取值范围.22.已知n S 是正项数列{}n a 的前n 项和,22a =,()2*112n n n S a a n N ++=-∈.(1)证明:数列{}n a 是等差数列; (2)设()*2n nn a b n N =∈,数列{}n b 的前n 项和n T , ①求证:2n T <;②解关于n 的不等式:3332n nn T +>-. 23.已知函数()f x x x m =-. (1)若3m =,解不等式()2f x >;(2)若0m >,且()f x 在[]0,2上的最大值为3,求正实数m 的值. 24.已知函数()12f x x a x =-++. (1)当1a =时,求不等式()4f x 的解集;(2)当1a <-时,若()f x 的图象与x 轴围成的三角形面积等于6,求a 的值. 25.已知函数()3f x x x a =-++. (1)当2a =-时,求不等式()3f x ≥的解集;(2)若()5f x x ≤-的解集包含[]1,3,求实数a 的取值范围. 26.已知函数()|23||1|f x x x =+--. (1)求不等式()3f x ≤的解集;(2)若不等式()2|33|f x a x >--对任意x ∈R 恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分别计算出两种方案的平均价格,然后利用作差法可得出结论. 【详解】对于甲方案,设每年购买的数量为x ,则两年的购买的总金额为12p x p x +, 平均价格为121222p x p x p p x ++=; 对于乙方案,设每年购买的总金额为y ,则总数量为12y yp p +, 平均价格为12121222p p yyy p p p p =++.因为()()()()221212121212121212420222p p p p p p p p p p p p p p p p +--+-==>+++,所以,12121222p p p p p p +>+. 因此,乙方案的平均价格较低. 故选:B. 【点睛】方法点睛:比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,作差法的主要步骤为:作差——变形——判断正负.在所给不等式是积、商、幂的形式时,可考虑比商2.D解析:D 【分析】利用绝对值三角不等式确定1x x a -+-的最小值,再解不等式即可. 【详解】解:根据绝对值三角不等式,得()()111x x a x x a a -+-≥---=-,所以不等式13x x a -+-≥恒成立等价于13a -≥,解得:4a ≥或2a ≤-,即实数a 的取值范围是(][),24,-∞-⋃+∞, 故选:D. 【点睛】本题主要考查了绝对值三角不等式的应用及如何在恒成立条件下确定参数a 的取值范围.3.B解析:B 【分析】通过反例可判断A 、C 、D 均错误,利用函数的单调性可证明B 正确.【详解】对于A ,取2,1,1a b c =-=-=-,则a b <,但ac bc >,故A 错误. 对于C ,取2,1,1b a c =-=-=-,则a b >,但a bc c<,故C 错误. 对于B ,因为3y x =为R 上的增函数,故33a b >等价于a b >,故B 正确. 对于D ,取1,2,1,100a b c d =-=-=-=-,满足a bc d >⎧⎨>⎩,但a c b d -<-,故D 错误. 故选:B. 【点睛】本题考查不等式的性质,注意说明一个不等式不成立,只需要举出一个反例即可,另外证明一个不等式成立可用作差法或作商法,本题属于基础题.4.A解析:A 【分析】根据不等式的性质,利用怍差法求解. 【详解】()()()-++---==+++b a mb b m ba bm ab am a a m a a m a a m , 因为0,0a b m >>>, 所以()()-<+b a m a a m ,所以b b m a a m+<+, ()()()()()()()()22b a b a b a n m b m a n b bn bm mn a am an nm a m b n a m b n a m b n +-+-++++++-----==++++++,因为0,0,0a b m n >>>>,所以()()()()()()+-+-+<++b a b a b a n m a m b n ,所以++<++b m a na mb n, ()()()-++---==+++b a na n a ab bn ab an b n b b b n b b n , 因为0,0>>>a b n ,所以()()0-<+b a n b b n ,所以a n ab n b+<+, 所以b b m a n a a a m b n b ++<<<++。
(压轴题)高中数学高中数学选修4-5第一章《不等关系与基本不等式》测试题(有答案解析)

一、选择题1.某单位计划今明两年购买某物品,现有甲、乙两种不同的购买方案,甲方案:每年购买的数量相等;乙方案:每年购买的金额相等,假设今明两年该物品的价格分别为1p 、2p ()12p p ≠,则这两种方案中平均价格比较低的是( )A .甲B .乙C .甲、乙一样D .无法确定2.不等式2122x x a a ++-≥-恒成立,则a 的取值范围是( ) A .[]1,3-B .][),33,(-∞⋃+∞C .(),3-∞D .()3,+∞)3.下列命题中,正确的是( ) A .若a b >,c d >,则a c > B .若ac bc >,则a b > C .若22a bc c <,则a b < D .若a b >,cd >,则ac bd >4.如果sin 2a =,1212b ⎛⎫= ⎪⎝⎭,0.51log 3c =,那么( ) A .a b c >>B .c b a >>C .a c b >>D .c a b >>5.若实数a >b ,则下列结论成立的是( ) A .a 2>b 2B .11a b<C .ln 2a >ln 2bD .ax 2>bx 26.若0a <b <,则下列不等式中成立的是( )A .|a|>b -B .1a b< C <D .11a b< 7.已知0a b >>,0c >,下列不等式中不.成立的是 A .a c b c +>+B .a c b c ->-C .ac bc >D .c ca b > 8.已知a ,b R ∈,且a b >,则下列不等式恒成立的是( ) A .22a b >B .lg()0a b ->C .11()()22ab<D .1a b> 9.设 1,01x y a >><<则下列关系正确的是 A .a a x y -->B .ax ay <C .x y a a <D .log log a a x y >10.已知,a b ∈R ,且2a b P +=,Q =P ,Q 的关系是( )A .P Q ≥B .P Q >C .P Q ≤D .P Q <11.对于任意实数,,,,a b c d 以下四个命题正确的是( ) A .若,,a b c d >>则a c b d +>+ B .22a b ac bc >>若,则 C .若,a b >则11a b< D .若,,a b c d >>则ac bd >12.对于任意实数,,,,a b c d 以下四个命题正确的是 A .,a b c d a c b d >>+>+若,则 B .22a b ac bc >>若,则 C .11,a b a b><若则D .,a b c d ac bd >>>若,则二、填空题13.已知函数f (x )=|x -2|,g (x )=-|x +3|+m .若函数f (x )的图像恒在函数g (x )图像的上方,则m 的取值范围为________.14.已知R a ∈,若关于x 的方程2210x x a a -+++=有实根,则a 的取值范围是__________.15.已知ln ln x y <,则21x y y x-++的最小值为___________________. 16.若1a 2-<<,21b -<<,则-a b 的取值范围是 . 17.已知a R ∈,函数16()f x x a a x=+-+在区间[2,5]上的最大值为10,则a 的取值范围是______.18.设函数2()||(,)f x x a x b a b R =+++∈,当[2,2]x ∈-时,记()f x 的最大值为(,)M a b ,则(,)M a b 的最小值为______.19.已知二次函数f (x )=ax 2+2x+c (x ∈R )的值域为[0,+∞),则11a c c a+++的最小值为_____.20.若函数()f x 满足:对任意一个三角形,只要它的三边长,,a b c 都在函数()f x 的定义域内,就有函数值()()(),,f a f b f c 也是某个三角形的三边长.则称函数()f x 为保三角形函数,下面四个函数:①()()20f x x x =>;②())0f x x =>;③()sin 02f x x x π⎛⎫=<< ⎪⎝⎭;④()cos 02f x x x π⎛⎫=<<⎪⎝⎭为保三角形函数的序号为___________.三、解答题21.已知函数()211f x x x =-++. (1)解不等式()4f x <;(2)若不等式()2f x log t >对任意x ∈R 恒成立,求实数t 的取值范围. 22.已知函数()|1|2|3|f x x x =--+. (1)求不等式()1f x <的解集;(2)若存在实数x ,使得不等式23()0m m f x --<成立,求实数m 的取值范围.23.已知函数()2123f x x x =++-(Ⅰ)求不等式()f x ≤6的解集;(Ⅱ)若关于x 的不等式()f x a >恒成立,求实数a 的取值范围. 24.已知函数()21f x x m x =++-(0m >). (1) 当1m =时,解不等式()2f x ≥;(2) 当2,2x m m ⎡⎤∈⎣⎦时,不等式1()12f x x ≥+恒成立,求实数m 的取值范围. 25.已知()2121x x x f =++-.(1)若()()1f x f >,求实数x 的取值范围;(2)已知113m n +≤(其中0m >,0n >),求证:43m n +≥. 26.已知函数()|21|||2g x x x =-+++.(1)解不等式()0g x ≤;(2)若存在实数x ,使得()||g x x a ≥--,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分别计算出两种方案的平均价格,然后利用作差法可得出结论. 【详解】对于甲方案,设每年购买的数量为x ,则两年的购买的总金额为12p x p x +, 平均价格为121222p x p x p p x ++=; 对于乙方案,设每年购买的总金额为y ,则总数量为12y yp p +, 平均价格为12121222p p yyy p p p p =++.因为()()()()221212121212121212420222p p p p p p p p p p p p p p p p +--+-==>+++,所以,12121222p p p p p p +>+.因此,乙方案的平均价格较低. 故选:B. 【点睛】方法点睛:比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,作差法的主要步骤为:作差——变形——判断正负.在所给不等式是积、商、幂的形式时,可考虑比商2.A解析:A 【分析】利用绝对值三角不等式求得12x x ++-的最小值,由此可得出关于实数a 的不等式,进而可解得实数a 的取值范围. 【详解】由绝对值三角不等式可得()()12123x x x x ++-≥++-=,当12x -≤≤时等号成立,由于不等式2122x x a a ++-≥-恒成立,则223a a -≤,解得13a -≤≤. 因此,实数a 的取值范围是[]1,3-. 故选:A. 【点睛】本题考查利用绝对值不等式恒成立求参数,考查了绝对值三角不等式的应用,考查计算能力,属于中等题.3.C解析:C 【分析】利用不等式的基本性质进行逐项判断即可,不成立的举反例. 【详解】对于选项A:若2,3,1,2a b c d =-=-==-,满足a b >,c d >,但是a c >不成立,故选项A 错误;对于选项B :若1,3,2c a b =-=-=-,满足ac bc >,但a b >不成立,故选项B 错误; 对于选项C :因为22a b c c<,整理化简可得20a bc -<,因为20c >,所以0a b -<,即a b <成立,故选项C 正确;对于选项D:若1, 1.1,2a b c d ==-=-=-,满足a b >,c d >,但是ac bd >不成立,故选项D 错误; 【点睛】本题考查不等式与不等关系;不等式的基本性质的灵活运用是求解本题的关键;属于中档题、常考题型.4.D【分析】由题意可知,3sin 2sin 4a π=>,121122b ⎛⎫==< ⎪⎝⎭,0.51log 13c =>,从而判断,,a b c 的大小关系即可.【详解】3224ππ<<∴3sinsin 2sin 42ππ<<,即12a << 110.523=> 0.50.511log log 132∴>=,即0.51log 13c => 12112b ⎛⎫==< ⎪⎝⎭∴b a c <<故选:D 【点睛】本题考查比较大小,是比较综合的一道题,属于中档题.5.C解析:C 【解析】 【分析】特值法排除A,B,D,单调性判断C 【详解】 由题意,可知:对于A :当a 、b 都是负数时,很明显a 2<b 2,故选项A 不正确; 对于B :当a 为正数,b 为负数时,则有11a b>,故选项B 不正确; 对于C :∵a >b ,∴2a >2b >0,∴ln 2a >ln 2b ,故选项C 正确; 对于D :当x =0时,结果不成立,故选项D 不正确; 故选:C . 【点评】本题主要考查不等式的性质应用,特殊值技巧的应用,指数函数、对数函数值大小的比较.本题属中档题.6.A【解析】 【分析】对于A ,用不等式的性质可以论证,对于B ,C ,D ,列举反例,可以判断. 【详解】∵a <0,∴|a |=﹣a ,∵a <b <0,∴﹣a >﹣b >0,∴|a |>﹣b ,故结论A 成立; 取a =﹣2,b =﹣1,则 ∵21ab=>,∴B 不正确;1==,∴∴C 不正确;112a =-,11b =-,∴11a b >,∴D 不正确. 故选:A . 【点睛】本题考查不等式的性质,解题的关键是利用不等式的性质,对于不正确结论,列举反例.7.D解析:D 【分析】本道题结合不等式的基本性质,加上减去或者乘以大于0的数,不等式依然成立. 【详解】A,B 选项,不等式左右两边同时加上或减去相同的数,不等号不改变方向,故正确;C 选项,不等式左右两边同时乘以一个大于0的数,不等号不改变方向,故正确,而D 选项,关系应该为c ca b <,故不正确. 【点睛】本道题考查了不等式的基本性质,关键抓住不等号成立满足的条件,难度中等.8.C解析:C 【解析】 【分析】利用不等式的性质和函数的单调性,通过特值排除,对四个选项逐一进行分析即可得到答案 【详解】对于A ,令0,1a b ==-,200=,()211-=,满足a b >,但不满足22a b >,故排除 对于B ,令0,1a b ==-,()lg 10a b lg -==,故排除对于C ,1 2x y ⎛⎫= ⎪⎝⎭为减函数,当a b >时,1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故C 恒成立对于D ,令0,1a b ==-,011a b =<-,故排除 故选C 【点睛】本题主要考查了简单的函数恒成立问题,可以根据不等式的性质和函数的单调性,通过特值排除,属于基础题。
(压轴题)高中数学高中数学选修4-5第一章《不等关系与基本不等式》检测卷(包含答案解析)(4)

一、选择题1.已知0h >,则||2a b h -<是1a h -<且1b h -<的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 2.已知223a b ab ++=,0a >,0b >,则2a b +的取值范围是( )A .()0,3B .)32,3⎡-⎣C .[)2,+∞D .[)2,33.如果sin 2a =,1212b ⎛⎫= ⎪⎝⎭,0.51log3c =,那么( )A .a b c >>B .c b a >>C .a c b >>D .c a b >> 4.若112a b <<<,01c <<,则下列不等式不成立...的是( )A .log log a b c c <B .log log b a a c b c <C .c c ab ba <D .c c a b <5.已知0a b >>,则下列不等式正确的是( )A .a b b a -<-B .33a b b a -<-C .lg lg a b b a -<-D .lg lg a b b a ->-6.已知()23f x x x =+,若1x a -≤,则下列不等式一定成立的是( )A .()()33f x f a a -≤+B .()()5f x f a a -≤+C .()()24f x f a a -≤+D .()()()231f x f a a -≤+7.已知01a <<,01c b <<<,下列不等式成立的是( )A .bcb ac a >++ B .cc ab b a +>+C .log log b c a a <D .b c a a >8.如果关于x 的不等式34x x a -+-<的解集不是空集,则参数a 的取值范围是( )A .()1,+∞B .[)1,+∞C .(),1-∞D .(],1-∞ 9.已知0a b >>,0c >,下列不等式中不.成立的是A .a c b c +>+B .a c b c ->-C .ac bc >D .cca b >10.已知等差数列{a n }的前n 项和为S n ,a 2=1,则“a 3>5”是“S 3+S 9>93”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.对于任意实数,,,,a b c d 以下四个命题正确的是A .,a b c d a c b d >>+>+若,则B .22a b ac bc >>若,则C .11,a b a b><若则 D .,a b c d ac bd >>>若,则 12.实数,a b 满足0a b >>,则下列不等式成立的是( )A .1a b <B .1133a b < C <.2a ab <二、填空题13.若ad bc ≠,则()()2222a b c d ++__________()2ac bd +.(选“≥”、“≤”、“>”、“<”其一填入)14.已知函数()21f x x x =--,若对任意的实数x 有()()()1f x t f x t R +-≤∈成立,则实数t 的取值范围是______.15.已知实数a ,b ,c 满足a >c ﹣2且1333a b c++<,则333a bc -的取值范围是_______. 16.若110a b>>有下列四个不等式①33a b <;②21log 3log 3a b ++>;④3322a b ab +>.则下列组合中全部正确的为__________17.如果关于x 的不等式|3||4|x x a -++<的解集不是空集,则a 的取值范围是______.18.以下五个命题中:①若324παβπ<<<,则αβ-的取值范围是44ππαβ-<-<; ②不等式2210ax ax -+>,对一切x R ∈恒成立,则实数a 的取值范围为01a <<;③若椭圆2251162x y +=的两焦点为1F 、2F ,且弦AB 过1F 点,则2ABF ∆的周长为16; ④若常数0m >,a ,b ,c 成等差数列,则a m ,b m ,c m 成等比数列;⑤数列{}n a 的前n 项和为n S =2n +2n -1,则这个数列一定是等差数列.所有正确命题的序号是_____________.19.关于x 的不等式21x x a +--≤的解集为R ,则实数a 的取值范围是_________. 20.若a >0,b >0,则lg 12a b +⎛⎫+ ⎪⎝⎭________12 [lg(1+a)+lg(1+b)].(选填“≥”“≤”或“=”) 三、解答题21.已知函数()|1||3|f x x x =-+-.(1)解不等式()1f x x ≤+;(2)设函数()f x 的最小值为c ,实数,a b 满足0,0,a b a b c >>+=,求证:22111a b a b +≥++. 22.(1)已知a <b <c ,且a +b +c =0,证明:a a a c b c--<.(223.已知函数()3f x x x a =-++.(1)当2a =-时,求不等式()3f x ≥的解集;(2)若()5f x x ≤-的解集包含[]1,3,求实数a 的取值范围.24.已知函数()212f x x x =-++.(1)求()f x 的最小值;(2)已知0a ≠,若不等式()2211b a b a ax x -++>-++恒成立,求实数x 的取值范围.25.已知函数()|21|||2g x x x =-+++.(1)解不等式()0g x ≤;(2)若存在实数x ,使得()||g x x a ≥--,求实数a 的取值范围.26.(1)若0a >,0b >,求证:11()4a b a b ⎛⎫++≥⎪⎝⎭;(2【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用判断充分,必要条件的方向判断,结合绝对值的几何意义,以及绝对值三角不等式证明.【详解】 当2a b h -<,说明a 与b 的距离小于2h ,但a 与b 与1的距离可以大于或等于h ,所以2a b h -<,不能推出1a h -<且1b h -<,反过来,当1a h -<且1b h -<时,()()11112a b a b a b h -=---≤-+-<,即2a b h -<,所以1a h -<且1b h -<,能推出2a b h -<,所以||2a b h -<是|1|?a h -<且|1|b h -<的必要非充分条件.故选:B【点睛】 关键点点睛:本题的关键是理解绝对值的几何意义,a b -表示数轴上两点间距离,以及绝对值三角不等式a b a b a b -≤±≤+.2.D解析:D【分析】根据所给等式,用a 表示出b ,代入2a b +中化简,令21t a =+并构造函数()42f t t t=+-,结合函数的图像与性质即可求得2a b +的取值范围. 【详解】 因为223a b ab ++=, 所以32412121a b a a -==-+++, 由0b >解得1322a -<<, 因为0a >,所以302a <<, 则2a b + 42121a a =+-+ 421221a a =++-+ 由302a <<可得1214a <+<, 令21t a =+,14t <<. 所以421221a a ++-+ 42t t =+- 画出()42f t t t=+-,14t <<的图像如下图所示:由图像可知,函数()42f t t t=+-在14t <<内的值域为[)2,3, 即2a b +的取值范围为[)2,3,故选:D.【点睛】本题考查了由等式求整式的取值范围问题,打勾函数的图像与性质应用,注意若使用基本不等式,注意等号成立条件及自变量取值范围影响,属于中档题.3.D解析:D【分析】 由题意可知,3sin 2sin 4a π=>,1212122b ⎛⎫==< ⎪⎝⎭,0.51log 13c =>,从而判断,,a b c 的大小关系即可.【详解】3224ππ<< ∴3sin sin 2sin 42ππ<<,即212a << 110.523=> 0.50.511log log 132∴>=,即0.51log 13c => 121212b ⎛⎫==< ⎪⎝⎭∴b a c <<故选:D【点睛】本题考查比较大小,是比较综合的一道题,属于中档题.4.B解析:B【分析】根据幂函数和对数函数的图象和性质,结合不等式的基本性质,对各选项逐一判断即可.【详解】对于A :当112a b <<<,01c <<,由对数函数的单调性知,0log log a b c c <<,故A 正确;对于B :当112a b <<<,01c <<,设函数log c y x =为减函数,则log log 0c c a b >>, 所以log log 0b a c c >>,因112a b <<<,则log b a c 与log a b c 无法比较大小,故B 不正确;对于C :当112a b <<<,01c <<,则10c -<,由指数函数的单调性知,11c c b a --<,将不等式11c c b a --<两边同乘ab ,得c c ab ba <,故C 正确; 对于D :当112a b <<<,01c <<,由不等式的基本性质知,c c a b <,故D 正确. 故选: B【点睛】本题考查了幂函数和对数函数的图象和性质,不等式的基本性质,属于基础题. 5.C解析:C【分析】考虑到,C D 中不等号方向,先研究C ,D 中是否有一个正确。
(压轴题)高中数学高中数学选修4-5第一章《不等关系与基本不等式》测试(答案解析)

一、选择题1.已知函数()()1,f x ax b a b R x =++∈,当1,22x ⎡∈⎤⎢⎥⎣⎦时,设()f x 的最大值为(),M a b ,则(),M a b 的最小值为( )A .18B .14C .12D .12.若,b R,,a a b ∈≠且则下列式子:(1)22a 32b ab +>,(2)553223a b b a a b +>+, (3)2252(2)a b a b ++≥-,(4)2b aa b+>.其中恒成立的个数是 A .1个B .2个C .3个D .4个3.下列命题正确的是( ) A .若a bc c>,则a b > B .若22a b >,则a b >C .若2211a b>,则a b < D <a b <4.下列结论中一定正确的是( ) A .若,0a b c <≠,则ac bc < B .若33a b >,则a b > C .若,0a b c >≠,则a bc c> D .若a bc d>⎧⎨>⎩,则a c b d ->- 5.若0,0,0a b m n >>>>,则a b ,b a ,b m a m ++,a n b n++按由小到大的顺序排列为( ) A .b b m a n a a a m b n b ++<<<++ B .b a n b m a a b n a m b++<<<++ C .b b m a a n a a m b b n++<<<++ D .b a a n b m a b b n a m++<<<++ 6.已知223a b ab ++=,0a >,0b >,则2a b +的取值范围是( )A .()0,3B .)3⎡-⎣C .[)2,+∞D .[)2,37.已知函数22()x x af x x-+=,若[2,)x ∈+∞,()0f x >,则实数a 的取值范围是( ). A .(,0)-∞ B .(0,)+∞ C .[0,)+∞ D .(1,)+∞8.已知01x y a <<<<,log log a a m x y =+,则有( ) A .0m <B .01m <<C .12m <<D .2m >9.不等式21x x a <-+的解集是区间()3,3-的子集,则实数a 的取值范围是( )A .5a ≤B .554a -≤≤C .574a -≤≤D .7a ≤10.已知函数()1f x x x a =++-,若()2f x ≥恒成立,则a 的取值范围是( ) A .(][),22,-∞-+∞B .(][),31,-∞-+∞C .(][),13,-∞-+∞D .(][),04,-∞+∞11.已知实数,a b ,且a b >,则以下不等式恒成立的是( )A .33a b > B .22a b > C .1133ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D .11a b< 12.如果a b >,那么下列不等式一定成立的是( )A .a b >B .33a b >C .11a b<D .22a b <二、填空题13.若不等式2240x x m +--≥的解集为R ,则实数m 的取值范围是_______.14.若()f x 是R 上的减函数,且()f x 的图像经过点()0,3A 和()3,1B -,则不等式()112f x +-<的解集是__________.15.函数11y x x =+--的最大值是___________16.对任意实数x ,不等式|1|||1x x a a ++-≥-+恒成立,则实数a 的取值范围是___________. 17.不等式41xx 的解集是________18.已知a b R ∈,,写出不等式a b a b a b +≤++-等号成立的所有条件_________ 19.已知不等式222xy ax y +,对任意[1,2],[4,5]x y ∈∈恒成立,则实数a 的取值范围是__________.20.已知二次函数f (x )=ax 2+2x+c (x ∈R )的值域为[0,+∞),则11a c c a+++的最小值为_____.三、解答题21.已知函数()|21||23|f x x x =++-. (1)求不等式()6f x ≤的解集;(2)若关于x 的不等式22()log (3)2f x a a -->恒成立,求实数a 的取值范围. 22.已知()211f x x x =-++.(1)画出函数()f x 的图象; (2)求不等式()()1f x f x <-的解集. 23.选修4-5:不等式选讲已知函数()121f x x x =--+的最大值为k . (1)求k 的值;(2)若,,a b c ∈R , 2222a cb k ++=,求()b ac +的最大值.24.设函数()1f x x =-.(1)求不等式()()336f x f x ++-≥的解集;(2)若不等式()()14f x f x ax b --+>+的解集为实数集R ,求+a b 的取值范围. 25.已知函数()()2f x x m x m R =--+∈,不等式()20f x -≥的解集为(],4-∞. (1)求m 的值;(2)若存在正实数0a >,0b >,且126a b m +=,使不等式21123x x a b-+-≥+成立,求实数x 的取值范围. 26.已知()13f x x x =++-.(1)求直线8y =与函数()y f x =的图象所围图形的面积; (2)若()211f x a a ≥++-对一切实数x 成立,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 考虑12x =,1,2的函数值的范围,运用绝对值不等式的性质,即可得到所求最小值. 【详解】 函数()()1,f x ax b a b R x=++∈,当1[2x ∈,2]时,()f x 的最大值为(,)M a b ,可得1(,)(2)|2|2M a b f a b ≥=++,11(,)()|2|22M a b f a b ≥=++,(,)(1)|1|M a b f a b ≥=++,可得1(3M a ,2)(3b M a +,)(b M a +,211124)1336333b a b a b a b ≥++++++++211124113363332a b a b a b ≥+++++---=, 即()12,2M a b ≥,即有()1,4M a b ≥,则(,)M a b 的最小值为14, 故选:B 【点睛】关键点睛:解答本题的关键是理解到最大值的含义,熟练掌握绝对值的三角不等式.2.A解析:A 【解析】分析:将不等式两侧的式子做差和0比即可,或者将不等式两侧的式子移到一侧,再配方即可. 详解:(1) 22a 32b ab +-=22322b a b ⎛⎫+- ⎪⎝⎭,当a=1,b=-2.时不等式不成立;(2)553223 a b b a a b +>+=()()()222a b a b a ab b -+++当a=1,b=-1时,不等式不成立;(3)()22522a b a b ++--()()22=a 210b -++≥恒成立.选项正确. (4) ba a b+,2][2,)∈-∞-⋃+∞(,故不正确. 故答案为A.点睛:这个题目考查了基本不等式的应用条件,两式比较大小的方法;两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.3.D解析:D 【分析】A 项中,需要看分母的正负;B 项和C 项中,已知两个数平方的大小只能比较出两个数绝对值的大小. 【详解】A 项中,若0c <,则有a b <,故A 项错误;B 项中,若22a b >,则a b >,故B 项错误;C 项中,若2211a b>则22a b <即a b <,故C 项错误;D <定有a b <,故D 项正确. 故选:D 【点睛】本题主要考查不等关系与不等式,属于基础题.4.B解析:B 【分析】通过反例可判断A 、C 、D 均错误,利用函数的单调性可证明B 正确. 【详解】对于A ,取2,1,1a b c =-=-=-,则a b <,但ac bc >,故A 错误. 对于C ,取2,1,1b a c =-=-=-,则a b >,但a bc c<,故C 错误. 对于B ,因为3y x =为R 上的增函数,故33a b >等价于a b >,故B 正确. 对于D ,取1,2,1,100a b c d =-=-=-=-,满足a bc d>⎧⎨>⎩,但a c b d -<-,故D 错误. 故选:B. 【点睛】本题考查不等式的性质,注意说明一个不等式不成立,只需要举出一个反例即可,另外证明一个不等式成立可用作差法或作商法,本题属于基础题.5.A解析:A 【分析】根据不等式的性质,利用怍差法求解. 【详解】()()()-++---==+++b a m b b m ba bm ab am a a m a a m a a m , 因为0,0a b m >>>,所以()()0-<+b a m a a m ,所以b b m a a m+<+, ()()()()()()()()22b a b a b a n m b m a n b bn bm mn a am an nm a m b n a m b n a m b n +-+-++++++-----==++++++,因为0,0,0a b m n >>>>,所以()()()()()()+-+-+<++b a b a b a n m a m b n ,所以++<++b m a n a m b n, ()()()-++---==+++b a na n a ab bn ab an b n b b b n b b n , 因为0,0>>>a b n , 所以()()-<+b a n b b n ,所以a n ab n b+<+, 所以b b m a n a a a m b n b ++<<<++。
(压轴题)高中数学高中数学选修4-5第一章《不等关系与基本不等式》测试(包含答案解析)(1)

一、选择题1.下列结论不正确的是( )A .若a b >,0c >,则ac bc >B .若a b >,0c >,则c c a b >C .若a b >,则a c b c +>+D .若a b >,则a c b c ->- 2.下列命题正确的是( )A .若a b c c >,则a b > B .若22a b >,则a b > C .若2211a b >,则a b < D .若a b <,则a b <3.已知0.3log 6a =,2log 6b =,则( )A .22b a b a ab ->+>B .22b a ab b a ->>+C .22b a b a ab +>->D .22ab b a b a >->+4.设不等式3412x x a +->-对所有的[1,2]x ∈均成立,则实数a 的取值范围是( )A .15a <-或47a >B .15a <-C .47a >或01a <<D .15a <-或1064a << 5.设0x >,则()2142f x x x =--的最大值为( ) A .242- B .42- C .不存在 D .526.若a >b ,c 为实数,下列不等式成立是()A .ac >bcB .ac <bcC . 22ac bc >D . 22ac bc 7.若()0,2x π∈,则不等式sin sin x x x x +<+的解集为( )A .()0,πB .5,44ππ⎛⎫ ⎪⎝⎭ C .3,22ππ⎛⎫ ⎪⎝⎭ D .(),2ππ 8.若0a <b <,则下列不等式中成立的是( ) A .|a |>b - B .1a b < C .a b -<- D .11a b< 9.如果关于x 的不等式34x x a -+-<的解集不是空集,则参数a 的取值范围是( ) A .()1,+∞ B .[)1,+∞C .(),1-∞D .(],1-∞ 10.设 1,01x y a >><<则下列关系正确的是 A .a a x y --> B .ax ay < C .x y a a < D .log log a a x y >11.若0a b <<,则下列各式一定..成立的是( )A .a c b c +>+B .22a b <C .ac bc >D .11a b>12.已知,a b ∈R ,且2a b P +=,Q =P ,Q 的关系是( ) A .P Q ≥ B .P Q > C .P Q ≤ D .P Q <二、填空题13.若对任意[]02b ∈,,当11x a ⎡⎤∈⎢⎥⎣⎦,(1)a 时,不等式214ax bx x +-≤恒成立,则实数a 的取值范围是____.14.已知函数f (x )=|x -2|,g (x )=-|x +3|+m .若函数f (x )的图像恒在函数g (x )图像的上方,则m 的取值范围为________. 15.已知不等式116a x y x y+≥+对任意正实数,x y 恒成立,则正实数a 的最小值为_______. 16.若函数y =x +92x +,x ∈(-2,+∞),则该函数的最小值为______. 17.若0,0,0a b m n >>>>,则a b , b a , b m a m ++, a n b n++按由小到大的顺序排列为_______. 18.若1a 2-<<,21b -<<,则-a b 的取值范围是 .19.若函数()()01a f x ax a x =+>-在()1,+∞上的最小值为15,则函数()1g x x a x =++-的最小值为___.20.关于x 的不等式12x x m +--≥恒成立,则m 的取值范围为________三、解答题21.已知函数2()|3|9f x x a x =-+-+(1)2a =时,解关于x 的不等式()0f x >;(2)若不等式()0f x ≤对于任意x ∈R 恒成立,求实数a 的取值范围.22.已知()|2||21|f x x x =+--,M 为不等式()0f x >的解集.(1)求M ;(2)求证:当,x y M ∈时, ||15x y xy ++<.23.(1)已知a <b <c ,且a +b +c =0,证明:a a a c b c--<.(224.已知0a >,0b >,22143a b ab+=+. (1)求证:1ab ≤;(2)若b a >,求证:3311113a b a b ⎛⎫->- ⎪⎝⎭. 25.已知函数()23,0f x x m x m m =--+>.(1)当1m =时,求不等式()1f x ≥的解集;(2)对于任意实数,x t ,不等式()21f x t t <++-恒成立,求实数m 的取值范围. 26.证明下列问题(1)已知0n >,1n m mn->,证明:0>; (2)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若112a b c +=,证明:π2C <.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据不等式的性质,对选项逐一分析,由此得出正确选项.【详解】对于A 选项,不等式两边乘以一个正数,不等号不改变方程,故A 正确.对于B 选项,若2,1,1a b c ===,则c c a b<,故B 选项错误.对于C 、D 选项,不等式两边同时加上或者减去同一个数,不等号方向不改变,故C 、D 正确.综上所述,本小题选B.【点睛】本小题主要考查不等式的性质,考查特殊值法解选择题,属于基础题.2.D解析:D【分析】A 项中,需要看分母的正负;B 项和C 项中,已知两个数平方的大小只能比较出两个数绝对值的大小.【详解】A 项中,若0c <,则有a b <,故A 项错误;B 项中,若22a b >,则a b >,故B 项错误;C 项中,若2211a b>则22a b <即a b <,故C 项错误;D <定有a b <,故D 项正确.故选:D【点睛】本题主要考查不等关系与不等式,属于基础题.3.A解析:A【分析】容易判断出0a <,0b >,从而得出0ab <,并可得出 1221b a b aba ++=<,从而得出2b a ab +>,并容易得出22b a b a ->+,从而得出结论. 【详解】因为0.3log 60a =<,2log 60b =>,所以0ab <, 因为666612log 0.32log 2log 1.2log 61a b+=+⨯=<=,即21b a ab +<, 又0ab <,所以2b a ab +>, 又(2)(2)40b a b a a --+=->,所以22b a b a ->+,所以22b a b a ab ->+>, 故选:A.【点睛】本题主要考查对数的换底公式,对数函数的单调性,增函数和减函数的定义,以及不等式的性质,属于中档题.4.A解析:A【分析】 根据不等式3412x x a +->-对所有的[1,2]x ∈均成立,取2x =时,可得2431a ->,解得15a <-或47a >,利用换元法把不等式换为281t a t ->-,分47a >和15a <-两种情况讨论2()81h t t t =+-的最大值即可求得实数a 的取值范围.【详解】解:因为不等式3412x x a +->-对所有的[1,2]x ∈均成立,当2x =时,312x +-有最大值31,不等式显然要成立, 即2431a ->,解得15a <-或47a >,当[1,2]x ∈时,令2[2,4]x t =∈,则24[4,16]x t =∈,328[16,32]x t +=∈, 所以3412x x a +->-等价于281t a t ->-,①当47a >时,即281a t t ->-在[2,4]t ∈恒成立,即281()a t t h t >+-=,即求2()81h t t t =+-的最大值,max ()(4)47h t h ==,所以47a >;②当15a <-时,281t a t ->-在[2,4]t ∈恒成立,即281()a t t f t <-+=,即求2()81f t t t =-+的最小值,min ()(4)15f t f ==-;综上:15a <-或47a >.故选:A【点睛】本题考查利用二次函数的最值求绝对值不等式中的参数问题,利用换元法是关键,属于中档题. 5.D解析:D【分析】化简得到()214222x x f x x ⎛⎫=-++⎪⎝⎭,再利用均值不等式计算得到答案. 【详解】()2211544422222x x f x x x x ⎛⎫=--=-++≤-= ⎪⎝⎭ 当21222x x x==即1x =时等号成立 故选:D【点睛】本题考查了利用均值不等式求函数最值,意在考查学生对于均值不等式的灵活运用. 6.D解析:D【分析】由已知条件,利用不等式的基本性质,直接求解,即可得到答案.【详解】由题意,,a b c >为实数,在A 中,当0c ≤时,ac bc >不定成立,所以不正确;在B 中,当0c ≥时,ac bc <不定成立,所以不正确;在C 中,当0c 时,22ac bc >不定成立,所以不正确;在D 中,因为2,0a b c >≥,所以22ac bc ≥成立,故选D.【点睛】本题主要考查了不等式的基本性质的应用,其中解答中熟记不等式的基本性质,合理推理、运算是解答的关键,着重考查了推理与运算能力,属于基础题.7.D解析:D【分析】由绝对值三角不等式的性质得出sin 0x x <,由02x π<<,得出sin 0x <,借助正弦函数图象可得出答案.【详解】 因为sin sin x x x x +<+成立,所以sin 0x x <,又(0,2)x π∈,所以sin 0x <,(,2)x ππ∈,故选D .【点睛】本题考查绝对值三角不等式的应用,再利用绝对值不等式时,需要注意等号成立的条件,属于基础题.8.A解析:A【解析】【分析】对于A ,用不等式的性质可以论证,对于B ,C ,D ,列举反例,可以判断.【详解】∵a <0,∴|a |=﹣a ,∵a <b <0,∴﹣a >﹣b >0,∴|a |>﹣b ,故结论A 成立; 取a =﹣2,b =﹣1,则 ∵21a b=>,∴B 不正确;1==,∴∴C 不正确;112a =-,11b =-,∴11a b>,∴D 不正确. 故选:A .【点睛】本题考查不等式的性质,解题的关键是利用不等式的性质,对于不正确结论,列举反例. 9.A解析:A【分析】先求|x-3|+|x-4|的最小值是1,即得解.【详解】由题得|x-3|+|x-4|<a 有解,由绝对值三角不等式得|x-3|+|x-4|≥|x -3-x+4|=1,所以|x-3|+|x-4|的最小值为1,所以1<a,即a >1.故选A【点睛】本题主要考查绝对值三角不等式求最值,考查不等式的有解问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.10.C解析:C【分析】由幂函数,指数函数,对数函数的单调性以及不等式的性质判断即可.【详解】A.a a x y -->,由幂函数y x α= 当0α<函数在()0,∞+上单调递减,可知A 错误; 由1,01x y a >><<,由不等式的性质可得0ax ay >>,故B 错误;由指数函数x y a = 当01a <<函数在()0,∞+上单调递减,可知C 正确;由对函数log ay x = 当01a <<函数在()0,∞+上单调递减,可知D 错误.故选 C .【点睛】本题考查幂函数,指数函数,对数函数的单调性以及不等式的性质,属基础题. 11.D解析:D【分析】运用不等式的可加性,可判断A ;由反比例函数的单调性,可判断D ;由0c,可判断C ;由二次函数的单调性可判断B .【详解】对于A ,若0a b <<,则a c b c ++<,故A 项错误;对于D ,函数1y x =在0-∞(,)上单调递减,若0a b <<,则11a b >,故D 项正确; 对于C ,当0c 时,ac bc =,即不等式ac bc >不成立,故C 项错误;对于B ,函数2y x 在0-∞(,)上单调递减,若0a b <<,则22a b >,故B 项错误, 故选D .【点睛】 本题考查不等式的性质和运用,考查函数的单调性和反例法,考查推理、判断能力,属于基础题.12.C解析:C【解析】分析:因为P 2﹣Q 2=﹣2()4a b -≤0,所以P 2≤Q 2,则P≤Q ,详解:因为a ,b ∈R ,且P=2a b +,, 所以P 2=2224a b ab ++,Q 2=222a b +, 则P 2﹣Q 2=2224a b ab ++﹣222a b +=2224ab a b --=﹣2()4a b -≤0,当且仅当a=b 时取等成立,所以P 2﹣Q 2≤0,即P 2≤Q 2,所以P≤Q ,故选:C .点睛:比较大小的常用方法(1)作差法:一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤:①作商;②变形;③判断商与1的大小;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数的单调性得出大小关系.(4)借助第三量比较法二、填空题13.【分析】将不等式转化为恒成立结合函数单调性转化求解【详解】对任意当时不等式恒成立即恒成立当时单调递增只需对恒成立且解得故答案为:【点睛】此题考查不等式恒成立求参数取值范围关键在于熟练掌握不等式性质和解析:](13,【分析】 将不等式转化为14ax b x-+≤恒成立,结合函数单调性转化求解. 【详解】 对任意[]02b ∈,,当11x a ⎡⎤∈⎢⎥⎣⎦,(1)a 时,不等式214ax bx x +-≤恒成立, 即14ax b x-+≤恒成立, []02b ∈,,当11x a ⎡⎤∈⎢⎥⎣⎦,(1)a 时,1y ax b x =-+单调递增, []11,1ax b a b a b x-+∈-+-+,14ax b x -+≤(1)a 只需14,14a b a b -+≤-+≤对[]02b ∈,恒成立, 124a -+≤且1a >,解得13a .故答案为:](13,【点睛】此题考查不等式恒成立求参数取值范围,关键在于熟练掌握不等式性质和函数单调性,结合恒成立求解参数.14.(-∞5)【分析】函数f(x)的图像恒在函数g(x)图像的上方可转化为不等式|x -2|+|x +3|>m 恒成立利用不等式的性质求出|x -2|+|x +3|的最小值就可以求出的范围【详解】函数f(x)的图解析:(-∞,5)【分析】函数f (x )的图像恒在函数g (x )图像的上方,可转化为不等式|x -2|+|x +3|>m 恒成立,利用不等式的性质求出|x -2|+|x +3|的最小值,就可以求出m 的范围.【详解】函数f (x )的图像恒在函数g (x )图像的上方,即为|x -2|>-|x +3|+m 对任意实数x 恒成立,即|x -2|+|x +3|>m 恒成立.因为对任意实数x 恒有|x -2|+|x +3|≥|(x -2)-(x +3)|=5,所以m <5,即m 的取值范围是(,5)-∞,故答案为:(,5)-∞.【点睛】该题考查的是有关利用两个函数图象的关系,得出函数值的大小关系,之后将恒成立问题向最值靠拢,利用绝对值不等式的性质求得结果,属于简单题目.15.【解析】试题分析:由题设知对于任意正实数xy 恒成立所以1+a+≥16由此能求出正实数a 的最小值【解答】解:∵不等式对任意正实数xy 恒成立∴对于任意正实数xy 恒成立∵∴1+a+≥16即又a >0从而故答解析:【解析】试题分析:由题设知()min116a x y x y ⎛⎫++≥ ⎪⎝⎭对于任意正实数x ,y 恒成立,所以,由此能求出正实数a 的最小值.【解答】解:∵不等式116a x y x y+≥+对任意正实数x ,y 恒成立, ∴()min 116a x y x y ⎛⎫++≥⎪⎝⎭ 对于任意正实数x ,y 恒成立 ∵()111a y ax x y a a x y x y ⎛⎫++=+++≥++ ⎪⎝⎭∴即)530≥ ,又a >0,min 3,9.a ≥=故答案为9点睛::本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.解决二元的范围或者最值问题,常用的方法有:不等式的应用,二元化一元的应用,线性规划的应用,等.16.4【解析】时在上是减函数在上是增函数因此时解析:4【解析】2x >-时,20x +>,99(2)222y x x x x =+=++-++在(2,1)-上是减函数,在(1,)+∞上是增函数,因此1x =时,4y 最小值=.17.【解析】解答:−==∵a>b>0m>0n>0∴<0∴−=∵a>b>0m>0n>0∴<0∴−<0∴−=∵a>b>0n>0∴−<0∴综上可知故答案为:点睛:比较大小的方法:作差法(作商法)中间量(比如0 解析:b b m a n a a a m b n b++<<<++ 【解析】解答:b a −b m a m ++==()()b a m a a m -+ ∵a >b >0,m >0,n >0,∴()() b a m a a m -+<0 ∴b b m a a m+<+ b m a m ++−a n b n ++=()()()()()()b a b a b a m n a m b n +-+-+++ ∵a >b >0,m >0,n >0,∴()()()()()() b a b a b a m n a m b n +-+-+++<0 ∴b m a m ++−a n b n ++<0 ∴b m a n a m b n++<++ a n b n ++−a b =()()b a n b b n -+ ∵a >b >0,n >0,∴a nb n ++−a b <0 ∴a n a b n b+<+ 综上可知,b b m a n a a a m b n b++<<<++ 故答案为:b b m a n a a a m b n b ++<<<++ 点睛:比较大小的方法:作差法(作商法),中间量(比如0或1),函数的单调性,数形结合等方法.18.(-24)【分析】根据条件得到的范围然后与的范围相加得到的取值范围【详解】因为所以而所以故答案为【点睛】本题考查不等式的基本性质属于简单题 解析:(-2,4)【分析】根据条件,得到b -的范围,然后与a 的范围相加,得到-a b 的取值范围.【详解】因为21b -<<,所以12b -<-<而1a 2-<<所以24a b -<-<故答案为()2,4-.【点睛】本题考查不等式的基本性质,属于简单题.19.6【分析】首先利用基本不等式求函数的最小值解得的值再根据含绝对值三角不等式求函数的最小值【详解】当且仅当时即时取等号此时满足所以函数的最小值是6故答案为:6【点睛】方法点睛:本题考查基本不等式求最值 解析:6【分析】首先利用基本不等式求函数的最小值,解得a 的值,再根据含绝对值三角不等式求函数()g x 的最小值.【详解】()11131f x a x a a x ⎛⎛⎫=-++≥= ⎪ -⎝⎭⎝, 当且仅当111x x -=-时,即2x =时取等号, 此时满足3155a a =⇒=,()()()51516g x x x x x =++-≥+--=,所以函数()g x 的最小值是6.故答案为:6【点睛】方法点睛:本题考查基本不等式求最值以及含绝对值不等式求最值,其中基本不等式求最值需注意一下几点:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方20.【分析】由题意得由绝对值三角不等式求出函数的最小值从而可求出实数的取值范围【详解】由题意得由绝对值三角不等式得因此实数的取值范围是故答案为【点睛】本题考查不等式恒成立问题同时也考查了利用绝对值三角不 解析:(],3-∞-【分析】 由题意得()min 12m x x ≤+--,由绝对值三角不等式求出函数12y x x =+--的最小值,从而可求出实数m 的取值范围.【详解】 由题意得()min 12m x x ≤+--, 由绝对值三角不等式得()()12123x x x x +--≥-+--=-,3m ∴≤-,因此,实数m 的取值范围是(],3-∞-,故答案为(],3-∞-.【点睛】本题考查不等式恒成立问题,同时也考查了利用绝对值三角不等式求最值,解题时要结合题中条件转化为函数的最值来求解,考查化归与转化数学思想,属于中等题.三、解答题21.(1)()5,3-;(2)(],6-∞- 【分析】(1)2()2|3|9f x x x =-+-+,讨论3x ≥和3x <两种情况,解不等式得到答案.(2)2|3|90x a x -+-+≤恒成立,讨论3x =,3x >,3x <三种情况,分别解不等式得到答案.【详解】(1)2a =时,2()2|3|9f x x x =-+-+,当3x ≥时,()2()2390f x x x =-+-+>,解得13x ,故无解; 当3x <时,()2()2390f x x x -=--+>,解得53x -<<,故53x -<<.综上所述:不等式解集为()5,3-.(2)不等式()0f x ≤对于任意x ∈R 恒成立,即2|3|90x a x -+-+≤恒成立. 当3x =时,00≤成立;当3x >时,()2390x a x -+-+≤,故()293a x x -≤-,即3a x ≤+,故6a ≤; 当3x <时,()2390x a x --+≤-,故()()293a x x -≥--,即()3a x ≤-+,故6a ≤-.综上所述:(],6a ∈-∞-.【点睛】本题考查了解不等式,不等式恒成立问题,意在考查学生的计算能力和综合应用能力. 22.(1)1(,3)3M =-(2)见解析【解析】试题分析:(1)通过讨论x 的范围,解关于x 的不等式,求出M 的范围即可;(2)根据绝对值的性质证明即可.试题 (1)解:()3,2131,2213,2x x f x x x x x ⎧⎪-<-⎪⎪=+-≤≤⎨⎪⎪-+>⎪⎩当2x <-时,由30x ->得3x >,舍去; 当122x -≤≤时,由310x +>得13x >-,即1132x -<≤; 当12x >时,由30x -+>得3x <,即132x <<; 综上,1,33M ⎛⎫=- ⎪⎝⎭.(2)证明:∵,x y M ∈,∴3x <,3y <, x y xy x y xy x y xy ∴++≤++≤++ 333315x y x y =++⋅<++⨯= 23.(1)证明见解析 (2)证明见解析【分析】(1)由题意得出a <0,且a -c <b -c <0,再证明1b c -<1a c -,即可得出a a c -<a b c -; (2)利用分析法证明命题成立的基本步骤是:要证…,只需证…,即证…,显然成立.【详解】证明:(1)由a <b <c ,且a +b +c =0,所以a <0,且a -c <b -c <0,所以(a -c )(b -c )>0,所以()()a c a c b c ---<()()b c a c b c ---, 即1b c -<1a c -;所以a b c ->a a c -,即a a c -<a b c-.(2即证a +(a -3)a -1)+(a -2)即证a (a -3)<(a -1)(a -2);即证0<2,显然成立;【点睛】本题考查了不等式的证明问题,也考查了综合法与分析法的应用问题,是基础题. 24.(1)证明见解析.(2)证明见解析【分析】(1)根据条件利用基本不等式可得221344a b ab ab +=+,然后解关于ab 的不等式即可; (2)要证3311113()a b a b --,即证221113a ab b ++,然后根据条件得到221113a ab b ++成立.【详解】(1)证明:由2210,344>+=≥+ab a b ab ab (当且仅当224a b =,即2a b ==得“=”).所以2134()ab ab +≥,即24()310ab ab --≤,所以1ab ≤(当且仅当2a b ==时取得“=”) (2)332222111111111111111133=3a b a b a b a ab b a b a b a ab b ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫---=-++---++- ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(※),因为0b a >>,所以110->a b. 又221113a ab b ab ++≥,当且仅当a b =时取得“=”,又0b a >>,故221113a ab b ab++>, 又由(1)知1ab ≤,又0b a >>,故11ab >,故2211133a ab b ab ++>>,即2211130a ab b ++->,故(※)式成立,即原不等式成立.【点睛】本题考查了基本不等式,利用综合法证明不等式和利用分析法证明不等式,考查了转化思想,属于中档题.25.(1){|31}x x -≤≤-;(2)605m <<【分析】 (1)当1m =时,34,23()12332,124,1x x f x x x x x x x ⎧+<-⎪⎪⎪=--+=---≤≤⎨⎪-->⎪⎪⎩,根据()1f x ≥,由3241x x ⎧<-⎪⎨⎪+≥⎩或312321x x ⎧-≤≤⎪⎨⎪--≥⎩或141x x >⎧⎨--≥⎩求解. (2)将对任意实数,x t ,不等式()21f x t t <++-恒成立,转化为max min ()(21)f x t t <++-,再分别求得最大值和最小值求解即可.【详解】(1)当1m =时,34,23()12332,124,1x x f x x x x x x x ⎧+<-⎪⎪⎪=--+=---≤≤⎨⎪-->⎪⎪⎩, 因为()1f x ≥, 所以3241x x ⎧<-⎪⎨⎪+≥⎩或312321x x ⎧-≤≤⎪⎨⎪--≥⎩或141x x >⎧⎨--≥⎩, 解得:332x -≤<-或312x -≤≤-, 所以不等式()1f x ≥的解集为{|31}x x -≤≤-.(2)对于任意实数,x t ,不等式()21f x t t <++-恒成立, 等价于max min ()(21)f x t t <++-. 因为21(2)(1)3t t t t ++-≥+--=,当且仅当(2)(1)0t t +-≤时等号成立, 所以min (21)3t t ++-=因为0m >时,所以()34,232332,24,m x m x m f x x m x m x m x m x m x m ⎧+<-⎪⎪⎪=--+=---≤≤⎨⎪-->⎪⎪⎩函数()f x 单增区间为3,2m ⎛⎫-∞-⎪⎝⎭,单间区减为3,2m ⎛⎫-+∞ ⎪⎝⎭, 所以当32m x =-时,()max 3522m m f x f ⎛⎫=-= ⎪⎝⎭ 所以532m <, 所以实数m 的取值范围605m <<. 【点睛】本题主要考查绝对值不等式的解法,绝对值不等式恒成立问题,还考查了运算求解的能力,属于中档题.26.(1)证明见解析;(2)证明见解析【分析】(1)利用分析法,结合对数运算,证得不等式成立.(2)利用反证法,结合综合法推出矛盾,由此证得π2C <【详解】(1)由0n >及1n m mn ->,可知1111m n>+>,∴01m <<,要证0>,只需证ln ln1>,1>,即证11n m mn +-->,只需证0n m mn -->, 只需证1n m mn->, 而这是已知条件,以上各步均可逆推,所以原不等式得证. (2)假设π2C ≥,则0c a >>,0c b >>, 那么110c a <<,110c b <<, 于是1111c c a b +<+,即211c a b<+, 与已知112a b c +=矛盾,故假设不成立.所以当112a b c+=时,π2C<.【点睛】本小题主要考查利用分析法、综合法和反证法进行证明,考查化归与转化的数学思想方法,属于中档题.。
(压轴题)高中数学高中数学选修4-5第一章《不等关系与基本不等式》检测题(含答案解析)(3)

一、选择题1.下列命题正确的是( ) A .若a bc c>,则a b > B .若22a b >,则a b >C .若2211a b >,则a b < D <a b <2.若a >b ,则下列不等式一定成立的是( ). A .11a b< B .55a b > C .22ac bc >D .a b >3.下列命题中正确的是( ) A .若ac bc >22,则a b >B .若a b >,则11a b< C .若a b >,c d >,则a c b d ->-D .若a b >,c d <,则a b c d> 4.已知,a b R +∈,2229ab b a b +++=,则+a b 的最小值( ) A .1B .2C .52D .35.若,,a b c ∈R ,且||1a ≤,||1b ≤,||1c ≤,则下列说法正确的是( ) A .322a ab bc ca +++≥ B .322a bab bc ca -+++≥ C .322a b c ab bc ca --+++≥ D .以上都不正确6.已知x ,y ∈R ,且0x y >>,则( )A .11x y >B .11()()22x y<C .1122x y <D .sin sin x y >7.若a 、b 、c ,d ∈R ,则下面四个命题中,正确的命题是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,则ac 2>bc 2D .若a >b ,c >d ,则ac >bd8.已知0a b >>,则下列不等式正确的是( )A b a <B .33a bb a -<-C .lg lg a b b a -<-D .lg lg a b b a ->-9.已知()23f x x x =+,若1x a -≤,则下列不等式一定成立的是( )A .()()33f x f a a -≤+B .()()5f x f a a -≤+C .()()24f x f a a -≤+D .()()()231f x f a a -≤+10.已知函数()1f x x x a =++-,若()2f x ≥恒成立,则a 的取值范围是( ) A .(][),22,-∞-+∞B .(][),31,-∞-+∞C .(][),13,-∞-+∞D .(][),04,-∞+∞11.不等式230x x -<的解集为( )A .{}03x x << B .{}3003x x x -<<<<或C .{}30x x -<<D .{}33x x -<<12.若a b >,0ab ≠则下列不等式恒成立的是( )A .22a b >B .lg()0a b ->C .11a b< D .a b 22>二、填空题13.给出下列语句: ①若,a b 为正实数,ab ,则3322a b a b ab +>+;②若,a m 为正实数,a b <,则a m ab m b+<+; ③若22a bc c>,则a b >; ④当(0,)2x π∈时,2sin sin x x+的最小值为22,其中结论正确的是___________. 14.若()f x 是R 上的减函数,且()f x 的图像经过点()0,3A 和()3,1B -,则不等式()112f x +-<的解集是__________.15.不等式312x -≤的解集是__________. 16.已知函数,若关于的不等式的解集为,则实数的取值范围是_______.17.不等式的解集是______.18.函数11y x x =+--的最大值是___________19.若不等式|4||3|x x a +--≤对一切实数x ∈R 恒成立,则实数a 的取值范围是________20.设集合{132}A x x x =-<-,集合1{1}B xx=<,则A B =________. 三、解答题21.(1)已知()|1||2|f x x x =-+-,当()5f x ≤时,求x 的取值范围.(2)已知2()28f x x x =--,若对于一切2x >,均有()()215f x m x m ≥+--成立,求实数m 的取值范围.22.已知函数()36f x x =+,()3g x x =-. (Ⅰ)求不等式()()f x g x >的解集;(Ⅱ)若()3()f x g x a +≥对于任意x ∈R 恒成立,求实数a 的最大值. 23.函数()212f x x x =-++. (1)求函数()f x 的最小值;(2)若()f x 的最小值为M ,()220,0a b M a b +=>>,求证:141213a b +≥++. 24.已知集合{}413,11A x x x B x x ⎧⎫=+-≤=>⎨⎬+⎩⎭.(1)求集合AB ;(2)若不等式230x ax b ++<的解集为集合B ,求实数,a b 的值.25.已知函数()()2f x x m x m R =--+∈,不等式()20f x -≥的解集为(],4-∞. (1)求m 的值;(2)若存在正实数0a >,0b >,且126a b m +=,使不等式21123x x a b-+-≥+成立,求实数x 的取值范围. 26.设函数3211()132f x ax bx cx =+++,f x 为()f x 的导函数,(1)2af '=-,322a c b >>.(1)用a ,b 表示c ,并证明:当0a >时,334b a -<<-; (2)若12a =-,2b =,32c ,求证:当1x ≥时,()ln x f x '≥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】A 项中,需要看分母的正负;B 项和C 项中,已知两个数平方的大小只能比较出两个数绝对值的大小. 【详解】A 项中,若0c <,则有a b <,故A 项错误;B 项中,若22a b >,则a b >,故B 项错误;C 项中,若2211a b>则22a b <即a b <,故C 项错误;D <定有a b <,故D 项正确. 故选:D 【点睛】本题主要考查不等关系与不等式,属于基础题.2.B解析:B 【分析】利用函数的单调性、不等式的基本性质即可判断出结论. 【详解】 a >b ,则1a 与1b的大小关系不确定;由函数y =x 5在R 上单调递增,∴a 5>b 5; c =0时,ac 2=bc 2;取a =-1,b =-2,|a |>|b |不成立.因此只有B 成立. 故选B . 【点睛】本题考查了函数的单调性、不等式的基本性质,考查了推理能力与计算能力,属于基础题.3.A解析:A 【分析】对于选项A ,由不等式性质得该选项正确;对于选项B ,11b aa b ab--=符号不能确定,所以该选项错误;通过举反例说明选项C 和选项D 错误. 【详解】对于选项A ,若ac bc >22,所以20c >,则a b >,所以该选项正确; 对于选项B ,11b aa b ab--=符号不能确定,所以该选项错误; 对于选项C ,设1,0,1,3,2,3a b c d a c b d ===-=--=-=,所以a c b d -<-,所以该选项错误;对于选项D ,设0,1,2,1,0,1,a b a ba b c d c d c d==-=-=-==∴<,所以该选项错误; 故选:A 【点睛】本题主要考查不等式的性质,考查实数大小的比较,意在考查学生对这些知识的理解掌握水平.4.C解析:C 【分析】令z a b =+,得a z b =-,代入2229ab b a b +++=,化简后利用判别式列不等式,解不等式求得+a b 的最小值. 【详解】令z a b =+,得a z b =-,代入2229ab b a b +++=并化简得()212290b z b z +--+=,关于b 的一元二次方程有正解,所以首先()()2124290z z ∆=---+≥, 即()()27250z z +-≥,由于,a b 是正实数,所以250z -≥,即52z ≥,也即+a b 的最小值为52. 此时对称轴1221120222z z z ---==-≥>,所以关于b 的一元二次方程()212290b z b z +--+=有正解,符合题意.故选:C 【点睛】本小题主要考查判别式法求最值,考查一元二次不等式的解法,属于中档题.5.A解析:A 【分析】首先根据题意得到13ab bc ca -≤++≤,即可得到选项A 正确,再利用特值法排除选项B ,C ,即可得到答案. 【详解】因为,,a b c ∈R ,且||1a ≤,||1b ≤,||1c ≤,所以当,,a b c 都为1或1-时,ab bc ca ++取得最大值3, 设()()1,||1f x b c x bc x =+++≤,(1)()1(1)(1)f b c bc b c -=-+++=--, (1)()1(1)(1)f b c bc b c =+++=++,||1b ≤,||1c ≤,(1)0,(1)0f f ∴-≥≥, ||1x ∴≤时,()0f x ≥,又||1a ≤,()()10f a b c a bc ∴=+++≥,1ab bc ca ++≥-即:13ab bc ca -≤++≤. 对于选项A ,3122ab bc ca +++≥,122a ≤,显然不等式成立. 取1a =,1b =-,0c,得到31(1)10022---+++≥显然不成立,故排除选项B.取1a =-,0b =,1c =,得到310100(1)22---++-+≥ 显然不成立,故排除选项C. 故选:A 【点睛】本题主要考查根据条件判断不等式是否正确,特值法为解决本题的关键,属于简单题.6.B解析:B 【分析】取特殊值排除ACD 选项,由指数函数12xy ⎛⎫= ⎪⎝⎭的单调性证明不等式,即可得出正确答案. 【详解】当11,2x y ==时,1112x y =<=,则A 错误;12xy ⎛⎫= ⎪⎝⎭在R上单调递减,x y >,则11()()22x y <,则B 正确;当4,1x y ==时,112221x y =>=,则C 错误; 当3,22x y ππ==时,sin 1sin 1x y =-<=,则D 错误; 故选:B 【点睛】本题主要考查了由条件判断不等式是否成立,属于中档题.7.B解析:B 【分析】对于A ,C ,D 举反例即可判断,对于B ,根据不等式的性质即可判断. 【详解】解:对于A ,例如1a =,0b =,2c =,则不满足,故A 错误, 对于B ,若a b >-,则a b -<,则c a c b -<+,成立,故B 正确, 对于C ,若0c ,则不成立,故C 错误,对于D ,例如1a =,0b =,2c =-,3D =-,则不满足,故D 错误,故选:B . 【点睛】本题主要考查了不等式的性质的简单应用,要注意不等式应用条件的判断,属于基础题.8.C解析:C【分析】考虑到,C D 中不等号方向,先研究C ,D 中是否有一个正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.若0,0,0a b m n >>>>,则a b ,b a ,b m a m ++,a n b n++按由小到大的顺序排列为( ) A .b b m a n a a a m b n b ++<<<++ B .b a n b m a a b n a m b ++<<<++ C .b b m a a n a a m b b n++<<<++ D .b a a n b m a b b n a m++<<<++ 2.已知函数22()x x af x x-+=,若[2,)x ∈+∞,()0f x >,则实数a 的取值范围是( ). A .(,0)-∞ B .(0,)+∞ C .[0,)+∞ D .(1,)+∞3.设0.3log 0.6m =,21log 0.62n =,则( ) A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+4.已知x ,y ∈R ,且0x y >>,则( ) A .11x y> B .11()()22xy<C .1122x y <D .sin sin x y >5.若a 、b 、c ,d ∈R ,则下面四个命题中,正确的命题是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,则ac 2>bc 2 D .若a >b ,c >d ,则ac >bd 6.下列命题中错误..的是( ) A .若,a b b c >>,则a c > B .若0a b >>,则ln ln b a < C .若a b >,则22a b > D .若a b >, 则22ac bc > 7.若a >b ,c 为实数,下列不等式成立是()A .ac >bcB .ac <bcC . 22ac bc >D . 22ac bc8.已知x ,y ∈R ,且x >y >0,则( ) A .11x y x y->- B .cos cos 0x y -< C .110x y->D .ln x +ln y >09.不等式536x x -++≥的解集是 ( ) A .[]5,7- B .(),-∞+∞C .()(),57,-∞-+∞ D .[]4,6-10.已知a ,b R ∈,且a b >,则下列不等式恒成立的是( )A .22a b >B .lg()0a b ->C .11()()22ab<D .1a b> 11.若,则下列结论不正确的是A .B .C .D .12.实数,a b 满足0a b >>,则下列不等式成立的是( ) A .1a b< B .1133a b<C a b a b <-.2a ab <二、填空题13.已知实数a ,b ,c 满足a >c ﹣2且1333abc++<,则333a bc-的取值范围是_______.14.已知不等式116a x y x y+≥+对任意正实数,x y 恒成立,则正实数a 的最小值为_______. 15.已知R a ∈,若关于x 的方程2210x x a a -+++=有实根,则a 的取值范围是__________.16.已知,,a b c R +∈,设a b c S b c a c a b=+++++,则S 与1的大小关系是__________.(用不等号连接) 17.已知ln ln x y <,则21x y y x-++的最小值为___________________. 18.设5x >,45P x x --23Q x x --,则P 与Q 的大小关系是P ______Q .19.设()f x x a x =-+,且|()|2f x ≤在[1,1]x ∈-上恒成立,则实数a 的取值范围为_________.20.定义运算x ·y ,,1,,x x y m y x y ≤⎧=-⎨>⎩若·m=|m-1|,则m 的取值范围是_____. 三、解答题21.已知函数()|21||23|f x x x =++-. (1)求不等式()6f x ≤的解集;(2)若关于x 的不等式22()log (3)2f x a a -->恒成立,求实数a 的取值范围. 22.(1)解不等式:1|1||2|2x x --->; (2)设集合P 表示不等式121x x a -+->对任意x ∈R 恒成立的a 的集合,求集合P ; (3)设关于x 的不等式22||200ax x a +--<的解集为A ,试探究是否存在a ∈N ,使得不等式.220x x +-<与|212x x -<+的解都属于A ,若不存在,说明理由.若存在,请求出满足条件的a 的所有值.23.(1)已知a <b <c ,且a +b +c =0,证明:a a a cb c--<. (224.已知数列{}n a 满足:12a =,1122n n n a a ++=+,*n N ∈.(1)求证2n n a ⎧⎫⎨⎬⎩⎭是等差数列并求n a ; (2)求数列{}n a 的前n 项和n S ; (3)求证:2132431111112n n a a a a a a a a ++++⋅⋅⋅+<----. 25.比较log (1) n n +与()*(1)log (2),2n n n N n ++∈≥大小,并证明.26.(1)若0a >,0b >,求证:11()4a b a b ⎛⎫++≥ ⎪⎝⎭; (2【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据不等式的性质,利用怍差法求解. 【详解】()()()-++---==+++b a m b b m ba bm ab am a a m a a m a a m , 因为0,0a b m >>>,所以()()0-<+b a m a a m ,所以b b m a a m+<+, ()()()()()()()()22b a b a b a n m b m a n b bn bm mn a am an nm a m b n a m b n a m b n +-+-++++++-----==++++++,因为0,0,0a b m n >>>>,所以()()()()()()0+-+-+<++b a b a b a n m a m b n ,所以++<++b m a na mb n, ()()()-++---==+++b a na n a ab bn ab an b n b b b n b b n , 因为0,0>>>a b n ,所以()()0-<+b a n b b n ,所以a n ab n b+<+, 所以b b m a n a a a m b n b ++<<<++。
故选:A 【点睛】本题主要考查不等式的基本性质,还考查了运算求解的能力,属于中档题.2.B解析:B 【分析】结合已知不等式可转化为即22a x x >-+,结合二次函数的性质求22x x -+ 在[2,)+∞ 上的最大值,即可求解. 【详解】解: [2,)x ∈+∞,22()0x x af x x-+=> [2,)x ∴∈+∞,220x x a -+>即22a x x >-+在[2,)x ∈+∞上恒成立.结合二次函数的性质可知当2x =时,22x x -+取得最大值为0.即0a >. 故选:B . 【点睛】本题考查了由不等式恒成立问题求参数的范围.对于关于()f x 的不等式在x 的某段区间上恒成立问题,一般情况下进行参变分离,若()a h x > 在区间上恒成立,只需求出()h x 的最大值,令max ()a h x > 即可; 若()a h x < 在区间上恒成立,只需求出()h x 的最小值,令min ()a h x < 即可. 3.A解析:A 【分析】根据对数函数的单调性可得0m >,0n <,根据不等式的性质可知m n m n ->+ ;通过比较11m n+ 与1 的大小关系,即可判断m n m n +>,从而可选出正确答案. 【详解】解:0.30.3log 0.6log 10m =>=,2211log 0.6log 1022n =<=,则0mn < ()()20m n m n n --+=->,m n m n ∴->+0.60.60.60.611log 0.3log 4log 1.2log 0.61m n+=+=<= m n mn ∴+> 故选:A. 【点睛】本题主要考查了对数的运算,对数函数的单调性.在比较对数的大小时,常常结合对数函数的单调性比较大小.对于()log a f x x =,若01a << ,则(1)当01x << 时,()0f x >; (2)当1x = 时,()0f x =; (3)当1x > 时,()0f x <; 若1a > ,则(1)当01x << 时,()0f x <; (2)当1x = 时,()0f x =; (3)当1x > 时,()0f x >.4.B解析:B 【分析】取特殊值排除ACD 选项,由指数函数12xy ⎛⎫= ⎪⎝⎭的单调性证明不等式,即可得出正确答案. 【详解】当11,2x y ==时,1112x y =<=,则A 错误;12xy ⎛⎫= ⎪⎝⎭在R上单调递减,x y >,则11()()22x y <,则B 正确;当4,1x y ==时,112221x y =>=,则C 错误; 当3,22x y ππ==时,sin 1sin 1x y =-<=,则D 错误; 故选:B 【点睛】本题主要考查了由条件判断不等式是否成立,属于中档题.5.B解析:B 【分析】对于A ,C ,D 举反例即可判断,对于B ,根据不等式的性质即可判断. 【详解】解:对于A ,例如1a =,0b =,2c =,则不满足,故A 错误, 对于B ,若a b >-,则a b -<,则c a c b -<+,成立,故B 正确,对于C ,若0c ,则不成立,故C 错误,对于D ,例如1a =,0b =,2c =-,3D =-,则不满足,故D 错误,故选:B . 【点睛】本题主要考查了不等式的性质的简单应用,要注意不等式应用条件的判断,属于基础题.6.D解析:D 【分析】根据不等式的性质、对数函数和指数函数的单调性,对选项逐一分析,由此得出正确选项. 【详解】对于A 选项,根据不等式传递性可知,A 选项命题正确.对于B 选项,由于ln y x =在定义域上为增函数,故B 选项正确.对于C 选项,由于2x y =在定义域上为增函数,故C 选项正确.对于D 选项,当0c 时,命题错误.故选D.【点睛】本小题主要考查不等式的性质,考查指数函数和对数函数的单调性,属于基础题.7.D解析:D 【分析】由已知条件,利用不等式的基本性质,直接求解,即可得到答案. 【详解】由题意,,a b c >为实数,在A 中,当0c ≤时,ac bc >不定成立,所以不正确; 在B 中,当0c ≥时,ac bc <不定成立,所以不正确; 在C 中,当0c时,22ac bc >不定成立,所以不正确;在D 中,因为2,0a b c >≥,所以22ac bc ≥成立,故选D. 【点睛】本题主要考查了不等式的基本性质的应用,其中解答中熟记不等式的基本性质,合理推理、运算是解答的关键,着重考查了推理与运算能力,属于基础题.8.A解析:A 【分析】结合选项逐个分析,可选出答案. 【详解】结合x ,y ∈R ,且x >y >0,对选项逐个分析:对于选项A ,0x y ->,110y xx y xy--=<,故A 正确; 对于选项B ,取2πx =,3π2y =,则3cos cos cos 2cos 1002x y -=π-π=->,故B对于选项C ,110y xx y xy--=<,故C 错误; 对于选项D ,ln ln ln x y xy +=,当1xy <时,ln 0xy <,故D 不正确. 故选A. 【点睛】本题考查了不等式的性质,属于基础题.9.B解析:B 【分析】利用绝对值三角不等式,得到538x x -++≥,恒成立. 【详解】53(5)(3)8x x x x -++≥--+= 536x x -++≥恒成立.故答案选B 【点睛】本题考查了解绝对值不等式,利用绝对值三角不等式简化了运算.10.C解析:C 【解析】 【分析】利用不等式的性质和函数的单调性,通过特值排除,对四个选项逐一进行分析即可得到答案 【详解】对于A ,令0,1a b ==-,200=,()211-=,满足a b >,但不满足22a b >,故排除 对于B ,令0,1a b ==-,()lg 10a b lg -==,故排除对于C ,1 2x y ⎛⎫= ⎪⎝⎭为减函数,当a b >时,1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故C 恒成立对于D ,令0,1a b ==-,011a b =<-,故排除 故选C 【点睛】本题主要考查了简单的函数恒成立问题,可以根据不等式的性质和函数的单调性,通过特值排除,属于基础题。