勾股定理(4)

合集下载

勾股定理知识点+对应类型

勾股定理知识点+对应类型

第二章勾股定理、平方根专题第_节勾股定理-、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a, b,斜边长为c,那么勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a, b, c有下面关系:a2+ b2= c2,那么这个三角形是直角三角形。

2. 勾股数:满足a2+ b2= c2的三个正整数叫做勾股数(注意:若a, b, c、为勾股数,那么ka, kb, kc同样也是勾股数组。

)* 附:常见勾股数: 3,4,5 ; 6,8,10 ; 9,12,15 ; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2) 若c2= a2+ b2,则^ ABC是以Z C为直角的三角形;若a2 + b2v c2,则此三角形为钝角三角形(其中c为最大边);若a2 + b2> c2,则此三角形为锐角三角形(其中c为最大边)4. 注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的(3) 在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

5. 勾股定理的作用:(1) 已知直角三角形的两边求第三边。

(2) 已知直角三角形的一边,求另两边的关系。

(3) 用于证明线段平方关系的问题。

(4) 利用勾股定理,作出长为际的线段二、平方根:(11——19的平方)1、平方根定义:如果一个数的平方等于a,那么这个数就叫做a的平方根。

(也称为二次方根),也就是说如果x2=a,那么x就叫做a的平方根。

勾3股4定理公式大全

勾3股4定理公式大全

勾3股4定理公式大全勾股定理是数学中的一个基本定理,它能够解决关于直角三角形的各种问题。

具体地说,勾股定理指出,在一个直角三角形中,三边的平方和等于斜边的平方。

这个定理可以用一个简单的公式来表示:a²+b²=c²。

在勾股定理的基础上,可以推导出一些相关的公式。

以下是一些与勾股定理相关的公式:1.正弦定理:正弦定理是三角形中的重要定理,它描述了三角形的边长与角度之间的关系。

正弦定理可以表示为以下公式之一:a/sinA = b/sinB = c/sinC或者sinA/a = sinB/b = sinC/c2.余弦定理:余弦定理是三角形中的另一个重要定理,它描述了三角形的边长与角度之间的余弦关系。

余弦定理可以表示为以下公式之一:a² = b² + c² - 2bc*cosA或者b² = a² + c² - 2ac*cosB或者c² = a² + b² - 2ab*cosC3.正切定理:正切定理是三角形中的另一个定理,它描述了三角形的角与边长之间的正切关系。

正切定理可以表示为以下公式之一:tanA = a/b或者tanB = b/a4.二等分线定理:二等分线定理描述了三角形中的两个内角的二等分线和第三个角之间的关系。

它可以表示为以下公式之一:a/c=b/d或者(b+c)/(a+d)=(b/a)5.垂直平分线定理:垂直平分线定理描述了三角形中的两个内角的垂直平分线和第三个角之间的关系。

它可以表示为以下公式之一:a/c=b/d或者(a+b)/(c+d)=(a/c)以上是一些与勾股定理相关的公式,它们可以用来解决各种三角形的问题。

掌握这些公式可以帮助我们更好地理解和应用勾股定理,解决各种与直角三角形相关的数学问题。

勾股定理

勾股定理

板块一 勾股定理1.勾股定理的内容:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么a 2+b 2=c 2.即直角三角形中两直角边的平方和等于斜边的平方。

注:勾——最短的边、股——较长的直角边、 弦——斜边。

CAB cba勾股定理3.勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

即 222,,ABC AC BC AB ABC ∆+=∆在中如果那么是直角三角形。

4.勾股数:满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。

板块一、勾股定理【例1】 下列说法正确的是( )A. 若a b c ,,是ABC ∆的三边,则222a b c +=B. 若a b c ,,是Rt ABC ∆的三边,则222a b c +=C. 若 a b c ,,是Rt ABC ∆的三边,90A ∠=︒,则222a b c +=D. 若 a b c ,,是Rt ABC ∆的三边,90C ∠=︒,则222a b c +=【例2】 在Rt ABC ∆中, 90C ∠=︒,(1)如果34a b ==,,则c = ; (2)如果68a b ==,,则c = ; (3)如果512a b ==,,则c = ; (4)如果1520a b ==,,则c = .【例3】 若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长为【例4】 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .【例5】 已知直角三角形的两边长分别为3、4,求第三边长.【例6】 已知直角三角形两边x ,y 的长满足240x -,则第三边长为______________.【例7】 一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形周长为25C .斜边长为5D .三角形面积为20【例8】 如果梯子的底端距离墙根的水平距离是9m ,那么15m 长的梯子可以达到的高度为【例9】 如图,梯子AB 斜靠在墙面上,AC BC AC BC ⊥=,,当梯子的顶端A 沿AC 方向下滑x 米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( ) A .x y = B .x y > C .x y < D .不确定CA【例10】 如图,一个长为10米的梯子,斜靠在墙上,梯子的顶端距离地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离 米(填“大于”、“等于”、“小于”)68【例11】 三角形的三边长分别为6,8,10,它的最短边上的高为( )A. 6B. 4.5C. 2.4D.8【例12】 若ABC ∆的三边a b c ,,满足条件:222338102426a b c a b c +++=++,则这个三角形最长边上的高为【例13】 如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A. 1倍B. 2倍C. 3倍D. 4倍【例14】 如图,一根高8米的旗杆被风吹断倒地,旗杆顶端A 触地处到旗杆底部B 的距离为6米,则折断点C到旗杆底部B 的距离为CBA【例15】 已知,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,•如果8cm AB =,10cm BC =,求EC 的长.【例16】 如图,有一个直角三角形纸片,两直角边6cm 8cm AC BC ==,,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,那么CD 的长为多少?EDCBA【例17】 如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( )A. 0B. 1C. 2D. 3CBA【例18】 如图所示,在ABC ∆中,三边a b c ,,的大小关系是( )cbaCBAA. a b c <<B. c a b <<C. c b a <<D. b a c <<【例19】 设,,,a b c d 都是正数。

勾3股4定理公式大全

勾3股4定理公式大全

勾3股4定理公式大全勾股定理是数学中最基本的定理之一,它描述了直角三角形中直角边与斜边的关系。

而勾三股四定理,则是一种推广的勾股定理,它描述了三个直角三角形的边长之间的比例关系。

以下是勾三股四定理的三个公式及其推导过程。

一、第一个勾三股四定理公式:设直角三角形ABC,其中∠C=90°,则有AB^2=BC×AC这个公式可以通过勾股定理的推导得出。

根据勾股定理,有AC^2=AB^2+BC^2带入角C=90°,则有AB^2=AC^2-BC^2即AB^2=BC×AC。

二、第二个勾三股四定理公式:设直角三角形ABC,其中∠A=90°,则有AC^2=AB×BC这个公式可以通过将公式一中的AB和BC互换得出。

即将AB^2=BC×AC两边的AB和BC互换,得到AC^2=AB×BC。

三、第三个勾三股四定理公式:设直角三角形ABC,其中∠B=90°,则有BC^2=AB×AC这个公式可以通过将公式一中的AB和AC互换得出。

即将AB^2=BC×AC两边的AB和AC互换,得到BC^2=AB×AC。

ABCB,C在直角三角形ABC中,根据勾三股四定理公式一的推导过程,可以得到AB^2=BC×A C。

同理,根据勾三股四定理公式二和公式三的推导过程,可以得到AC^2=AB×BC以及BC^2=AB×AC。

勾三股四定理公式在解决问题时非常实用,它可以帮助我们在已知两条边后,快速求解剩余边的长度。

举个例子,假设在一个直角三角形ABC中,已知AC=5cm,BC=12cm,我们需要求解AB的长度。

根据勾三股四定理公式一,我们有AB^2=BC×AC代入已知值,即可得到AB^2 = 12cm × 5cm计算得到AB^2 = 60 cm^2再开平方根,即可得到AB的长度,约为7.746cm。

常见勾股定理公式表

常见勾股定理公式表

常见勾股定理公式表勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。

接下来分享常见勾股定理公式,供参考。

常见的勾股定理公式(1)(3,4,5),(6,8,10)……3n,4n,5n(n是正整数)(2)(5,12,13),(7,24,25),(9,40,41)……2n+1,2n^2+2n,2n^2+2n+1(n是正整数)(3)(8,15,17),(12,35,37)……2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1(n是正整数)(4)m^2-n^2,2mn,m^2+n^2(m、n均是正整数,m>n)三角形勾股定理公式1.基本公式在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。

如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么勾股定理的公式为a²+b²=c²。

2.完全公式a=m,b=(m²/k-k)/2,c=(m²/k+k)/2其中m≥3(1)当m确定为任意一个≥3的奇数时,k={1,m²的所有小于m的因子}(2)当m确定为任意一个≥4的偶数时,k={m²/2的所有小于m的偶数因子}勾股数的规律(1)当a为大于1的奇数2n+1时,b=2n²+2n,c=2n²+2n+1。

实际上就是把a的平方数拆成两个连续自然数,例如:n=1时(a,b,c)=(3,4,5)n=2时(a,b,c)=(5,12,13)n=3时(a,b,c)=(7,24,25)(2)当a为大于4的偶数2n时,b=n²-1,c=n²+1,也就是把a的一半的平方分别减1和加1,例如:n=3时(a,b,c)=(6,8,10)n=4时(a,b,c)=(8,15,17)n=5时(a,b,c)=(10,24,26)。

十八章勾股定理全章教案

十八章勾股定理全章教案

第十八章勾股定理18.1 勾股定理课时安排: 4课时第1课时 18.1 .1 勾股定理(1)三维目标一、知识与技能让学生通过观察、计算、猜想直角三角形两条直角边的平方和等于斜边的平方的结论.二、过程与方法1.在学生充分观察、归纳、猜想、探索直角三角形两条直角边的平方和等于斜边的平方的过程中,发展合情推理能力,体会数形结合的思想.2.在探索上述结论的过程中,发展学生归纳、概括和有条理地表达活动的过程和结论.三、情感态度与价值观1.培养学生积极参与、合作交流的意识,2.在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气.教学重点探索直角三角形两条直角边的平方和等于斜边的平方的结论。

从而发现勾股定理.教学难点以直角三角形的边为边的正方形面积的计算.教具准备学生准备若干张方格纸。

教学过程一、创设问题情境,引入新课活动1问题1:在我国古代,人们将直角三角形中的短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.根据我国古算书《周髀算经》记载,在约公元前1100年,人们已经知道,如果勾是三,股是四,那么弦是五,你知道是为什么吗?问题2:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队能否进入三楼灭火?问题3:我们再来看章头图,在下角的图案,它有什么童义?为什么选定它作为2002年在北京召开的国际数学家大会的会徽?二.实际操作,探索直角三角形的三边关系活动2问题1:毕达哥拉斯是古希腊著名的哲学家、数学家、天文学家,相传2500年前,一次,毕达哥拉斯去朋友家作客.在宴席上,其他的宾客都在尽情欢乐,高谈阔论,只有毕达哥拉斯却看着朋友家的方砖地而发起呆来.原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方.主人看到毕达哥拉斯的样子非常奇怪,就想过去问他.谁知毕达哥拉斯突然恍然大悟的样子,站起来,大笑着跑回家去了.同学们,我们也来观察下面图中的地面,看看你能发现什么?是否也和大哲学家有同样的发现呢?问题2:你能发现下图中等腰直角三角形ABC有什么性质吗?问题3:等腰直角三角形都有上述性质吗?观察下图,并回答问题:(1)观察图1正方形A中含有________个小方格,即A的面积是________个单位面积;正方形B中含有________个小方格,即B的面积是________个单位面积;正方形C中含有________个小方格,即C的面积是________个单位面积.(2)在图2、图3中,正方形A、B、C中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流.(3)?活动3问题1:等腰三角形有上述性质,其他的三角形也有这个性质吗?如下图,每个小方格的面积均为1,请分别计算出下图中正方形A、B、C,A'、B'、C'的面积,看看能得出什么结论.(提示:以斜边为边长的正方形的面积,等于虚线标出的正方形的面积减去四个直角三角形的面积.)问题2:给出一个边长为0.5,1.2,1.3,这种含小数的直角三角形,也满足上述结论吗?我们通过对A、B、C,A'、B'、C'几个正方形面积关系的分析可知:一般的以整数为边长的直角三角形两直角边的平方和也等于斜边的平方,一个边长为小数的直角三角形是否也有此结论?我们不妨设小方格的边长为0.1,我们不妨在你准备好的方格纸上画出一个两直角边为0,5,1.2的直角三角形来进行验证.生:也有上述结论.这一结论,在国外就叫做“毕达哥拉斯定理”,而在中国则叫做“勾股定理”.而活动1中的问题1提到的“勾三,股四,弦五”正是直角三角形三边关系的重要体现.勾股定理到底是谁最先发现的呢?我们可以自豪地说:是我们中国人最早发现的.证据就是《周髀算经》,不仅如此,我们汉代的赵爽曾用2002年在北京召开的国际数学家大会的徽标的图案证明了此结论,也正因为为了纪念这一伟大的发现而采用了此图案作徽标.下节课我们将要做更深入的研究.大哲学家毕达哥拉斯发现这一结论后,就已认识到,他的这个发现太重要了.所以,按照当时的传统,他高兴地杀了整整一百头牛来庆贺.三、例题剖析活动4问题:(1)如下图,一根旗杆在离地面9m处断裂,旗杆顶部落在离旗杆底部12m处,旗杆折断之前有多高?(2)求斜边长17cm,一条直角边长15cm的直角三角形的面积.解:(1)解:由勾股定理可求得旗杆断裂处到杆顶的长度是:92+122=15(m);15+9=24(m),所以旗杆折断之前高为24m.(2)解:另一直角边的长为172-152=8(cm),所以此直角三角形的面积为12×8×15=60(cm2).师:你能用直角三角形的三边关系解答活动1中的问题2.请同学们在小组内讨论完成.四、课时小结1.掌握勾股定理及其应用;2.会构造直角三角形,利用勾股定理解简单应用题.五.布置作业六.板书设计18.1.1勾股定理(1)第2课时勾股定理(2)三维目标一、知识与技能1.掌握勾股定理,了解利用拼图验证勾股定理的方法.2.运用勾股定理解决一些实际问题.二、过程与方法1.经历用拼图的方法验证勾股定理,培养学生的创新能力和解决实际问题的能力.2.在拼图的过程中,鼓励学生大胆联想,培养学生数形结合的意识.三、情感态度与价值观1.利用拼图的方法验证勾股定理,是我国古代数学家的一大贡献,借助此过程对学生进行爱国主义的教育.2.经历拼图的过程,并从中获得学习数学的快乐,提高学习数学的兴趣.教学重点经历用不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值.教学难点经历用不同的拼图方法证明勾股定理.教具准备每个学生准备一张硬纸板.教学过程一、创设问题情境,引入新课活动1问题:我们曾学习过整式的运算,其中平方差公式(a+b(a-b)=a2-b2,完全平方公式(a±b)2=a2±2ab+b2是非常重要的内容.谁还能记得当时这两个公式是如何推出的?生:这两个公式都可以用多项式乘以多项式的乘法法则推导.如下:(a+b)(a-b)=a2-ab+ab-b2=a2-b2,所以(a+b)(a-b)=a2-b2;(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2;(a-b)2=(a-b)(a-b)=a2-ab-ab+b2=a2-2ab+b2;所以(a±b)2=a2±2ab+b2;生:还可以用拼图的方法说明上面的公式成立.例如:图(1)中,阴影部分的面积为a2-b2,用剪刀将(1)中的长和宽分别为(a-b)和b的长方形剪下来拼接成图(2)的形式便可得图(2)中阴影部分的面积为(a+b)(a-b).而这两部分面积是相等的,因此(a+b)(a-b)=a2-b2成立.生:(a+b)2=a2+2ab+b2也可以用拼图的方法,通过计算面积证明,如图(3)我们用两个边长分别a和b的正方形,两个长和宽分别a和b的长方形拼成一个边长为(a+b)的正方形,因此这个正方形的面积为(a+b)2,也可以表示为a2+2ab+b2,所以可得(a+b)2=a2+2ab+b2.师:你能用类似的方法证明上一节猜想出的命题吗?二、探索研究活动2我们已用数格子的方法发现了直角三角形三边关系,拼一拼,完成下列问题:(1)在一张纸上画4个与图(4)全等的直角三角形,并把它们剪下来.(2)用这4个直角三角形拼一拼,摆一摆,看能否得到一个含有以斜边c为边长的正方形,你能利用拼图的方法,面积之间的关系说明上节课关于直角三角形三边关系的猜想吗?(3)有人利用图(4)这4个直角三角形拼出了图(5),你能用两种方法表示大正方形的面积吗?大正方形的面积可以表示为:_______________,又可以表示为________________.对比两种衷示方法,你得到直角三角形的三边关系了吗?生:我也拼出了图(5),而且图(5)用两种方法表示大正方形的面积分别为(a+b)2或4× ab+c2.由此可得(a+b)2=4×12 ab+c2.化简得a2+b2=c2.由于图(4)的直角三角形是任意的,因此a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。

勾股定理


A1
B2
C3
D4
2.如图,数轴上点A所表示的数为a, 则a的值是( )
3. 如图,矩形纸片ABCD中,已知AD=8,折叠纸片使
AB边与对角线AC重合,点B落在点F 处,折痕为AE,
且EF=3,则AB的长为( )
A.3 B.4
C.5 D.6
4.如图,矩形AOBC中,点A的坐标为(0,8),点D的
二、勾股定理的证明
方法一:将四个全等的直角三角形拼成如图所示 的正方形.
方法二:将四个全等的直角三角形拼成如图(2)所 示的正方形.
方法三:如图(3)所示,将两个直角三角形拼成 直角梯形.
三、勾股定理的作用 1.已知直角三角形的任意两条边长,求第三边; 2.用于解决带有平方关系的证明问题; 3. 利用勾股定理,作出长为 的线段.
纵坐标为3,若将矩形沿直线AD折叠,则顶点C恰好落
在边OB上E处,那么图中阴影部分的面积为( )
30 B.32 C.34
D.16
5.在△ABC中,AB=15,AC=13,高AD=12, 则△ABC的周长为( ) A.42 B.32 C.42或32 D.37或33
6.在直线上依次摆着7个正方形(如图),已知倾斜放置 的3个正方形的面积分别为1,2,3,水平放置的4个正 方形的面积是S1,S2,S3,S4则S1+S2+S3+S4______.
勾 股定理
一、勾股定理 直角三角形两直角边的平方和等于斜边的平方. 如果直角三角形的两直角边长分别为a、b,斜边长为c, 那么a2+b2=c2. 1.勾股定理揭示了一个直角三角形三边之间的数量关系. 2.利用勾股定理,当设定一条直角边长为未知数后,
根据题目已知的线段长可以建立方程求解,这样就将 数与形有机地结合起来,达到了解决问题的目的. 3.理解勾股定理的一些变式:a2=c2-b2,b2=c2-a2.

勾股定理

OA1
OA2
OA3
OA4
OA5
OA6
OA7
OA8
例6:2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么 的值为()
2.一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )
A.斜边长为25 B.三角形周长为25
C.斜边长为5 D.三角形面积为20
3.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是( )
A.0B.1
C.2D.3
4.如图,数轴上的点A所表示的数为x,则x2—10的立方根为( )
它取材于我国三国时期(公元3世纪)赵爽所著的《勾股圆方图注》.
类型之四:勾股定理的应用
(一)求边长
例1:已知:如图,在△ABC中,∠ACB=90º,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.
.
(二)求面积
例2:(1)观察图形思考并回答问题(图中每个小方格代表一个单位面积)
①观察图1-1.
(2)写出各数都大于30的两组商高数.
10、2002年8月20~28日在北京召开了第24届国际数学家大会.大会会标如图所示,它是由四个相同的直角三角形拼成的(直角边长分别为2和3),则大正方形的面积是.
11、已知第一个等腰直角三角形的面积为1,以第一个等腰直角三角形的斜边为直角边画第二个等腰直角三角形,又以第二个等腰直角三角形的斜边为直角边画第三个等腰直角三角形,以此类推,第13个等腰直角三角形的面积是.

第04讲 勾股定理(解析版)-【寒假自学课】2023年八年级数学寒假精品课(人教版)

第04讲 勾股定理【学习目标】1.掌握勾股定理,了解利用拼图验证勾股定理的方法.2.会借助勾股定理确定数轴上表示无理数的点,初步感知实数与数轴上的点的一一对应的关系.3.能运用勾股定理进行有关的计算和解决实际问题.【基础知识】1.勾股定理如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么222a b c +=. 2.勾股定理的证明 方法图形证明赵爽“勾股圆方图”因为大正方形的边长为c ,所以大正方形的面积为2c .又大正方形的面积=()2142ab a b ⨯+-,所以222a b c +=bca伽菲尔德总统拼图设梯形面积为S ,则()()12S a b a b =++, 又2111222S ab ab c =++, 所以222a b c +=毕达哥拉斯拼图由图(1)得大正方形面积=2142c ab +⨯,由图(2)得大正方形面积=22142a b ab ++⨯,比较两式易得222a b c +=总结 以上证法都是通过拼摆图形,运用图形面积与代数恒等式的关系互相转化证明勾股定理3.勾股定理的应用 勾股定理的主要应用如下:(1)已知直角三角形的任意两边求第三边; (2)已知直角三角形的任意一边确定另两边的关系; (3)证明包含有平方(算术平方根)关系的几何问题;(4)构造方程(或方程组)计算有关线段的长度,解决生产、生活中的实际问题.【考点剖析】ccb baa(2)(1)ccbb a a考点一:运用勾股定理进行计算例1.在Rt ABC 中,A ∠,B ∠,C ∠的对边分别为a ,b ,c ,90C ∠=︒.(1)已知3a =,4b =,求c ; (2)已知13c =,5a =,求b ; (3)已知:3:4a b =,10c =,求b . 【答案】(1)5;(2)12;(3)8 【解析】解:(1)因为90C ∠=︒,3a =,4b =, 所以222223425c a b =+=+=, 所以5c =.(2)因为90C ∠=︒,13c =,5a =, 所以22222135144b c a =-=-=, 所以12b =.(3)因为90C ∠=︒,:3:4a b =, 所以43b a =. 因为90C ∠=︒,10c =,43b a =, 所以2224103a a ⎛⎫+= ⎪⎝⎭,解得6a =(负值舍去),所以8b =.考点二:运用勾股定理求面积例2.如图,已知直角三角形的直角边分别为a 、b ,斜边为c ,以直角三角形的三边为边(或直径),分别向外作等边三角形、半圆、等腰直角三角形和正方形.那么,这四个 图形中,直角三角形外,其他几个图形面积分别记作1S 、2S 、3S . 结论Ⅰ:1S 、2S 、3S 满足123S S S +=只有(4); 结论Ⅱ:∵a b c +>,∴123S S S +>的有(1)(2)(3). 对于结论Ⅰ和Ⅱ,判断正确的是( )A .Ⅰ对Ⅱ不对B .Ⅰ不对Ⅱ对C .Ⅰ和Ⅱ都对D .Ⅰ和Ⅱ都不对【答案】D 【解析】解:∵直角三角形的三边长分别为a 、b 、c , ∴222a b c +=,图1中,21133224S a a a =⨯⨯=,2234S b =,2334S =, 则)22123S S a b +=+,233S =, ∴123S S S +=,同理,图2、图3、图4,都符合结论Ⅰ:123S S S +=, 故选:D .考点三:勾股定理的简单应用例3.如图,为测量河宽BC ,某人选择从点C 处横渡,由于受水流的影响,实际上岸地点A 与欲到达地点B 相距50米,结果发现AC 比河宽BC 多10米,求该河的宽度BC .(两岸可近似看作平行)【答案】120米 【解析】解:根据题意可知50AB =米,10AC BC =+米, 设BC x =cm ,由勾股定理得222AC AB BC =+,即()2221050x x +=+,解得120x =.答:该河的宽度BC 为120米. 考点四:运用勾股定理解决折叠问题例4.如图,在长方形ABCD 中,点E 在DC 上,将长方形沿AE 折叠,使点D 落在BC 边上的点F 处.若3AB =,5BC =,求EC 的长.【答案】43【解析】解:∵四边形ABCD 为长方形, ∴5AD BC ==,3AB CD ==,∵长方形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上的F 处, ∴5AF AD ==,EF DE =, 在Rt ABF 中,2222534BF AF AB -=-=,∴541CF BC BF =-=-=,设CE x =,则3DE EF x ==-, 在Rt ECF 中,∵222CE FC EF +=, ∴()22213x x +=-,解得43x =, 故EC 的长为43. 考点五:会画长度为无理数的线段例5. 如图,根据图中的标注和作图痕迹可知,在数轴上的点A 所表示的数为 .51 【解析】解:根据勾股定理可求出圆的半径为:22125+=即点A 到表示15 那么点A 到原点的距离为)51个单位,∵点A 在原点的右侧,∴点A 51, 51.考点六:运用勾股定理求最短路径例6. 如图,圆柱的底面周长为24cm ,AC 是底面圆的直径,高6BC =cm ,点P 是BC 上一点,且5PC BP =,一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是___________.【答案】13cm 【解析】解:如图展开,连接AP ,则线段AP 的长是从A 点出发沿着圆柱的表面爬行到点P 的最短距离,∵6cm BC =,56PC BC =, ∴5cm PC =,∵圆柱的底面周长为24cm , ∴12cm AC =,在Rt ACP 中,由勾股定理得:222212513cm AP AC PC =+=+=【真题演练】1.如图,在ABC 中,10AB AC ==,12BC =,AD 是ABC 的中线,则AD 长为( )A .22B .6C .8D .261【答案】C 【解析】解:∵12BC =,AD 是ABC 的中线, ∴6BD CD ==, ∵10AB AC ==, ∴AD BC ⊥, ∴22221068AD AB BD =-=-=.故选:C .2.线段AB 在平面直角坐标系中的位置如图所示,()1,4A -,()5,1B -,线段AB 的长为( )A .5B .42C .4D .3【答案】A 【解析】解:由勾股定理得,22435AB +=, 故选:A .3.如图,在长方形ABCD 中,3AB =,1AD =,AB 在数轴上,若以点A 为圆心,对角 线AC 长为半在作弧交数轴正半轴于点M ,则点M 所表示的数为( )A 10B 101C 101D .2【答案】B【解析】解:∵四边形ABCD 是长方形,1AD =,∴1BC AD ==,90ABC ∠=︒.∵90ABC ∠=︒,1BC =,3AB =, ∴223110AC =+= ∴10AM AC ==∴点M 101.故选:B .4.如图,在ABC 中,20AB =,15AC =,7BC =,则点A 到BC 的距离是()A .10B .11C .12D .13【答案】C【解析】解:如图,过点A 作AD BC ⊥交BC 的延长线于点D ,在Rt ABD 与Rt ACD 中,由勾股定理得,22222AB BD AD AC CD -==-,即()222220715CD CD -+=-,∴9CD =, ∴2212AD AC CD -=,即点A 到BC 的距离是12,故选:C .5.一只蚂蚁从长宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,则它所爬行的最 短路线的长是( )A .10B .14C 130D .8【答案】A【解析】解:将长方体展开,分两种情况,第一种展开方式如下图:∴226810AB +=,第二种展开方式如下图: ∴22311130AB +=∵10130<∴A 点沿纸箱爬到B 点,所爬行的最短路线的长是10,故选:A .6.如图,Rt ABC 中,90C ∠=︒,AD 是BAC ∠的平分线,DE AB ⊥,垂足为E .若 10cm AB =,6cm AC =,则BE 的长为 cm .【答案】4cm【解析】解:∵AD 是BAC ∠的平分线,DE AB ⊥,90C ∠=︒,即AC CD ⊥,∴CD DE =.在Rt ACD 与Rt AED 中,CD ED AD AD =⎧⎨=⎩, ∴()Rt ACD Rt AED HL ≌.∴AC AE =.又10cm AB =,6cm AC =,∴()4cm BE AB AE AB AC =-=-=.故答案是:4cm .7.已知x ,y 分别为直角三角形的两边长,并且满足()()()22230x y y ---=,则第三边长度为 .【答案】2或135【解析】解:∵()()()22230x y y -+--=,∴20x -=,()()230y y --=,∴2x =,2y =或3y =;(1)当2x =,2y =时,x 、y 为直角边长,斜边长222222+=;(2)当2x =,3y =时,分两种情况:①y 为直角边长时,斜边长222313+=②y 为斜边时,第三边长22325-=综上所述:第三边的长为22135故答案为:21358.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A 、C 、 D 的面积依次为4、6、20,则正方形B 的面积为 .【答案】10【解析】解:由题意:A B E S S S +=正方形正方形正方形,D C E S S S -=正方形正方形正方形,∴A B D C S S S S +=-正方形正方形正方形正方形.∵正方形A 、C 、D 的面积依次为4、6、20,∴4206B S +=-正方形,∴10B S =正方形.故答案为:10.9.等腰三角形的两条边长为4和6,则这个等腰三角形的面积为 . 【答案】237【解析】解:①6是腰长时,三角形的三边分别为6、6、4,如图,过顶点A 作底边BC 的垂线AD ,垂足为点D ,则6AB AC ==,4BC =,∵AD BC ⊥,∴2BD CD ==, ∴22226242AD AB BD -=-=, ∴三角形的面积为1442=822⨯⨯; ②6是底边时,三角形的三边分别为6、4、4,如图,过顶点A 作底边BC 的垂线AD ,垂足为点D ,则4AB AC ==,6BC =,∵AD BC ⊥,∴3BD CD ==, ∴2222437AD AB BD -=-= ∴三角形的面积为167=372⨯ 综上所述,三角形的面积为8237 故答案为:23710.有一个小朋友拿一根竹竿要通过一个长方形的门,若把竹竿竖着放比门高出1尺,斜着 放恰好等于门的对角线长,已知门宽为4尺,求竹竿高.解:设竹竿高为x 尺,则门高 尺.(用x 的代数式表示)根据题意,可列关于x 的方程: .解得:x = .答:【答案】()1x -,()22214x x -+=,8.5【解析】解:设竹竿高为x 尺,则门高()1x -尺.根据题意,得:()22214x x -+=,解得:8.5x =,答:竹竿高为8.5尺.故答案为:()1x -,()22214x x -+=,8.5.11.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图, 火柴盒的一个侧面ABCD 倒下到AEFG 的位置,连接CF ,此时90FAC ∠=︒,AB a =,BC b =,AC c =.请利用直角梯形BCFG 的面积证明勾股定理:222a b c +=.【答案】见解析【解析】 证明:∵2211112222AFG AFC ACB BCFG S S S S ab ab c ab c =++=++=+梯形, ()()()2211112222BCFG S FG BC BG a b a b a ab b =⋅+⋅=++=++梯形, ∴222111222ab c a ab b +=++, 整理得:222a b c +=.12.八年级的小明和小亮同学学习了“勾股定理”之后,为了测得如图所示风筝的高度CE , 他们进行了如下操作:①测得9BD =米;(注:BD CE ⊥)②根据手中剩余线的长度计算出风筝线15BC =米;③牵线放风筝的小明身高1.6米.求风筝的高度CE .【答案】13.6米【解析】解:在Rt CDB 中,由勾股定理得,22222159144CD BC BD =-=-=,所以,12CD =±(负值舍去),所以,12 1.613.6CE CD DE =+=+=米,答:风筝的高度CE 为13.6米.【过关检测】1.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A .25B .7C .5或7D .7或25【答案】D【解析】解:当边长为4的边为斜边时,第三边的平方为22437-=;当边长为4的边为直角边时,第三边的平方为224325+=;故选:D .2.如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若 图中的直角三角形的一条直角边长为5,大正方形的边长为13,则中间小正方形的面积 ( )A .144B .64C .49D .25【答案】C【解析】解:由题意可得:小正方形的边长2213557-=,∴小正方形的面积为7749⨯=,故选:C .3.如图,ABC 中,10AB AC ==,12BC =,D 是BC 的中点,DE AB ⊥于点E , 则DE 的长为( )A .125 B .8C .245D 5【答案】C【解析】解:如图,连接AD ,∵AB AC =,D 是BC 的中点,∴AD BC ⊥,162BD BC ==,在Rt ABD 中,由勾股定理得,22221068AD AB BD -=-=,∵DE AB ⊥, ∴1122ABD S AB DE BD AD =⋅=⋅,∴6824105BD AD DE AB ⋅⨯===, 故选:C .4.一直角三角形的两直角边分别是8和6,下列说法正确的是( )A .斜边长24B .三角形的周长是25C .三角形的面积为48D .斜边长10【答案】D【解析】解:∵直角三角形的两直角边分别是8和6, ∴斜边长228610=+=,三角形的面积=186=242⨯⨯, 三角形的周长=6810++=24,∴选项D 正确,选项A 、B 、C 错误,故选:D .5.如图,Rt ABC 的直角边AB 在数轴上,点A 表示的实数为0,以A 为圆心,AC 的长 为半径作弧交数轴的负半轴于点D .若1CB =,2AB =,则点D 表示的实数为 .【答案】5【解析】解:2222215AC AB BC =+=+= 则5AD =∵A 点表示0,∴D 点表示的数为:5- 故答案为:56.如图,Rt ABC 中,90ACB ∠=︒,CD AB ⊥,9AB =,6BC =,则BD 的长 为 .【答案】4【解析】解:在Rt ABC 中,由勾股定理得,22229635AC AB BC =--=, ∵1122ABC S AB CD BC AC =⋅=⋅, ∴63525BC AC CD AB ⋅⨯=== 在Rt ACD 中,由勾股定理得,2245205AD AC CD -=-=,∴954BD AB AD =-=-=,故答案为:4.7.在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且 荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是 尺.【答案】3.75【解析】解:若设湖水的深度x 尺.则荷花的长是()0.5x +米.在直角三角形中,根据勾股定理, 得:()2220.52x x +=+,解之得: 3.75x =,∴湖水的深度为3.75尺.故答案为:3.75.8.如图所示,一棵18m 高的树被风刮断了,树顶落在离树根12m 处,则折断处的高度AB 为 m .【答案】5【解析】解:由题意得:12m BC =,18m AC AB +=,90ABC ∠=︒,∴222AB BC AC +=,设m AB x =,则()18m AC x =-,由勾股定理得:222AB BC AC +=,即()2221218x x +=-,解得:5x =,∴ 2.5AB =米,∴折断处的高度AB 为5m .故答案为:5.9.如图,圆柱的底面周长是10cm ,圆柱高为12cm ,一只蚂蚁如果要沿着圆柱的表面从下 底面点A 爬到与之相对的上底面点B ,那么它爬行的最短路程为 .【答案】13cm【解析】解:把圆柱沿母线AC 剪开后展开,点B 展开后的对应点为B ',则蚂蚁爬行的最短路径为AB ',如图,12AC =,5CB '=,在Rt ACB ',2251213AB '=+=,所以它爬行的最短路程为13cm .故答案为:13cm .10.阅读与思考两点之间的距离公式如果数轴上的点1A ,2A 分别表示实数1x ,2x ,两点 1A ,2A 间的距离记作12A A ,那么1221A x x =-.对于平面上的两点1A ,2A 间的距离是否有类似的结论呢?运用勾股定理,就可以推出平面上两点之间的距离公式.(1)如图1,已知平面上两点()0,4A ,()3,0B ,求A ,B 两点之间的距离AB ;(2)如图2,已知平面上两点()1,2A ,()5,5B ,求这两点之间的距离AB ;(3)一般地,设平面上任意两点()11,A x y 和()22,B x y ,如图3,如何计算A ,B 两点之间的距离AB ?对于问题3,作AA x '⊥轴,BB x '⊥轴,垂足分别为点A ',B ';作AA y ''⊥轴,垂足为点A '';作BC AA '⊥,垂足为点C ,且延长BC 与y 轴交于点B '',则四边形BB A C '',ACB A ''''是长方形. ∵CA = ,CB = , ∴222AB CB CA =+= . ∴()()222121AB x x y y =-+-这就是平面直角坐标系中两点之间的距离公式.请你根据上面的公式求出下列两点之间的距离:()1,2A -,()2,1B -.【答案】(1)5;(2)5;(3)12y y -,21x x -,()()221221y y x x -+-;(4)32【解析】解:(1)∵()0,4A ,()3,0B , ∴4OA =,3OB =, 由勾股定理得22345AB =+=;(2)∵()1,2A ,()5,5B , ∴4AC =,3BC =,由(1)同理得,5AB =;(3)∵12AC y y =-,21CB x x =-, ∴()()222221221AB CB CA y y x x =+=-+-, ∴()()222121AB x x y y =-+-.故答案为:12y y -,21x x -,()()221221y y x x -+-;(4)由两点间距离公式得: ()()22211232AB =++--=。

17.1.2勾股定理在实际生活中的应用4

1.小明拿出了牛奶盒,把小蚂蚁放在了点B3 A处,并在点B处放上了 点儿食物,你能算出小蚂蚁吃到食物的最短路程么?
B1
B
B
牛奶盒
A 10cm
8cm 6cm
A
10
B2
8
6
变式训练
1.小明拿出了牛奶盒,把小蚂蚁放在了点A处,并在点B处放上了
点儿食物,你能算出小蚂蚁吃到食物的最短路程么?
B
前面 8cm
A 长10
例2 在一个圆柱石凳上,若已知圆柱体高为12 cm,底面半径为3 cm.若小 明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信 息,于是它想从A处爬向B处,蚂蚁怎么走最近?(π取3)
蚂蚁A→B的路线
B
A' d B A'
B
OB
B
A
A
A
想一想:蚂蚁走哪一条路线最近?
A
A
立体图形中的最短路径 2
C B
A
AC+CB >AB(两点之间线段最短)
直线同侧两点之间路径最短
如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B 的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完 成这件事情所走的最短路程是多少?
解:如图,作出点A关于河岸的对称点A′, 连接A′B则A′B就是最短路线长. 由题意得 A′C=4+4+7=15(km),
②求法: 以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运
用勾股定理求最短路径.
立体图形中的最短路径 1
例1 如图,是一个三级台阶,它的每一级的长、宽和高分别等于55cm,10cm和
6cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
A
C B
第3题图
B
D
第4题图
C
学习体会
本节课你有哪些收获?你对勾股定理又有了多少新 的认识?
Zx```x`````k
作业布置
必做题:教材第29页习题17.1第6、7、11题.
练习: 教材习题17.1第13、14题.
C
B
C′
B′
′B′C′中, ∠C=∠C′=90°, AB=A′B′, BC=B′C′. 求证:△ABC≌△ A′B′C′ .
证明:∵△ABC和 △A′B′C′是直角三角形, ∴AC²=AB²-BC², A ∴ A′C′ ²= A′B′ ²- B′C′ ². ∵AB= A′B′ , BC= B′C′ , ∴AC²= A′C′ ², ∴AC= A′C′ . B C 在△ABC和△ A′B′C′中, ∵∠C=∠C′ , AC= A′C′ , BC= B′C′, ∴△ABC≌△ A′B′C′.
10
的点.
2 .如图所示,∠ACB=∠ABD=90°,CA=CB,
∠DAB=30°,AD=8,求AC的长.
达标检测
1.已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高 4 为 . 5 1 2 .长为 26 的线段是直角边长为正整数 , 的直 角三角形的斜边. 3 .如图所示,在正方形网格中,每个小正方形的边长为1,则在网格上 的三角形ABC中,边长为无理数的边数为( C ) A.0 B.1 C.2 D.3 4.如图所示,等边三角形ABC的边长为8.(1)求高AD的长; 4 3 (2)求这个三角形的面积(答案可保留根号). 16 3
第十七章 勾股定理
17.1 勾股定理
第3课时
知识回顾
1.已知直角三角形ABC的三边为a、b、c , ∠C= 90°,
则 a、b、c 三者之间的关系是 ; a2+ b2=c2
2.若一个直角三角形两条直角边长是3和2,那么第三条 边长是
13

Zx```x`````k
3. 无限不循环小数 叫做无理数.
问题思考 在八年级上册中我们曾经通过画图得到结 论:斜边和一条直角边对应相等的两个直 角三角形全等.学习了勾股定理后,你能证 明这一结论吗? A′ A
②过A点作直线 l 垂直于OA,在 l上截取AB=2;
③以O为圆心,以OB为半径画弧,交数轴于点C, 点C即为表示
13 的点.
A C
变式训练
利用勾股定理可以得到长为 2 , 3 , 5 ……的线段. 按照 同样方法,可以在数轴上画出表示 2 , 3 , 5 ……的点.
尝试应用
1 .利用探究的方法,请你在数轴上表示
A′
C′
B′
问题探究
数轴上的点有的表示有理数,有的表示无理数,你能在数轴上
画出表示
13
的点吗?
分析引导:(1)你能画出长为 角三角形的斜边 .
2 的线段吗?怎么画?说说你的画法.
(2)长是 13 的线段怎么画?是由直角边长为_____和______(整数)组成的直 (3)怎样在数轴上画出表示 13的点? ①设原点为O,在数轴上找到点A,使OA=3; l B
相关文档
最新文档