现代生化技术在食品中运用
食品科学中的生物技术应用

食品科学中的生物技术应用随着生物技术的发展,食品科学也开始应用生物技术技术。
利用生物技术技术,食品科学家可以在食品生产过程中更好地控制食品质量,增加食品的营养价值,从而保障人们的健康。
一、生物技术在食品加工过程中的应用1.基因编辑基因编辑技术是一种利用现代分子生物学手段直接对基因进行编辑的技术,它主要应用在食品中对食品营养成分进行增强等方面。
目前,基因编辑技术已经成功地应用到马铃薯和玉米等作物中,增强它们的营养价值,为人们提供更加健康的食品。
2. 发酵技术发酵技术是将某些微生物植入食品原料中以促进食品发酵的一种技术,这种技术可以大大提高食品的口感和品质。
其中,酸奶是应用发酵技术制成的一种非常受欢迎的食品,它除了美味外,还具有很多益处,包括调节肠道菌群和提高人体免疫力等方面。
3.调味料的应用利用生物技术技术,制造出一些特殊的调味料,这种调味料可以使食品更加美味,也可以帮助人们提高食品口感和品质。
例如,众所周知的味精就是一种生化制品,它既可以增加食品口感,又可以增强人体对食物的感觉。
二、遗传工程在食品生产中的应用1. 软饮料的生产遗传工程技术可以被应用在软饮料中,用来增加饮料的口感和香气。
虽然它的应用范围有限,但是已经得到了广泛的应用。
2. 食品防腐剂的应用利用遗传工程技术,可以制造出一些天然的食品防腐剂,这样就可以有效地延长食品的保质期,从而提高食品的营养价值。
三、生物技术在食品饮料中的食用1. 益生菌的食用益生菌是一种对人体非常有益的菌群,通过食用益生菌可以帮助人们促进肠道菌群平衡、增强免疫系统和增强人体内部各个器官的功能等方面。
通过生物技术技术,益生菌的制造可以更好地控制其菌群数量和菌株等方面。
2. 合成酶的食用合成酶是一种通过生物技术技术制造的一种酶,它可以帮助人们消化食物,从而提高人体对食物的吸收率和利用率。
通过食用含有合成酶的食物可以帮助人们更好地利用食物,保证人体健康。
总结:可以看出,生物技术对于食品科学产业发展起到了重要的作用,大大提高了食品的质量和营养价值,直接保护了人们的健康。
生物技术制药试题及答案(二)

生物技术制药试题及答案1.论述生物技术在食品工业中的作用?答:(1)开辟新的食品资源:利用微生物菌体发酵生产单细胞蛋白;应用微生物酶工程生产高果糖浆、饴糖、麦芽糖、高麦芽糖浆、麦芽糊精、偶联糖等淀粉糖产品。
(2)提高食品品质:利用发酵工程、酶工程技术生产酸味剂、甜味剂和鲜味剂等食品添加剂。
在肉类和鱼类加工中应用酶来改善组织,嫩化肉类和转化废弃蛋白质。
在乳品加工中应用酶进行干酪生产、分解乳糖和黄油增香。
在果蔬加工中应用酶进行柑橘脱苦、果汁澄清和果蔬保藏等。
在饮料、酿酒工业中应用酶发酵生产各种饮料。
在焙烤食品生产中应用淀粉酶和蛋白酶来提高焙烤品质和增加香味。
(3)食品卫生检测:酶免疫分析法、放射免疫分析法、单克隆抗体法和DNA 探针法用于检测食品中的沙门氏杆菌等。
(4)食品脱毒:利用发酵法、酶解法等对食品中的有毒糖苷类物质(硫代葡萄糖苷)、寡糖(β-半乳糖苷)和棉酚等进行处理,以脱除有毒物质。
2.试论述生物技术与医药卫生的关系?答:(1)疫苗生产:病原体减毒或弱化疫苗、基因工程疫苗和核酸疫苗。
病原体减毒和弱化疫苗是利用微生物的纯种培养技术以及减毒疫苗的制备技术来生产的,是以减毒或弱化的病原体作为疫苗。
基因工程疫苗是将病原体的抗原基因克隆在细菌或真核细胞内,利用细菌或细胞生产病原体的抗原,利用抗原作为疫苗。
而核酸疫苗则是将含有编码蛋白质基因序列的质粒载体,经肌肉注射或微弹轰击等方法导入体内,通过宿主细胞表达系统表达抗原蛋白质,诱导宿主产生对抗该抗原蛋白的免疫应答,以达到预防和治疗疾病的目的。
(2)疾病诊断:单克隆抗体与ELISA技术用于诊断传染性疾病、检测肿瘤相关基因、确定激素水平、检验血液中的药物含量及鉴定微生物病原体。
DNA诊断技术可用于诊断遗传性疾病、肿瘤和传染性疾病。
(3)生物制药与基因工程药物:利用微生物发酵可生产各种抗生素。
利用植物细胞大规模培养技术可生产天然药物,如紫草宁、紫杉醇、人参皂苷、强心苷、胡萝卜素等。
现代生化产品分离技术的类型及其运用举例

现代生化产品分离技术的类型及其运用举例【摘要】生物技术是上世纪末及本世纪初发展国民经济的关键技术之一。
生物技术的发展,为人类提供了丰富多彩的生物产品。
多数生物技术产品的生产过程是由菌体选育—菌体培养(发酵)—预处理—浓缩—产物捕集—纯化—精制等单元组成。
习惯上将菌体培养以前的过程称为“上游工程”,与之相应的后续过程则称为“下游工程”或“生物分离工程”。
生物技术要走向产业化,上下游必须兼容、协调,以使全过程能优化进行。
【关键字】下游加工,分离纯化类型,下游加工过程概论生物物质的分离是生物工程的一个重要部分。
国外文献中,常称之为下游过程,国内则称之为产品的分离或回收。
其目的是把生物反应液,如发酵液或酶反应液内有用物质分离出来,获得所需的目标产品。
生物分离过程与生物发酵过程或酶反应过程同样重要。
一般而言,中、上游过程,只是解决“丰产”的问题,下游分离过程则是解决“丰收”的问题。
众所周知,如果仅有“丰产”而无“丰收”,那么这丰产的成果,未必会变成物质的财富。
只有即“丰产”又“丰收”,才能最大限度地创造出物质财富。
除此之外,还必须认识到以下三点:1、生化产品的特点1)、应用面广。
医药卫生、环保、动植物生长调节、食品和试剂等2)、生化产品种类繁多,包括了大、中、小分子量的结构和性质复杂又各异的生物活性物质,生物活性各异。
3)、目的产物在初始物料中的含量低。
青霉素(4.2%)、庆大霉素(0.2%)、干扰素(<50ug/ml)。
4)、产品价格与产物浓度呈反比:5)、初始物料成分复杂。
除少量产物外,还有大量的细胞及碎片、其他代谢物(几百上千种)、培养基成分、无机盐等。
6)、生物活性物质的稳定性低。
易变质、易失活、易变性,对温度、pH值、重金属离子、有机溶剂、剪切力、表面张力等非常敏感。
7)、产品的质量要求高,尤其是药品等。
成品青霉素对其强致敏原–青霉噻唑蛋白必须控制RIA值(放射免疫测定)小于100(1.5×10-6),蛋白类药物(杂质 < 2%)、重组胰岛素中杂蛋白小于0.01%。
食品加工中的新型工艺和技术

食品加工中的新型工艺和技术随着人们对食品安全和营养价值的要求越来越高,食品加工技术也在不断地更新和升级。
同时,现代科技的发展也为食品加工带来了许多新的机遇和挑战。
本文将介绍一些在食品加工过程中广泛应用的新型工艺和技术。
一、高压处理技术高压处理技术是指把食品加工前暴露在高压环境下,从而使食品得到有益改善的技术。
高压处理技术可以用来杀灭微生物、改变食物结构和食品质量等。
使用高压技术可以保持食品的营养成分完整无损,同时免疫压力的食品削减了感性营养的损失。
二、微波技术微波技术是指将物质转化为微波能量,通过微波与物质相互作用来进行加热、杀菌和干燥。
微波技术可以快速有效的消毒和杀灭细菌、病毒,同时也能使得食物在短时间内达到熟食标准。
在加工速度和质量保持方面,微波技术和传统的加热方式相比,有明显的优势。
三、低温技术低温技术是指将食品在较低的温度条件下进行加工。
低温技术的出现能够最大程度地保持食品本身的质量与口感。
同时,低温技术还可以充分利用食材内部的营养成分,保持原有食材的色香味,提高食品的口感及营养价值。
四、电化学技术电化学技术是指利用电化学、生化、物理等多种作用原理,将食品中的化学反应过程聚合,以适应现代食品加工工艺需求的技术。
利用电化学技术,可以调整食品的营养组分含量、改善食品的品质、美化食品的色泽、调整食品的口味、改善食品的负荷。
同时,电化学技术还可以通过调整食品内部的电势值,改变食品中的化学反应速率和产物构成,从而提高食品的质量。
五、物理气相沉积技术物理气相沉积技术将材料从原始状态向气态或把某种气体沉积于另一种加工物质表面的过程。
物理气相沉积技术可以产生物理效果,改变和提高食品的质量,达到预期的需求。
常见的物理气相沉积技术还包括溶剂蒸发、真空沉积等技术,这些技术在干燥和保鲜方面也有广泛的应用。
六、纳米技术纳米技术是指通过控制、组合和加工原子、分子以及颗粒的尺寸、形状、结构等,制备出一种新型的功能材料和器件的技术。
重组 DNA 微生物衍生食品安全性评估指南

重组DNA微生物衍生食品安全性评估指南CAC/GL46-2003第1节—范围1.本指南用于补充《现代生物技术衍生食品风险分析原则》,并涵盖重组DNA微生物衍生食品的安全性和营养方面。
1用于生产这些食品的重组DNA微生物通常是使用现代生物技术从在食品生产中具有安全、有意识的使用历史的菌株中提取的。
但是,在受体菌株没有安全使用历史的情况下,必须确定其安全性。
2此类食品和食品成分可能含有活性或非活性重组DNA微生物,也可能是通过使用重组DNA微生物发酵生产,而重组DNA微生物可能已从中去除。
2.认识到以下问题可能必须由其他机构或其他文件解决,本文件不涉及:农业中使用的微生物的安全性(用于植物保护、生物肥料、动物饲料或由饲料喂养的动物衍生的食品等);与食品生产中使用的重组DNA微生物的环境释放相关的风险;微生物产生的用作添加剂或加工助剂物质的安全性,包括用于食品生产的酶3;可能归因于在食品中使用微生物的据信存在的特定健康益处或益生菌作用;或者与处理重组DNA微生物的食品生产工人的安全有关的问题。
3.早在科学评估之前,食品生产中使用的多种微生物在安全使用方面就有着悠久的历史。
很少有微生物通过科学评估充分确定它们为食品生产带来的所有潜在风险,在某些情况下,包括食用活性微生物。
食品法典风险分析原则,特别是有关风险评估的部分,主要适用于离散化学实体,例如食品添加剂和农药残留,或具有可识别危害和风险的特定化学或微生物污染物;此等原则最初并不打算应用于在食品加工或通过微生物发酵转化的食品中有意使用微生物的做法。
已进行的安全性评估主要集中在这些微生物中没有与致病性相关的特性,并且没有关于摄入这些微生物的不良事件的报告,而不是评估规定研究的结果。
此外,如果采用常规安全测试方法,许多食品含有被认为有害的物质。
因此,在考虑全天然食品的安全性时,需要采取更有针对性的方法。
4.在制定这种方法时考虑的信息包括:A)活性微生物在食品生产中的使用;B)考虑可能在这些生物体中进行的基因修饰类型;C)可用于进行安全性评估的方法类型;以及D)在食品生产中使用重组DNA微生物的具体问题,包括其遗传稳定性、基因转移的潜力、胃肠道的定植和持久性4、重组DNA微生物可能与胃肠道菌群或哺乳动物寄主的相互作用、以及重组DNA微生物对免疫系统的任何影响。
食品化学 13.6 现代生物技术

现代生物技术利用生物(动物、植物或微生物)或其产物,来生产对人类医学或农业有用的物质或生物。
依历史发展或所用方法的不同,可分成以下两大类:∙传统生物技术:应用酿造发酵、配育新种等传统的方法来达致辞上述目的。
∙现代生物技术:以生物化学或分子生物方法改变细胞或分子的遗传性质。
这是在根本上控制了生物的代谢或生理,以达到生产有用物质之目的。
两种生化技术术领域的最大差异处在于:现代生物技术是用“细胞与分子”层次的微观手法来进行操作,不同于传统生物技术产业不同于传统以“整体”动物、植物或微生物的饲养、交配或筛选方式。
生物技术产业经过数十年的发展,各种操作或技术可谓琳琅满目,可主观地归纳成数个范畴。
主要有基因操作、细胞培养、单株抗体、酵素工技等四大领域,以及其他生命科学相关的科技。
一、基因工程技术1、基因工程技术溯源1973年美国斯坦福大学和旧金山大学医学院Co-ken和Boyer两位科学家成功地实现了DNA 分子重组试验,揭开了基因工程发展序幕。
1985年转基因鱼的问世,标志基因工程在食品工业应用的开端,基因工程食品由此走上了历史舞台。
第二代基因工程基因操作主要多以分子群殖(molecular cloning) 为手段,达成大量复制一段指定的核酸片段。
在此过程中,所有的核酸片段均分别被植入载体(质体plasmid),然後一起轉入宿主细胞,在宿主中大量复制,放大这些核酸片段的数目。
同样,因为一个宿主细胞只能让一种核酸大量复制(one plasmid, one cell),因此所得到的大量核酸,是均质核酸分子。
基因工程一包括DNA重组、表达和克隆,是生物工程核心内容。
2、基因工程在食品工业中的应用(1)亚酸制剂方面应用酶的传统来源是动物脏器和植物种子,后来随着发酵工程的发展,逐渐出现了以微生物为主要酶源的格局。
近年来,由于基因工程技术的发展,更使我们可以按照需要来定向改造酶,甚至创造出自然界从未发现的新酶种。
现在,蛋白酶、淀粉酶、脂肪酶、糖化酶和植物酶等均可利用基因工程技术进行生产(如表中所列)。
现代高新技术在挤压膨化、烘焙食品及调味料中的应用

中国农业大学食品学院21世纪是高新技术时代,谁拥有先进技术,谁就可以获得快速的发展,在激烈的市场竞争中,占有较大的份额,取得可观的经济效益。
我国是一个农业资源大国,但是在采用现代高新技术进行精深加工方面,又是一个小国和弱国,与发达国家相比尚存在着较大的差距。
特别是进入WTO后,将更加显示出来。
当前,一个外国食品跨国集团大公司的年营业额超过或者接近我国食品工业的年营业额的总和已是事实,究其原因,其中最根本原因之一,就是技术创新不够,基础性理论研究科技开发与应用的力度不大,要想使我国食品工业取得快速发展,使之名列世界食品工业强国之林,就必须采用现代高新技术。
本文将对目前国内外食品挤压膨化、烘焙食品、功能性保健食品及调味料的理论研究及高新技术应用情况进行简述。
一、挤压膨化食品:当前国内外食品挤压膨化行业采用较多的新技术,生产出许多新、奇、特、异、香气浓郁、酥脆可口、造型新颖的挤压膨化食品,深受消费者的欢迎,例如三维立体膨化食品、多层夹馅膨化食品、半沾巧克力膨化棒、精细大豆膨化食品、挤压膨化米饼、挤压膨化素肉松、素鱼松及素小食品、挤压膨化早餐冲调食物、挤压膨化朝鲜冷面、挤压膨化玉米和大米快餐面条、挤压膨化大豆组织蛋白(人造肉、添加到饺子、包子和春卷的馅料中)以及大豆腐皮等等。
上述挤压膨化食品的生产均有赖于现代高新技术的理论研究和开发应用。
(一)理论研究方面:1、模拟生物反应器技术:将物料在挤压螺筒里的工作过程作为一个生物反应器,研究在外力和湿热的作用下物料的流变性和粘弹性,各段(固相、固一液相和液相)的能量传递及质构化,水、淀粉、蛋白质、脂肪、微量元素等营养成份在生物反应器中的生化反应规律及特性等,取得了较大成果。
2、膨化规律及特性研究:物料如何及怎样发生膨化的?物料在螺筒内的运动速度、加速度,力的传递,温度湿度,物料在螺筒与螺杆之间产生正流、反流的流动规律及滞留时间,可视窗直观技术,最佳结构参数选择及综合数学模型的建立等,已取得重大成果。
列举10个生物化学知识在畜牧生产中应用的例子(不少于800字

列举10个生物化学知识在畜牧生产中应用的例子(不少于800字生物技术(biotechnology)是指用活的生物体(或生物体的物质)来改进产品,改良植物和动物,或为特殊用途而培养微生物的技术。
现代生物技术是在传统生物技术基础上发展起来的,以DNA重组技术的建立为标志,以现代生物学研究成果为基础,以基因或基因组为核心,生物技术产业以基因产业为核心,并辐射到各个生物科技领域。
利用生物特定功能通过现代生物技术的设计方法和手段,改变动物体内生理生化反应和物质代谢过程。
生物技术包括基因工程、酶工程、细胞工程、发酵工程和蛋白质工程。
1生物技术研究领域1.1基因工程基因工程是利用DNA重组技术进行生产或改造生物产品的技术。
是将外源的或是人工合成的基因即DNA片段(目的基因)与适宜的载体DNA重组,然后将重组DNA转入宿主细胞或生物体内,以使其高效表达,而获得基因产物。
基因工程技术是现代生物技术的主体。
1.2酶工程酶工程就是利用酶、细胞器或是细胞所具有的催化作用,在一定的生物反应器中,将相应的原料转化成所需要的产品。
它是酶学理论与化工技术相结合而形成的一种新技术。
包括酶的固定化技术、细胞固定化技术、酶的修饰改造技术及酶的反应技术等。
1.3细胞工程细胞工程是生物工程的一个重要方面。
它是应用细胞生物学和分子生物学的理论和方法,以细胞为基本单位,在体公进行培育、繁殖新品种或是人为按照人们的设计蓝图,进行在细胞水平上的遗传操作及进行大规模的细胞和组织培养。
细胞工程包括细胞培养、细胞融合、细胞拆合、染色体操作及基因转移等。
1.4发酵工程发酵工程是指利用微生物特定功能通过现代工程技术在生物反应器中生产有用物质的一种技术系统,是生物产业化过程的技术核心,无论基因工程、酶工程、细胞工程、蛋白质工程均通过发酵工程获得具体产品。
1.5蛋白质工程蛋白质工程是以蛋白质结构功能关系的知识为基础,通过周密的分子设计,把蛋白质改造为合乎人类需要的新的突变蛋白质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代生化实验技术在食品、营养方面的使用程度
食品101 郑庆高5603110053
摘要:生物化学的发展历程虽然不是很长,但是他的应用却一直广泛存在于人们的日常生活中。
随着科学技术的发展,生化实验技术也有了很大的发展。
它现在不仅仅是实验室里研究的一个产物,已经有相当大的一部分应用到了食品、营养方面。
下面将对现代生化实验技术在食品、营养方面的应用做一些综述。
关键词:生化分离技术、生化检测、细胞破碎技术、层析技术、盐析沉淀、食品营养。
正文:
一、细胞破碎技术:
1、细胞破碎技术:是指利用外力破坏细胞膜和细胞壁,使细
胞内容物包括目的产物成分释放出来的技术,是分离纯化
细胞内合成的非分泌型生化物质(产品)的基础。
2、几种常见的破碎原理:
①机械破碎方法:在高速离心机的作用下将细胞的组织破碎;
②物理破碎方法:利用温度差、压力差、超声波等物理强度因
素细胞破碎的方法;
③化学破碎方法:利用有机溶济、表面活性剂等化学因素使细
胞破碎;
④酶学破碎方法:利用酶的催化分解作用使细胞溶解,常用的
有外加酶制剂、自溶法。
3、应用:细胞破碎以后,我们才能从中提取我们想要的物质。
比如从细胞中提取的一些多肽类物质:脑肽、吗啡肽等物
质。
二、层析技术;
层析技术主要包含吸附、分配、离子交换、亲和层析等方法,是生物化学实验中一项重要的实验手段。
也是分离方法中很重要的一种。
利用层析技术可以对物质的某些组成进行分析,其代表是对啤酒中的某些物质的测定有着巨大的作用。
用蛋白质快速层析系统(FPLC)的几种层析技术对啤酒中的含氮化合物组成进行了研。
利用Suprose6/Superose12体积排阻柱对啤酒经透析得到的蛋白质成分分析表明,啤酒多肤物质的分子
量范围分布相对较广,包括不连续分布的高分子量组分(30万、50万)、分子量6万、4万的中分子组分和分子量在5000~2万连续分布的低分子量组分。
又对分子量大于4万和界于4~6万的组分进行了进一步离子交换柱分析。
对全大麦、80%大麦芽加20%烤制麦芽、全小麦芽为原料的啤酒进行层析比较,发现明显的差别,对分子量大于4万和界于4~6万组分的柱层析分析也得到一致的结果。
实验还发现,虽然Superose12是设计用于侧定大分子组分的,却意外地发现其适合测定啤酒中的低分子含氮化合物如腺漂吟和鸟漂吟,反相柱对啤酒的低聚肤进行分析,证实了啤酒低聚肽的复杂组成。
三、离心是蛋白质、酶、核酸及细胞亚组分分离的最常用的方
法之一,也是生化实验室中常用的分离、纯化或澄清的方
法。
尤其是超速冷冻离心已经成为研究生物大分子实验室
中的常用技术方法。
离心原理:将样品放入离心机转头的离心管内,离心机驱动时,样品液就随离心管做匀速圆周运动,于是就产生了一个向外的离心力。
由于不同颗粒的质量、密度、大小及形状等彼此各不相同,在同一固定大小的离心场中沉降速度也就不相同,由此便可以得到相互间的分离。
(一)差速离心法
它利用不同的粒子在离心力场中沉降的差别,在同一离心条件下,沉降速度不同,通过不断增加相对离心力,使一个非均匀混合液内的大小、形状不同的粒子分部沉淀。
操作过程中一般是在离心后用倾倒的办法把上清液与沉淀分开,然后将上清液加高转速离心,分离出第二部分沉淀,如此往复加高转速,逐级分离出所需要的物质。
差速离心的分辨率不高,沉淀系数在同一个数量级内的各种粒子不容易分开,常用于其他分离手段之前的粗制品提取。
(二)速率区带离心法
速率区带离心法是在离心前于离心管内先装入密度梯度介质(如蔗糖、甘油、KBr、CsCl等),待分离的样品铺在梯度液的顶部、离心管底部或梯度层中间,同梯度液一起离心。
离心后在近旋转轴处(X1)的介质密度最小,离旋转轴最远处(X2)介质的密度最大,但最大介质密度必须小于样品中粒子的最小密度,即ρP>ρm。
这种方法是根据分离的粒子在梯度液中沉降速度的不同,使具有不同沉降速度的粒子处于不同的密度梯度层内分成一系列区带,达到彼此分离的目的。
梯度液在离心过程中以及离心完毕后,取样时起着支持介质和稳定剂的作用,避免因机械振动而引起已分层的粒子再混合。
由于ρP>ρm可知S>0,因此该离心法的离心时间要严格控制,既有足够的时间使各种粒子在介质梯度中形成区带,又要控制在任一粒子
达到沉淀前。
如果离心时间过长,所有的样品可全部到达离心管底部;离心时间不足,样品还没有分离。
由于此法是一种不完全的沉降,沉降受物质本身大小的影响较大,一般是应用在物质大小相异而密度相同的情况。
常用的梯度液有Ficoll、Percoll及蔗糖。
(三)等密度离心法
等密度离心法是在离心前预先配制介质的密度梯度,此种密度梯度液包含了被分离样品中所有粒子的密度,待分离的样品铺在梯度液顶上或和梯度液先混合,离心开始后,当梯度液由于离心力的作用逐渐形成底浓而管顶稀的密度梯度,与此同时原来分布均匀的粒子也发生重新分布。
当管底介质的密度大于粒子的密度,即ρm>ρP时粒子上浮;在弯顶处ρP>ρm时,则粒子沉降,最后粒子进入到一个它本身的密度位置即ρP=ρm,此时dx/dt为零粒子不再移动,粒子形成纯组份的区带,与样品粒子的密度有关,而与粒子的大小和其他参数无关,因此只要转速、温度不变,则延长离心时间也不能改变这些粒子的成带位置。
此法一般应用于物质的大小相近,而密度差异较大时。
常用的梯度液是CsCl。
离心在食品营养中的应用:通过离心进行产品的杂质的初步分离,酶制剂行业中,利用离心技术分离和纯化酶,使得酶的纯度更高,更好
的增加催化活性。
四、电泳技术:
电泳:是指带电颗粒在电场中的移动。
是两性离子化合物,可以电离带不同的电荷。
醋酸纤维素薄膜电泳法:醋酸纤维素是提纤维素的羟基乙酰化形成的纤维素醋酸酯。
由该物质制成的薄膜称为醋酸纤维素薄膜。
这种薄膜对蛋白质样品吸附性小,几乎能完全消除纸电泳中出现的“拖尾”现象,又因为膜的亲水性比较小,它所容纳的缓冲液也少,电泳时电流的大部分由样品传导,所以分离速度快,电泳时间短,样品用量少,5μg的蛋白质可得到满意的分离效果。
因此特别适合于病理情况下微量异常蛋白的检测。
醋酸纤维素膜经过冰醋酸乙醇溶液或其它透明液处理后可使膜透明化有利于对电泳图谱的光吸收扫描测定和膜的长期保存。
(二)凝胶电泳
以淀粉胶、琼脂或琼脂糖凝胶、聚丙烯酰胺凝胶等作为支持介质的区带电泳法称为凝胶电泳。
其中聚丙烯酰胺凝胶电泳(polyacrylamide gel electrophoresis,PAGE)普遍用于分离蛋白质及较小分子的核酸。
琼脂糖凝胶孔径较大,对一般蛋白质不起
分子筛作用,但适用于分离同工酶及其亚型,大分子核酸等应用较广,
(三)等电聚焦电泳技术
等电聚焦(isoelectric focusing,IEF)是60年代中期问世的一种利用有pH梯度的介质分离等电点不同的蛋白质的电泳技术。
由于其分辨率可达0.01pH单位,因此特别适合于分离分子量相近而等电点不同的蛋白质组分。
应用:电泳分离一些利用微生物发酵的产生的产品。
五、酶工程技术
(一)在食品发酵生产中的应用
酶是活细胞产生的具有高效催化功能、高度专一性和高度受控性的一类特殊生物催化剂。
酶工程是现代生化技术的一个重要组成部分,酶工程又称酶反应技术,是在一定的生物反应器内,利用生物酶作为催化剂,使某些物质定向转化的工艺技术,包括酶的研制与生产,酶和细胞或细胞器的固定化技术,酶分子的修饰改造,以及生物传感器等。
酶工程技术在发酵生产中主要用于两个方面,一是用酶技术处理发酵原料,有利于发酵过程的进行。
如啤酒酿制过程,主要原料麦芽的质量欠佳或大麦、大米等辅助原料使用量较大时,会造成淀粉酶、俘一葡聚糖酶、纤维素酶的活力不足,使糖化不充分、蛋白质降解不足,从而减慢发酵速度,影响啤酒的
风味和收率。
使用微生物淀粉酶、蛋白酶、一葡聚糖酶等制剂,可补充麦芽中酶活力不足的缺陷,提高麦汁的可发酵度和麦汁糖化的组分,缩短糖化时间,减少麦皮中色素、单宁等不良杂质在糖化过程中浸出,从而降低麦汁色泽。
二是用酶来处理发酵菌种的代谢产物,缩短发酵过程,促进发酵风味的形成。
啤酒中的双乙酰是影响啤酒风味的主要因素,是判断啤酒成熟的主要指标。
当啤酒中双乙酰的浓度超过阈值时,就会产生一种不愉快的馊酸味。
双乙酰是由酵母繁殖时生成的α-乙酰乳酸和α-乙酰羟基丁酸氧化脱羧而成的,一般在啤酒发酵后期还原双乙酰需要约5~10d 的时间。
崔进梅等报道,发酵罐中加入α-乙酰乳酸脱羧酶能催化α-乙酰乳酸直接形成羧基丁酮,可缩短发酵周期,减少双乙酰含量
参考文献:生物化学原理张楚富
生物大分子的结构和功能陈惠黎
生物化学实验技术和方法王宪泽。