函数列与函数项级数一致收敛性解析
一致收敛函数列与函数项级数的性质

1 n 1
12n
2
(2n 2n2x)dx
而
1
lim
0 n
1
1 0dx
n
fn (x)dx
1 2
0
不相等
(2) 定理的条件是充分的, 但不必要
例3 fn (x) nxenx n 1, 2,... 在区间[0,1]上讨论.
f
(x)
lim
n
fn (x)
lim nxenx
n
0
x [0,1]
但在[0,1]上, fn(x) nxenx n 1, 2,...不一致收敛. 事实上,
{ fn(x)}的每一项在[a,b]上有连续的导数, 且{ fn(x)}在[a,b]上一致收敛,
则
d dx
f
(x)
d (lim dx n
fn (x))
lim n
d dx
fn (x)
3. 可微性
定理13.10 设{ fn (x)}为定义在[a,b]上的函数列, x0 [a,b]为{ fn(x)}的收敛点,
f (x)
f (x0 )
lim lim
xx0 n
fn (x)
f (x0 )
又 lim n
fn (x0 )
f (x0 )
lim
x x0
fn (x)
fn (x0 )
lim lim
n xx0
fn (x)
f (x0 )
所以
lim lim
xx0 n
fn
(x)
lim
n
lim
x x0
fn (x)
★ 在一致收敛条件下, 关于x与n极限可以交换极限顺序
fn (x) nxenx 在[0,1]的最大值为:
数学分析课件一致收敛函数列与函数项级数的性质

对于一致收敛的函数列或函数项级数 ,在每个点的某个邻域内,函数列或 级数的每一项都是有界的。这意味着 在每个点的附近,函数列或级数的变 化范围是有限的。
性质三:局部连续性
总结词
局部连续性是指一致收敛的函数列或函 数项级数在每个点的邻域内都是连续的 。
VS
详细描述
对于一致收敛的函数列或函数项级数,在 每个点的某个邻域内,函数列或级数的每 一项都是连续的。这意味着在每个点的附 近,函数列或级数的值是平滑变化的,没 有突然的跳跃或断点。
03
一致收敛函数列与函数项 级数的应用
应用一:微积分学中的一致收敛概念
要点一
总结词
要点二
详细描述
理解一致收敛在微积分学中的重要性
一致收敛是数学分析中的一个重要概念,它描述了函数列 或函数项级数在某个区间上的收敛性质。在微积分学中, 一致收敛的概念对于研究函数的极限行为、连续性、可微 性和积分等性质至关重要。通过理解一致收敛,可以更好 地理解函数列和级数的收敛性质,从而更好地应用微积分 学中的相关定理和性质。
应用二:实数完备性的证明
总结词
利用一致收敛证明实数完备性
详细描述
实数完备性是实数理论中的重要性质,它表 明实数具有某些理想的完备性。利用一致收 敛的性质,可以证明实数完备性的一些重要 定理,如确界定理、区间套定理和闭区间套 定理等。这些定理在实数理论中起着至关重 要的作用,为实数性质的研究提供了重要的 理论支持。
05
一致收敛函数列与函数项 级数的扩展知识
扩展知识一:一致收敛的判定定理
01
柯西准则
对于任意给定的正数$varepsilon$,存在正整数$N$,使得当
$n,m>N$时,对所有的$x$,有$|f_n(x)-f_m(x)|<varepsilon$。
函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用函数项级数是由一系列函数的和组成的级数,通常用于描述函数的展开式或泰勒级数。
对于某些函数项级数,我们希望判断其在一定的条件下是否具有一致收敛性,这对于分析和解决问题具有很大的价值。
本文将介绍一些函数项级数一致收敛性的判别方法及其应用。
一、函数项级数收敛的定义设 $f_n$ 为定义在区间 $I$ 上的函数序列,如果存在函数 $f$ 使得$\lim_{n\to\infty}f_n(x)=f(x)$ 对于所有 $x\in I$ 成立,则称函数序列$\{f_n\}$ 在 $I$ 上逐点收敛于函数 $f$,并记为 $f_n\to f$($n\to\infty$)。
二、Weierstrass 判别法Weierstrass 判别法是判断函数项级数一致收敛性的重要方法之一。
它通常用于非负函数项级数。
证明如下:设 $s_N(x)=\sum_{n=1}^{N}f_n(x)$ 为前 $N$ 项和函数,$s(x)=\sum_{n=1}^{\infty}f_n(x)$ 为级数的和函数。
由于 $|f_n(x)|\leq M_n$,所以对于 $m>n$,有 $|s_m(x)-s_n(x)|=|\sum_{k=n+1}^{m}f_k(x)|\leq\sum_{k=n+1}^{m}|f_k(x)|\leq \sum_{k=n+1}^{m}M_k$。
三、Abel 判别法1. 证明 Riemann 积分的线性性如果函数 $f(x)$ 和 $g(x)$ 在区间 $[a,b]$ 上 Riemann 可积,则它们的线性组合$\alpha f(x)+\beta g(x)$ 也在 $[a,b]$ 上 Riemann 可积,并且$$\int_a^b(\alpha f(x)+\beta g(x))dx=\alpha \int_a^bf(x)dx+\beta\int_a^bg(x)dx$$如果 $f(x)$ 和 $g(x)$ 在 $[a,b]$ 上一致连续,则它们的线性组合也在$[a,b]$ 上一致连续。
函数项级数和函数列一致收敛

函数项级数和函数列一致收敛函数项级数和函数列是数学中非常重要的概念。
在许多数学领域,我们经常会遇到这两个概念,并且它们在解决许多问题时发挥着重要的作用。
本文将介绍函数项级数和函数列的概念,并探讨它们之间的联系和应用。
首先,我们来看看函数项级数的概念。
一个函数项级数是指一系列函数的无穷和。
具体而言,给定一个函数项级数$\sum_{n=1}^{\infty}f_n(x)$,其中$f_n(x)$是一个函数序列。
我们可以将级数记为$S(x)=\sum_{n=1}^{\infty}f_n(x)$。
函数项级数的收敛性是指$S(x)$是否存在有限的极限。
当级数对于所有的$x$都收敛时,我们说该函数项级数是一致收敛的。
与之相对应的是函数列。
函数列是一系列函数的序列。
对于给定的$x$,函数列的极限是指当$n$趋向于无穷大时,函数序列中的每个函数在$x$处的极限都存在,并且这些极限构成了一个函数。
具体而言,给定一个函数列$(f_n(x))$,其极限为$f(x)$,可以表示为$\lim_{n\to\infty}f_n(x)=f(x)$。
函数项级数和函数列之间存在着紧密的联系。
实际上,函数项级数可以看作是函数列的一种特殊情况。
考虑一个函数项级数$\sum_{n=1}^{\infty}f_n(x)$,我们可以构造一个函数列$(S_n(x))$,其中$S_n(x)$表示级数的部分和,即$S_n(x)=\sum_{k=1}^{n}f_k(x)$。
函数列$(S_n(x))$就是函数项级数$\sum_{n=1}^{\infty}f_n(x)$的部分和函数列。
一个重要的问题是函数项级数和函数列的收敛性之间的关系。
当级数对于所有的$x$都收敛时,我们说该函数项级数是一致收敛的。
类似地,当函数列对于所有的$x$都收敛时,我们也说该函数列是一致收敛的。
可以证明,函数项级数的一致收敛性等价于其部分和函数列的一致收敛性。
也就是说,如果函数项级数收敛于函数$S(x)$,那么它的部分和函数列也收敛于$S(x)$。
数学分析复习3一致收敛

数学分析复习3一致收敛一致收敛是数学分析中一个非常重要的概念,也是许多数学理论和方法的基础。
在数学分析课程中,一致收敛通常是在函数序列或者函数级数中讨论的,它涉及到函数序列或者函数级数对于每个自变量取值的收敛性以及收敛速度。
下面我们将对一致收敛的概念进行详细的复习。
1.函数序列的一致收敛:考虑函数序列{fn(x)},其中n表示序列中的第n个函数,x表示自变量的取值。
函数序列{fn(x)}在区间[a, b]上一致收敛到f(x),表示对于任意给定的ε>0,存在一个正整数N,当n>N且x∈[a,b]时,有,fn(x)-f(x),<ε恒成立。
一致收敛的定义中要求对于任意给定的ε,只要取到足够大的函数序列中的序号N,那么在定义域内的所有自变量x对应的函数值都会在ε的邻域内,与极限函数f(x)的函数值很接近。
这种函数序列的收敛性不受自变量取值的影响,而是更多地侧重于序列中函数与极限函数函数值的接近程度。
2.函数级数的一致收敛:考虑函数级数Σfn(x),其中n表示级数中的第n个函数,x表示自变量的取值。
函数级数Σfn(x)在区间[a, b]上一致收敛到f(x),表示对任意给定的ε>0,存在一个正整数N,当n>N且x∈[a,b]时,有,Σfn(x)-f(x),<ε恒成立。
函数级数的一致收敛与函数序列的一致收敛类似,都是通过控制级数或者序列中函数与其极限函数之间的差距来定义收敛性。
函数级数的一致收敛还要求对于自变量x的每一个取值都满足一致收敛的条件。
3.一致收敛的性质一致收敛具有一些重要的性质和定理,这些性质在数学分析和实际问题的分析中都有重要的应用。
以下是一些常见的一致收敛性质:(1)函数序列或者函数级数的极限函数是唯一的。
(2)一致收敛的函数序列或者函数级数的极限函数仍然是连续的。
(3)一致收敛的函数序列或者函数级数可以逐项积分、逐项求导。
(4)一致收敛的函数序列或者函数级数可以逐项地与其他函数进行运算,如加、减、乘、除等。
函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用函数项级数的一致收敛性是数学分析中的重要概念,对于研究函数项级数的性质和应用具有重要意义。
本文将从一致收敛性的定义开始,介绍一致收敛性的判别定理和具体的应用,希望读者通过本文的了解和学习,能够更好地理解和应用函数项级数的一致收敛性。
一、一致收敛性的定义在介绍一致收敛性的判别定理和应用之前,我们首先来了解一下一致收敛性的定义。
对于一般的数项级数来说,我们只需要关注级数的部分和序列是否收敛即可。
但对于函数项级数来说,因为级数的每一项都是函数,所以我们不仅需要考察级数的部分和序列的收敛性,还需要考察函数序列在定义域上的收敛性。
设对于定义在区间上的函数序列,对于给定的,如果对于任意,都存在一个自然数,使得当时,有∣∣fn(x)−f(x)∣∣<ε那么我们称函数序列在区间上一致收敛于函数,并记作。
换句话说,对于一致收敛的函数序列而言,不仅级数的部分和序列收敛于函数,且对于每一个自然数,其函数项序列在整个区间上都趋向于函数。
二、一致收敛性的判别定理对于函数项级数的一致收敛性,我们有一些判别定理可以帮助我们进行判断。
这里我们简要介绍几个重要的判别定理:1. 魏尔斯特拉斯判别定理(Weierstrass判别定理)魏尔斯特拉斯判别定理是判别函数项级数一致收敛性的重要定理之一。
该定理表述如下:若对于区间上的函数序列,存在一个数项级数使得对于任意和有∣∣fn(x)−an∣∣<bn,则级数在区间上一致收敛。
通过以上判别定理的介绍,我们可以看到,判别函数项级数一致收敛性的方法有多种多样,我们可以根据具体的情况选择不同的方法来进行判断,更好地理解和应用函数项级数的一致收敛性。
三、一致收敛性的应用函数项级数的一致收敛性不仅在理论上具有重要意义,而且在实际问题中也有着广泛的应用。
下面我们将介绍一些函数项级数一致收敛性在实际问题中的应用。
1. 函数项级数的积分和微分操作在实际问题中,我们经常会遇到需要对函数项级数进行积分和微分操作的情况。
一致收敛函数列与函数项级数的性质

证明 :已知 f n ( x )在R上一致收敛于f ( x ),即
0, N ,当n N , 对一切x R, 有 f n ( x ) f ( x ) 取定m N , x R, 有 f m ( x ) f ( x )
又因f m ( x )在R上一致连续, 即 对上述的 0
x [a , b], 有f n ( x ) f n ( x0 ) f n( x )dx
x0 x
lim f n ( x0 ) A; 且由Th3知:lim f n( t )dt g ( t )dt
n n x0 x0
x
x
f ( x ) lim f n ( x ) A g ( t )dt
f ( x1 ) f ( x2 ) f ( x1 ) f m ( x1 ) f m ( x1 ) f m ( x2 ) f ( x2 ) f m ( x2 ) 3
f ( x )在R上一致连续.
函数列 f ( n ) ( x )在R一致收敛于函数( x ), 则 x ( x ) ce , 其中c是常数. 又 f
nx 从而函数列f n ( x ) 在[0,1]非一致收敛 , 1 nx 1 1 nx 1 1 ln(1 n) 1 但 lim f n ( x )dx lim dx lim n n 0 n 0 1 nx n 1 1 1 nx 而 lim f n ( x )dx lim dx 0 1dx 1 0 n 0 n 1 nx
练习解答
一、 讨论下列函数列在所示区间D上是否一致收敛 ,
并说明理由.
1 (1) f n ( x ) x 2 , n 1,2,, D ( 1,1) n 解 : f ( x ) lim f n ( x ) lim x 2 1 x n n n2 1 2 sup f n ( x ) f ( x ) sup x 2 x n x( 1,1 ) x( 1,1 ) 1 2 1 n sup 1 x( 1,1 ) 2 n x 2 x n
数学分析13.2一致收敛函数列与函数项级数的性质

第十三章 函数列与函数项级数 2 一致收敛函数列与函数项级数的性质定理13.8:设函数列{f n }在(x,x 0)∪(x 0,b)上一致收敛于f(x),且对每个n ,x n lim →f n (x)=a n ,则∞→n lim a n 和0x n lim →f(x)均存在且相等.证:∀ε>0,∵{f n }一致收敛于f(x),∴∃N>0,当n>N 和任意自然数p , 对一切x ∈(x,x 0)∪(x 0,b)有,|f n (x)-f n+p (x)|< ε,∴|a n -a n+p |=0x n lim →|f n (x)-f n+p (x)|≤ε,∴{a n }是收敛数列. 设∞→n lim a n =A ,则∀ε>0,∃N>0,当n>N 时,对一切x ∈(x,x 0)∪(x 0,b)同时有, |f n (x)-f(x)|<3ε和|a n -A|<3ε. 特别取n=N+1,有|f N+1(x)-f(x)|<3ε和|a N+1-A|<3ε. 又0xn lim →f N+1(x)=a N+1,∴∃δ>0, 当0<|x-x 0|<δ时,|f N+1(x)-a N+1|<3ε,从而当x 满足0<|x-x 0|<δ时,有 |f(x)-A|≤|f N+1(x)-f(x)|+|f N+1(x)-a N+1|+|a N+1-A|<3ε+3ε+3ε=ε, 即0xn lim →f(x)=A ,得证!注:定理13.8指出:∞→→n x n lim lim 0f n (x)=0xn n lim lim →∞→f n (x).定理13.9:(连续性)若函数列{f n }在区间I 上一致收敛,且每一项都连续,则其极限函数f 在I 上也连续.证:设x 0为I 上任一点,∵0xn lim →f n (x)=f n (x 0),由定理13.8知, 0x n lim →f(x)存在,且0x n lim →f(x)=∞→n lim f n (x 0)=f(x 0),∴f(x)在I 上连续.注:定理13.9指出:各项为连续函数的函数列在区间I 上其极限函数不连续,则此函数列在区间I 上不一致收敛. 如: 函数列{x n }各项在(-1,1]上都连续,但其极限函数f(x)=⎩⎨⎧=< 1x 11|x |0,,在x=1时不连续,所以{x n }在(-1,1]上不一致收敛.推论:若连续函数列{f n }在区间I 上内闭一致收敛于f ,则f 在I 上连续.定理13.10:(可积性)若函数列{f n }在[a,b]上一致收敛,且每一项都连续,则⎰∞→b an lim f n (x)dx=⎰∞→ban n (x )f lim dx.证:设f 是{f n }在[a,b]上的极限函数. 由定理13.9,f 在[a,b]上连续, ∴f n (n=1,2,…)与f 在[a,b]上都可积. ∵在[a,b]上f n (x)⇉f(x) (n →∞), ∴∀ε>0,∃N>0,当n>N 时,对一切x ∈[a,b]都有|f n (x)-f(x)|<ε. 根据定积分的性质,当n>N 时,有⎰⎰-baban f(x)dx (x)dx f =f(x))dx (x)(f ban -⎰≤dx f(x )(x )f ban ⎰-≤ε(b-a).∴⎰∞→ban n(x )f lim dx=⎰ba f(x )dx =⎰∞→ba n lim f n (x)dx. 得证!例1:举例说明当{f n (x)}收敛于f(x)时,一致收敛性是极限运算与积分运算交换的充分条件,但不是必要条件.解:如f n (x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<≤<≤ 1x n 10,n 1x n 21x ,2na -a 2n21x 0 ,x 2na n n n , n=1,2,…. 其图像如图:{f n (x)}是[0,1]上的连续函数列,且∀x ∈[0,1],∞→n lim f n (x)=0=f(x). 又Dx sup ∈|f n (x)-f(x)|=a n ,∴{f n (x)}在[0,1]上一致收敛于0的充要条件是:∞→n lim a n =0.∵⎰10n (x )f dx=2na n,∴⎰10n (x )f dx →⎰10f(x )dx=0的充要条件是:2n a lim n n∞→=0. 当a n ≡1时,{f n (x)}在[0,1]上不一致收敛于f(x),但定理13.10仍成立. 而当a n =n 时,{f n (x)}不一致收敛于f(x), 且⎰10n (x )f dx ≡21不一致收敛于⎰10f(x )dx=0.定理13.11:(可微性)设{f n }为定义在[a,b]上的函数列,若x 0∈[a,b]为{f n }的收敛点,{f n }的每一项在[a,b]上有连续的导数,且{f ’n }在[a,b]上一致收敛,则())x (f lim dx d n n ∞→=⎪⎭⎫⎝⎛∞→)x (f dx d limn n . 证:设)x (f lim 0n n ∞→=A ,f ’n ⇉g (n →∞), x ∈[a,b],则对任一x ∈[a,b],总有f n (x)=f n (x 0)+⎰'x x n 0(t)f dt. 两边对n →∞取极限得:)x (f lim n n ∞→=A+⎰xx 0g(t)dt ,又)x (f lim n n ∞→=f(x),∴f(x)=A+⎰xx 0g(t)dt. 两边微分得证!推论:设函数列{f n }定义在区间I 上的,若x 0∈I 为{f n }的收敛点,且{f ’n }在I 上内闭一致收敛,则f 在I 上可导,且f ’(x)=())x (f lim n n '∞→.例2:举例一致收敛性是极限运算与求导运算交换的充分条件,但不是必要条件. 解:如函数列f n (x)=2n 1 ln(1+n 2x 2)及f ’n (x)=22x n 1nx+, n=1,2,… 在[0,1]上都收敛于0,即∞→n lim f n (x)=∞→n lim f ’n (x)=0,∴在[0,1]上,∞→n lim f ’n (x)=(∞→n lim f n (x))’成立.又由][0,1x ∞n max lim ∈+→|f ’n (x)-f ’(x)|=nx 2nx lim∞n +→=21, 知 导函数列{f ’n (x)}在[0,1]上不一致收敛. 但对任意δ>0,有,1][δx sup ∈|f ’n (x)-f ’(x)|=22,1] [δx x n 1nx sup+∈≤22δn 1n+→0 (n →∞), ∴{f ’n }在(0,1]上内闭一致收敛. ∴在(0,1]上,∞→n lim f ’n (x)=(∞→n lim f n (x))’成立.定理13.12:(连续性)若函数项级数∑(x)u n 在区间[a,b]上一致收敛,且每一项都连续,则其和函数在[a,b]上也连续. 即有:∑⎪⎭⎫ ⎝⎛→(x)u lim nx n 0=()∑→(x)u lim n x n 0. 证:设x 0为[a,b]上任意一点,∑(x)u n 在区间[a,b]上一致收敛于S(x). 则∀ε>0,∃N>0,当n>N 时,对一切x ∈[a,b],有|S(x)-S n (x)|<3ε, |S n (x 0)-S(x 0)|<3ε, 又u n (x)在[a,b] 上连续(n=1,2,……), ∴对取定的n>N ,S n (x)在[a,b]上连续,∴对上述的ε,∃δ>0, 当x ∈[a,b],且|x-x 0|<δ时,|S n (x)-S n (x 0)|<3ε ,∴当x ∈[a,b]时,|S(x)-S(x 0)|=|S(x)-S n (x)+S n (x)-S n (x 0)+S n (x 0)-S(x 0)| ≤|S(x)-S n (x)|+|S n (x)-S n (x 0)|+|S n (x 0)-S(x 0)|<ε. 即S(x)在x 0连续, 从而在[a,b]上连续. 得证!定理13.13:(逐项求积) 若函数项级数∑(x)u n 在区间[a,b]上一致收敛,且每一项都连续,则∑⎰ba n (x )u dx =⎰∑ba n (x )u dx.定理13.14:(逐项求导) 若函数项级数∑(x)u n 在每一项都有连续的导函数,x 0∈[a,b]为∑(x)u n 的收敛点,且∑'(x)u n 在[a,b]上一致收敛,则∑⎪⎭⎫ ⎝⎛(x )u dx d n =()∑(x)u dxdn . 证:设∑'(x)u n 在[a,b]上一致收敛于S *(x),∵u ’n (x)在[a,b]上连续, 由定理13.12知,S *(x)在[a,b]上连续. 又由定理13.13知,∀x ∈[a,b], 有⎰xa *(t)S dt=⎰∑'ba n (t)u dt=∑⎰'xa n (t)u dt =∑(x)u n -∑(a)u n =S(x)-S(a). 等式两端对x 求导得:S ’(x)=S *(x)=∑'(x)u n ,得证!例3:设u n (x)=3n1ln(1+n 2x 2), n=1,2,…. 证明:函数项级数∑(x)u n 在[0,1]上一致收敛,并讨论其和函数在[0,1]上的连续性、可积性与可微性. 证:对每个n ,易见u n (x)在[0,1]上递增,且当t ≥1时,有ln(1+t 2)<t , ∴u n (x)≤u n (1)=3n 1ln(1+n 2)<3n 1·n=2n1, n=1,2,… 又∑2n1收敛,∴∑(x)u n 在[0,1]上一致收敛. 由每一个u n (x)在[0,1]上连续,知其和函数在[0,1]上的连续且可积.又u ’n (x)=)x n 1(n x2n 2232+=)x n 1(n 2x 22+≤)x n 1(n 2nx 222+≤2n 1, n=1,2,…知 ∑'(x)u n在[0,1]上一致收敛. ∴其和函数在[0,1]上可微.例4:证明:函数ζ(x)=∑∞=1n x n 1在(1,+∞)上有连续的各阶导函数. 证:记u n (x)=x n 1, u n (k)(x)=(ln n 1)k x n 1=(-1)k x knn ln , k=1,2,…. 对任意x ∈[a,b]⊂(1,+∞),有|u n (k)(x)|=xkn nln≤a k nnln , k=1,2,….由∞→n lim 1)/2-(a k n n ln =0知,当n 充分大时,有1)/2-(a k n nln <1,从而 xk n n ln =1)/2-(a k 1)/2(a n n ln n 1⋅+<1)/2(a n 1+, 又∑+1)/2(a n 1收敛, ∴∑∞=1n (k )n (x )u 在[a,b]上一致收敛,从而∑∞=1n (k )n (x)u 在(1,+∞)上内闭一致收敛. ∴ζ(x)在(1,+∞)上有连续的各阶导函数,且ζ (k)(x)=(-1)k xkn nln, k=1,2,….习题1、讨论下列函数列在所定义的区间上:a. {f n }与{f ’n }的一致收敛性;b. {f n }是否有定理13.9~11的条件与结论.(1)f n (x)=nx n2x ++, x ∈[0,b];(2)f n (x)=x-n x n , x ∈[0,1];(3)f n (x)=nx 2-nx e, x ∈[0,1].解:(1)记∞n lim +→f n (x)=nx n2x lim∞n +++→=1=f(x); b][0,x sup ∈|f n (x)-f(x)|=nx xsupb][0,x +∈→0 (n →∞),∴{f n }在[0,b]上一致收敛性;记∞n lim +→f ’n (x)=2∞n n)(x nlim++→=g(x); b][0,x sup ∈|f ’n (x)-g(x)|=2b][0,x n)(x nsup+∈→0 (n →∞),∴{f ’n }在[0,b]上一致收敛性. 又∵f n (x)=nx n2x ++和f ’n (x)=2n)(x n +, n=1,2,… 在[0,b]上都连续, ∴{f n }有定理13.9~11的条件与结论.(2)记∞n lim +→f n (x)=⎪⎪⎭⎫ ⎝⎛+→n x -x lim n ∞n =x=f(x); [0,1]x sup ∈|f n (x)-f(x)|=n x sup n[0,1]x ∈→0 (n →∞),∴{f n }在[0,1]上一致收敛性;记g(x)=∞n lim +→f ’n (x)=∞n lim +→(1-x n-1)=⎩⎨⎧<≤=1x 01,1 x 0,;∵{f ’n (x)}各项在[0,1]上连续,而g(x)在[0,1]不连续, ∴{f ’n }在[0,1]上不一致收敛性.又f n (x)=x-nx n, n=1,2,… 在[0,1]上都连续,∴{f n }有定理13.9~10的条件与结论,但不具有13.11的条件. 又f ’(x)=x ’=1≠∞n lim +→f ’n (x),∴{f n }也不具有13.11的条件.(3)记∞n lim +→f n (x)=2-nx ∞n nx e lim +→=0=f(x); [0,1]x sup ∈|f n (x)-f(x)|=2-nx [0,1]x nxe sup ∈=n ·2)1/2n n(e n21-=1/2e 2n →∞ (n →∞),∴{f n }在[0,1]上不一致收敛性;记g(x)=∞n lim +→f ’n (x)=2-nx ∞n ne lim +→(1-2nx 2)=⎩⎨⎧=∞+≤<0x ,1x 0 0,;∵{f ’n (x)}各项在[0,1]上连续,而g(x)在[0,1]不连续,∴{f ’n }在[0,1]上不一致收敛性. 从而{f n }不具有定理13.9~11的条件. ∵f(x)=0在[0,1]上连续,∴{f n }有定理13.9的结论.∵⎰+→10nx -∞n 2nx e lim dx=⎰+→10nx -∞n 2e 21lim d(nx 2)=⎪⎭⎫ ⎝⎛-+→n ∞n e 2121lim =21≠⎰+→10n ∞n )x (f lim dx=0. 又{f ’n (x)}在x=0不收敛;∴{f n }不具有定理13.10~11的结论.2、证明:若函数列{f n }在[a,b]上满足定理13.11的条件,则{f n }在[a,b]上一致收敛.证:设f ’n (x)⇉g(x) (n →∞), x ∈[a,b],则∀ε>0,∃N 1>0,当n>N 1时, 对一切t ∈[a,b],有|f ’n (t)-g(t)|<)a b (2ε-; 又f n (x)点x 0收敛,∴对上述的ε>0,∃N 2>0,当n>N 2时,有|f n (x 0)-f(x 0)|<2ε. ∵对任意x,x 0∈[a,b]有f n (x)=f n (x 0)+⎰'xx n 0(t)f dt ,∴f(x)=∞→n lim f n (x)=f(x 0)+⎰xx 0g(t)dt. 取N=max{N 1,N 2},则当n>N 时,有∴|f n (x)-f(x)|=|f n (x 0)-f(x 0)+[]⎰'xx ng(t)-(t)f dt | ≤|f n (x 0)-f(x 0)|+|⎰'xx ng(t)-(t)f dt |<ε. 得证.3、设S(x)=∑∞=1n 21-n nx , x ∈[-1,1],计算积分⎰x 0S(t)dt .解:∵21-n n x ≤2n 1, x ∈[-1,1],由M 判别法知∑∞=1n 21-n n x 在[-1,1]上一致收敛.又21-n n x (n=1,2,…)在[-1,1]上连续,∴⎰x 0S(t)dt =∑⎰∞=1n x 021-n dt n t =∑∞=1n 3nnx .4、S(x)=∑∞=1n nn cosnx , x ∈R ,计算积分⎰x0S(t)dt .解:∵nn cosnx ≤nn 1, x ∈R ,由M 判别法知∑∞=1n nn cosnx 在R 上一致收敛.又nn cosnx (n=1,2,…)在R 上连续,∴⎰x0S(t)dt =∑⎰∞=1n xdt nn cosnt =∑∞=1n 2nnsinnx .5、S(x)=∑∞=1n nx -ne , x>0,计算积分⎰ln3ln2S(t)dt .解:由(ne -nx )’=-n 2e -nx <0,知ne -nx 单调减,∴对任何x ∈[ln2,ln3],有 ne -nx ≤ne-nln2=n 2n . 又由n n 2n =2n n→21<1 (n →∞),知∑n 2n收敛.∴∑∞=1n nx -ne 在[ln2,ln3]上一致收敛. 又ne -nx (n=1,2,…)在[ln2,ln3]上连续,∴⎰ln3ln2S(t)dt =∑⎰∞=1n ln3ln2nt-dt ne =∑∞=⎪⎭⎫⎝⎛-1n n n3121=21.6、证明:函数f(x)=∑3n nxsin 在R 上连续,且有连续的导函数. 证:∵3n nx sin ≤3n 1, x ∈R ,由M 判别法知∑3nnxsin 在R 上一致收敛. 又3nnxsin (n=1,2,…)在R 上连续,∴f(x)在R 上连续. ∵|(3n nx sin )’|=|2n cosnx |≤2n 1,由M 判别法知∑2n cosnx在R 上一致收敛.又2ncosnx(n=1,2,…)在R 上连续,∴f(x)在R 上有连续的导函数.7、证明:定义在[0,2π]上的函数项级数∑∞=0n n cosnx r (0<r<1)满足定理13.13条件,且⎰∑⎪⎭⎫⎝⎛∞=2π0n n dt cosnx r =2π. 证: ∵|r n cosnx|≤r n (0<r<1), x ∈[0,2π],又∑ r n (0<r<1)收敛, 由M 判别法知∑∞=0n n cosnx r 在[0,2π]上一致收敛.又r ncosnx 在[0,2π]上连续,∴∑∞=0n n cosnx r (0<r<1)满足定理13.13条件,且⎰∑⎪⎭⎫ ⎝⎛∞=2π0n n dx cosnx r =∑⎰∞=0n 2π0ncosnx dx r . 又⎰2π0dx =2π,⎰2π0cosnx dx =0(n=1,2…)∴⎰∑⎪⎭⎫⎝⎛∞=2π00n n dt cosnx r =2π.8、讨论下列函数列在所定义区间上的一致收敛性及极限函数的连续性、可微性和可积性:(1)f n (x)=x 2-nx e ,n=1,2,…, x ∈[-L,L]; (2)f n (x)=1nx nx+, n=1,2,…, I. x ∈[0,+∞);II. x ∈[a,+∞) (a>0). 解:(1)∵∞n lim +→f n (x)=0=f(x), x ∈[-L,L],且L][-L,x sup ∈|f n (x)-f(x)|=L][-L,x sup ∈| x 2-nx e |≤2ne1→0 (n →∞),∴{f n (x)}在[-L,L]上一致收敛于0,且其极限函数f(x)=0在[-L,L]上连续可积可微. 又f n (x)=x 2-nx e ,n=1,2,…在[-L,L]上连续,∴()⎰+→LL -n ∞n dx (x )f lim =⎪⎭⎫ ⎝⎛⎰+→LL -n ∞n (x)dx f lim . ∵f ’n (x)=2-nx e(1-2nx 2), 且(x)f lim n ∞n '+→=⎩⎨⎧=≠≤≤ 0x 10x L x L -0,,且, ∴[(x)f lim n ∞n +→]’≠(x)f lim n ∞n '+→.(2)∵f(x)=∞n lim +→f n (x)=1=⎩⎨⎧+∞<≤<=x a 010x 0,,,且)[a,x sup +∞∈|f n (x)-f(x)|=1nx 1-sup)[a,x ++∞∈=1na 1+→0 (n →∞), ∴{f n (x)}在[a,+∞) (a>0)上一致收敛于1,在[0,+∞)上内闭一致收敛. ∴其极限函数不在[0,+∞)上连续可积可微;但在[a,+∞) (a>0)上其极限函数f(x)=1连续可微,但不可积.9、证明:函数S(x)=∑xn 1在(1,+∞)上连续,且有连续的各阶导数. 证:∀x ∈(1,+∞),取1<p<x ,则0<x n 1≤p n1,由M 判别法,知 ∑x n 1在[p,+∞)上一致收敛,在(1,+∞)上内闭一致收敛. 又x n 1在(1,+∞)上连续,∴S(x)在(1,+∞)上连续. 又)k (x n 1⎪⎭⎫ ⎝⎛=x k kn n ln )1(-, k=1,2,…在(1,+∞)上连续. ∀x ∈(1,+∞),取1<p<x ,使x k kn n ln )1(-≤p k n n ln . 固定k ,取q>p>1, 由p k n n ln /q n 1=q -p k n n ln →0 (n →∞),及∑q n1收敛,知∑p k n n ln 收敛, ∴∑-x k kn n ln )1(在[p,+∞)上一致收敛,在(1,+∞)上内闭一致收敛. ∴S (k)(x)=∑⎪⎭⎫ ⎝⎛)k (x n 1=∑-x k kn n ln )1( 在(1,+∞)上连续. 得证!10、设f 在(-∞,+∞)上有任何阶导数,记F n =f (n), 且在任何有限区间内F n ⇉φ (n →∞),试证:φ(x)=ce x (c 为常数). 证:由条件可知φ’(x)=[∞n lim +→f (n)(x)]’=∞n lim +→[f (n)(x)]’ =∞n lim +→f (n+1)(x)=φ(x). 即有φ(x )(x )φ'=1,两边取积分得:⎰'φ(x )(x )φdx =⎰dx +C ,即⎰φ(x )1d φ(x) =x+c 1, ∴ln φ(x)=x+c 1,即φ(x)=1c x e +=1c e e x =ce x (其中c=1c e 为常数).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章函数列与函数项级数§1 一致收敛性(一) 教学目的:掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(二) 教学内容:函数序列与函数项级数一致收敛性的定义;函数序列与函数项级数一致收敛性判别的柯西准则;函数项级数一致收敛性的魏尔斯特拉斯判别法.基本要求:1)掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法.2、教学基本要求:理解并掌握函数列与函数项级数的概念及一致收敛的概念和性质;掌握函数项级数的几个重要判别法,并能利用它们去进行判别;掌握一致收敛函数列与函数项级数的极限与和函数的连续性,可积性,可微性,并能应用它们去解决问题。
3、教学重点难点:重点是函数列一致收敛的概念、性质;难点是一致收敛性的概念、判别及应用。
(三) 教学建议:(1) 要求学生必须掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(2) 对较好学生可要求他们掌握狄利克雷判别法和阿贝尔判别法.————————————————————一函数列及其一致收敛性对定义在区间I 上的函数列E x x f n ∈},)({,设 E x ∈0,若数列 })({0x f n 收敛,则称函数列})({x f n 在点0x 收敛,0x 称为函数列})({x f n 收敛点;若数列 })({0x f n 发散,则称函数列})({x f n 在点0x 发散。
使函数列})({x f n 收敛的全体收敛点集合称为函数列})({x f n 收敛域( 注意定义域与收敛域的区别 )。
若函数列})({x f n 在数集E D ⊂上每一点都收敛,则称函数列})({x f n 在数集D 上收敛,这时D 上每一点x ,都有函数列的一个极限值)()(lim x f x f n n =∞→与之对应,由这个对应关系所确定的函数,称为函数列})({x f n 的极限函数。
逐点收敛 ( 或称为“点态收敛” )的“N -ε”定义.例1 对定义在) , (∞+∞-内的等比函数列)(x f n =nx , 用“N -ε”定义验证其收敛域为] 1 , 1 (-, 且∞→n lim )(x f n = ∞→n lim nx =⎩⎨⎧=<. 1 , 1 , 1 ||, 0 x x例2 )(x f n =nnxsin . 用“N -ε”定义验证在) , (∞+∞-内∞→n lim )(x f n =0.函数列的一致收敛性:设函数列 })({x f n 在E 上收敛于 )(x f ,若对任意的0>ε ,存在自然数)(εN N =,当 N n >时,对E 中一切 x 都有ε<-)()(x f x f n则称函数列)}({x f n 在E 上一致收敛于)(x f 。
注意 这里的 N 只与ε有关,与x 无关,这一点是一致收敛与逐点收敛的本质区别。
一致收敛的几何意义对任给的ε-带 }|)(|;),({ε<-x f y y x ,总存在一个N ,N n >时,)(x f n 的图形全部落入这个ε-带内。
一致收敛情况图示对任意0>ε,n 充分大时,)(x f n 将全部落入ε-带以内。
)}({x f n 收敛但不一致收敛的几何意义:对任意 D x ∈, )()(lim x f x f n n =∞→,但存在一个00>ε,对任意的N ,都可找到一个0n ,尽管 N n >0,但 )(0x f n 总有一部分落在0ε带以外。
例 证明函数列证明 1)函数列在 ]1,0[ 上收敛。
显然 对任意的]1,0[∈x , 0)(21→+=nx nx f nn 2)但 )(x f n 不一致收敛于0先看一看函数列的图象(图中给出的是 n =8,20,50 的情况)clf,x=0:1/100:1; y1=8*x./(1+64*x.^2); y2=20*x./(1+400*x.^2); y3=50*x./(1+2500*x.^2); plot(x,y1,x,y2,x,y3,'linewidth',2) hold onplot([-0.1,1],[0,0],'b',[0,0],[-0.1,0.6],'b') axis([-0.1,1.2,-0.1,0.6])legend('y1,n=8','y2,n=20','y3,n=50')可以看出,对于 5.00<ε,无论 n 再大,)(x f n 的图象总有一部分落在0ε-带以外。
事实上存在 n x n 10=, 000.21|)()(|ε>=-x f x f n n , 所以该函数列是不一致收敛的。
例 函数列 }{nx 在]1,0[上不一致收敛,但在 1,],0[<αα 上一致收敛。
先看看该函数列的图象clf,x=0:1/100:1;y1=x.^4;y2=x.^10;y3=x.^50; plot(x,y1,x,y2,x,y3,'linewidth',2)对于10<ε,不管n 再大,nx 的图象总有一部分落在0ε-带以外。
事实上,我们容易看出n e n n ⇒→-1)11( 充分大时,31)11(>-n n 所以该函数列在]1,0[上不一致收敛。
再看看该函数列在 1,],0[<αα 上的图象 clf,x=0:1/100:0.7;y1=x.^13;y2=x.^18;y3=x.^20;plot(x,y1,x,y2,x,y3,'b','linewidth',2),hold on plot([0,0.7],[0,0],'r',[0,0],[-0.02,0.02],'r') plot([0,0.7],[0.005,0.005],'m') axis([0,0.71,-0.01,0.02])对任意的 0>ε,总存在N, 当 n>N 时,nx 的图象将全部落入ε-带之内。
事实上,n n x f α≤<)(0,所以,该函数列在 1,],0[<αα 上是一致收敛。
函数项级数及其一致收敛性定理13.1 (一致收敛的Cauchy 准则 ) 函数列 D x x f n ∈,)}({一致收敛的充分必要条件是:对任意 0>ε,存在某一自然数N ,当 N m n >, 时,对一切 D x ∈,都有ε<-|)()(|x f x f m n证 )⇒ ( 利用式 .f f f f f f n m n m -+-≤-))⇐ 易见逐点收敛. 设∞→n lim )(x f n =)(x f ,……,有 2|)()(|ε<-x f x f n m .令∞→m , ⇒ εε<≤-2|)()(|x f x f n 对∈∀x D 成立, 即)(x f n −→−−→−)(x f ,) (∞→n ,∈x D .定理13.2 函数列 D x x f n ∈,)}({一致收敛的充分必要条件是:0|)()(|sup lim =-∈∞→x f x f n Dx n推论 设在数集D 上 )(x f n →)(x f , ) (∞→n . 若存在数列}{n x ⊂D , 使0 |)()(|→/-n n n x f x f , 则函数列)}({x f n 在数集D 上非一致收敛 .应用此判断函数列)}({x f n 在数集D 上非一致收敛时, 常作辅助函数=)(x F n )(x f n ―)(x f 取在}{n x 为数集D 上的最值点.例7 对定义在区间] 1 , 0 [上的函数列⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<=≤<-≤≤=. 11 , 0), , 2 , 1 ( , 121 ,22,210 , 2)(22x n n n x n x n n n x x n x f n证明: ∞→n lim )(x f n =0, 但在] 1 , 0 [上不一致收敛.证 10≤<x 时, 只要1->x n , 就有)(x f n =0. 因此, 在] 1 , 0 (上有)(x f =∞→n lim )(x f n =0. 0)0(=n f , ⇒ )0(f =∞→n lim )0(n f =0.于是, 在] 1 , 0 [上有 )(x f =∞→n lim )(x f n =0. 但由于021|)()(|max ]1,0[→/=⎪⎭⎫⎝⎛=-∈n n f x f x f n n x , ) (∞→n , 因此 , 该函数列在] 1 , 0 [上不一致收敛.例 判别下面函数列在区间 ]1,0[ 上的一致收敛性 1) }1{xn nx++ 2) })1({n x nx -解 1) x xn 1nxlim )(=++=∞→n x fnx n x x x x n nx x f x f n 2|1)1(|sup |1|sup |)()(|sup ≤+++=-++=-0|)()(|sup lim =-∞→x f x f n n所以,函数列}1{xn nx++在区间 ]1,0[ 上一致收敛。
2)⎪⎩⎪⎨⎧≠=-==-=∞→∞→0,0)]1([lim 0,0)1(lim )(x x n x x x nx x f n n n nn 求极大点方法可求得1)111(|)1(|sup |)()(|sup ++-=-=-n n n n x nx x f x f 01|)()(|sup lim ≠=-∞→ex f x f n n 函数列 })1({nx nx - 在 ]1,0[ 上不一致收敛。
例 )(x f n 2222x n xen -=. 证明在R 内 )(x f n →0, 但不一致收敛.证 显然有)(x f n →0, |)()(|x f x f n -= )(x f n 在点 n x =n21 处取得极大值022121→/=⎪⎭⎫⎝⎛-ne n f n ,) (∞→n . )}({x f n 不一致收敛. 例6 221)(xn xx S n +=. 证明在) , (∞+∞-内)(x S n −→−−→−0, ) (∞→n .证 易见 ∞→n lim .0)()(==x S x S n 而nnx x n n x n x x S x S n 21)(1||2211|||)()(|222≤+⋅=+=- 在) , (∞+∞-内成立.⇒ ……二 函数项级数及其一致收敛性我们知道,有限个函数的和函数的性质是通过每个相加的函数的性质去认识的,有限个连续函数的和是连续的;有限个可微函数的和是可微的,且和的导数等于每个函数的导数的和;有限个可积函数的和是可积的,且和的积分等于每个函数积分的和。