2008年高考数学试题分类汇编(必修Ⅲ——算法、概率统计)

合集下载

2008年高考数学章节分类(试题)(1-10)章目录

2008年高考数学章节分类(试题)(1-10)章目录

2008年高考数学章节分类试题文科使用(共16章242页)2008年9月整理2008年高考数学章节分类试题目录第一章《集合与函数概念》 (1)第二章《基本初等函数(幂函数、指数函数、对数函数)》 (11)第三章《空间几何体》.......................................................... . (17)第四章《点、直线、平面之间的位置关系》、《空间向量与立体几何》 (22)第五章《直线与圆及其方程》............................................................ (57)第六章《算法初步》 (62)第七章《统计与概率》..................................................................... ..71 第八章《三角函数与恒等变形》.. (77)第九章《平面向量》 (91)第十章《解三角形》 (95)第十一章《数列》 (102)第十二章《不等式与简单的线性》 (120)第十三章《常用逻辑用语》 (125)第十四章《圆锥曲线(抛物线、椭圆与双曲线)》 (128)第十五章《导数及其应用》 (163)第十六章《数系的扩充与复数的引入》 (186)答案第一章《集合与函数概念》 (187)第二章《基本初等函数(幂函数、指数函数、对数函数)》 (193)第三章《空间几何体》.......................................................... . (196)第四章《点、直线、平面之间的位置关系》、《空间向量与立体几何》 (199)第五章《直线与圆及其方程》............................................................ (204)第六章《算法初步》 (207)第七章《统计与概率》..................................................................... (209)第八章《三角函数与恒等变形》 (212)第九章《平面向量》 (217)第十章《解三角形》 (221)第十一章《数列》 (223)第十二章《不等式与简单的线性》 (226)第十三章《常用逻辑用语》 (229)第十四章《圆锥曲线(抛物线、椭圆与双曲线)》 (231)第十五章《导数及其应用》 (338)第十六章《数系的扩充与复数的引入》 (341)。

2008年高考数学试题分类汇编

2008年高考数学试题分类汇编
(Ⅰ)证明: AD CE ; (Ⅱ)设 CE 与平面 ABE 所成的角为 45 ,求二面角 C AD E 的 大小.
C 解:(1)取 BC 中点 F ,连接 DF 交 CE 于点 O , AB AC , AF BC , 又面 ABC 面 BCDE , AF 面 BCDE , AF CE . B D E
AB : AD : AA1 1:1: 2 . A,B 两点的球面距离记为 m , A,D1 两点的球面距离
记为 n ,则
m 的值为 n

1 2
18.(重庆卷 9)如解(9)图,体积为 V 的大球内有 4 个小球, 每个小球的球面过大球球心且与大球球面有且只有一个交点,4 个小球的球心是以大球球心为中心的正方形的 4 个顶点.V1 为小 球相交部分(图中阴影部分)的体积,V2 为大球内、小球外的 图中黑色部分的体积,则下列关系中正确的是 D V V (A)V1= (B) V2= 2 2 (C)V1> V2 (D)V1< V2 19.(福建卷 6)如图,在长方体 ABCD-A1B1C1D1 中,

1 6
3.(全国二 16)平面内的一个四边形为平行四边形的充要条件有多个,如两组
4
对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条 件: 充要条件① 充要条件② ; .
(写出你认为正确的两个充要条件) (两组相对侧面分别平行;一组相对侧面平 行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条 件.如果考生写出其他正确答案,同样给分. ) 4.(四川卷 15)已知正四棱柱的对角线的长为 6 ,且对角线与底面所成角的 余弦值为
P P
图1
图 2
7.(福建卷 15)若三棱锥的三个侧圆两两垂直,且侧棱长均为 3 ,则其外接 球的表面积是 . 9 8.(浙江卷 14)如图,已知球 O 点面上四点 A、B、C、D,DA 平面 ABC,AB 9π BC,DA=AB=BC= 3 ,则球 O 点体积等于___________。 2 9.(辽宁卷 14)在体积为 4 3 的球的表面上有 A,B,C 三点,AB=1,BC= 2 ,

2008年普通高等学校招生全国统一考试数学试卷分类汇编1.2简易逻辑

2008年普通高等学校招生全国统一考试数学试卷分类汇编1.2简易逻辑

第一章 集合与简易逻辑二 简易逻辑【考点阐述】逻辑联结词.四种命题.充分条件和必要条件.【考试要求】(2)理解逻辑联结词“或”、“且”、“非”的含义,理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.【考题分类】(一)选择题(共21题)1、(安徽卷理7文4)0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件解:当0422>-=∆a ,得a<1时方程有根。

a<0时,0121<=ax x ,方程有负根,又a=1时,方程根为1-=x ,所以选B2、(北京卷理3) “函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【标准答案】: B【试题分析】: 函数()()f x x ∈R 存在反函数,至少还有可能函数()f x 在R 上为减函数,充分条件不成立;而必有条件显然成立。

【高考考点】: 充要条件,反函数,映射关系,函数单调性。

【易错提醒】: 单调性与一一对应之间的关系不清楚【备考提示】: 平时注意数形结合训练。

3、(北京卷文3) “双曲线的方程为221916x y -=”是“双曲线的准线方程为95x =±”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】“双曲线的方程为221916x y -=”⇒是“双曲线的准线方程为95x =±” “95x =±” ⇒ “221916x y -=”,如反例: 2211882x y -=. 4、(福建卷理2)设集合A={x |1x x -<0},B={x |0<x <3=,那么“m ∈A ”是“m ∈B ”的 A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 解:由01x x <-得01x <<,可知“m A ∈”是“m B ∈”的充分而不必要条件 5、(福建卷文2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 解:若00x y x ay +=-=与互相垂直,则0x ay -=的斜率必定为1,1a =,反之显然6、(广东卷理6)已知命题:p 所有有理数都是实数,命题:q 正数的对数都是负数,则下列命题中为真命题的是( )A .()p q ⌝∨B .p q ∧C .()()p q ⌝∧⌝D .()()p q ⌝∨⌝【解析】不难判断命题p 为真命题,命题q 为假命题,从而上述叙述中只有()()p q ⌝∨⌝ 为真命题7、(广东卷文8)命题“若函数()log (0,1)a f x x a a =>≠在其定义域内是减函数,则log 20a <”的逆否命题是( )A 、若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数B 、若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数C 、若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数D 、若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数【解析】考查逆否命题,易得答案A.8、(湖北卷理2)若非空集合,,A B C 满足A B C =,且B 不是A 的子集,则A. “x C ∈”是“x A ∈”的充分条件但不是必要条件B. “x C ∈”是“x A ∈”的必要条件但不是充分条件C. “x C ∈”是“x A ∈”的充要条件D. “x C ∈”既不是“x A ∈”的充分条件也不是“x A ∈”必要条件解:x A x C ∈⇒∈,但是x C x A ∈⇒∈不能, 所以B 正确。

2008年高考数学试题分类汇编

2008年高考数学试题分类汇编

2008年高考数学试题分类汇编算法与极限一. 选择题:1.(广东卷9.阅读图3的程序框图,若输入4m =,6n =,则输出a = 12 ,i = 3(注:框图中的赋值符号“=”也可以写成“←”或“:=”)【解析】要结束程序的运算,就必须通过n 整除a 的条件运算,而同时m 也整除a ,那么a 的最小值应为m 和n 的最小公倍数12,即此时有3i =。

2.(海南卷5、右面的程序框图5,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( A ) A. c > x B. x > c 3.(辽宁卷2)135(21)lim(21)x n n n →∞++++-=+ ( B )A .14B .12C .1D .24.(陕西卷12)为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为012i a a a a ,{01}∈,(012i =,,),传输信息为00121h a a a h ,其中00110h a a h h a =⊕=⊕,,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( C ) A .11010B .01100C .10111D .00011二. 填空题:1.(湖南卷11)211lim______34x x x x →-=+-. 152.(江西卷11)211lim ______34x x x x →-=+-. 153.(山东卷13)执行右边的程序框图6,若p =0.8,则输出的n =4 .4.(陕西卷13)(1)1lim2n a n n a∞++=+→,则a = .1图5图62 221lim xana n n→∞+=+.135.(重庆卷12)已知函数f(x)=(当x≠0时) ,点在x=0处连续,则。

2008年高考数学试题分类汇编

2008年高考数学试题分类汇编

2008年高考数学试题分类汇编立体几何过点A作AH⊥PB于H,由(Ⅰ)知平面PBE⊥平面P AB,所以AH⊥平面PBE.在Rt△ABF中,因为∠BAF=60°,所以,AF=2AB=2=AP.在等腰Rt△P AF中,取PF的中点G,连接AG.则AG⊥PF.连结HG,由三垂线定理的逆定理得,PF⊥HG.所以∠AGH是平面P AD和平面PBE所成二面角的平面角(锐角).在等腰Rt△P AF中,2AG PA==在Rt△P AB中,AP ABAHPB====所以,在Rt△AHG中,sinAHAGHAG∠===故平面P AD和平面PBE所成二面角(锐角)的大小是解法二: 如图所示,以A为原点,建立空间直角坐标系.则相关各点的坐标分别是A(0,0,0),B(1,0,0),3 ( 2C1(2D P(0,0,2),E(Ⅰ)因为(0,,0)2BE=,平面P AB的一个法向量是(0,1,0)n=,所以BE n和共线.从而BE⊥平面P AB.又因为BE⊂平面PBE,故平面PBE⊥平面P AB.(Ⅱ)易知(1,0,2),(0,0PB BE=-=),1(0,0,2),(,2PA AD=-=设1111(,,)n x y z=是平面PBE的一个法向量,则由110,n PBn BE⎧=⎪⎨=⎪⎩得111122020,000.x y z x y z +⨯-=⎧⎪⎨⨯+⨯=⎪⎩所以11110,2.(2,0,1).y x z n ===故可取 设2222(,,)n x y z =是平面PAD 的一个法向量,则由220,0n PA n AD ⎧=⎪⎨=⎪⎩得2222220020,100.2x y z x y z ⨯+⨯-=⎧⎪⎨+⨯=⎪⎩所以2220,.z x ==故可取2(3,1,0).n =-于是,12121223cos ,5n n n n n n <>===⨯故平面PAD 和平面PBE 所成二面角(锐角)的大小是陕西卷19.(本小题满分12分)三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为111A B C ,90BAC ∠=,1A A ⊥平面ABC ,1A A =,AB =,2AC =,111AC =,12BD DC =. (Ⅰ)证明:平面1A AD ⊥平面11BCC B ; (Ⅱ)求二面角1A CC B --的大小. 解法一:(Ⅰ)1A A ⊥平面ABC BC ⊂,平面ABC ,∴1A A BC ⊥.在Rt ABC △中,2AB AC BC ==∴,, :1:2BD DC =,BD ∴=,又BD ABAB BC==, DBA ABC ∴△∽△,90ADB BAC ∴∠=∠=,即AD BC ⊥.又1A AAD A =,BC ∴⊥平面1A AD ,BC ⊂平面11BCC B ,∴平面1A AD ⊥平面11BCC B .(Ⅱ)如图,作1AE C C ⊥交1C C 于E 点,连接BE , 由已知得AB ⊥平面11ACC A .AE ∴是BE 在面11ACC A 内的射影.A 1 A C 1B 1BDC由三垂线定理知1BE CC ⊥,AEB ∴∠为二面角1A CC B --的平面角.过1C 作1C F AC ⊥交AC 于F 点, 则1CF AC AF =-=,11C F A A =160C CF ∴∠=.在Rt AEC △中,sin 6022AE AC ==⨯= 在Rt BAE △中,tan AB AEB AE ===.arctanAEB ∴∠= 即二面角1A CC B --为解法二:(Ⅰ)如图,建立空间直角坐标系,则11(000)0)(020)(00A B C A C ,,,,,,,,,,:1:2BD DC =,13BD BC ∴=. D ∴点坐标为203⎫⎪⎪⎝⎭,,. ∴2203AD ⎛⎫= ⎪⎪⎝⎭,,,1(220)(00BC AA =-=,,,.10BC AA =,0BC AD =,1BC AA ∴⊥,BC AD ⊥,又1A A AD A =,BC ∴⊥平面1A AD ,又BC ⊂平面11BCC B ,∴平面1A AD ⊥平面11BCC B .(Ⅱ)BA ⊥平面11ACC A ,取(20)AB ==,,m 为平面11ACC A 的法向量,设平面11BCC B 的法向量为()l m n =,,n ,则100BC CC ==,n n .200m m ⎧+=⎪∴⎨-+=⎪⎩,,l n∴==,,如图,可取1m =,则=⎭n , A 1 AC 1B 1BD CFE(第19题,解法一)(第19题,解法二)22010cos5(2)1⨯+<>==+,m n,即二面角1A CC B--为15arccos5.重庆卷(19)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.)如题(19)图,在ABC中,B=90,AC=152,D、E两点分别在AB、AC上.使2AD AEDB EC==,DE=3.现将ABC沿DE折成直二角角,求:(Ⅰ)异面直线AD与BC的距离;(Ⅱ)二面角A-EC-B的大小(用反三角函数表示).解法一:(Ⅰ)在答(19)图1中,因AD AEDB CE=,故BE∥BC.又因B=90°,从而AD⊥DE.在第(19)图2中,因A-DE-B是直二面角,AD⊥DE,故AD⊥底面DBCE,从而AD⊥DB.而DB⊥BC,故DB为异面直线AD与BC的公垂线.下求DB之长.在答(19)图1中,由2ADAECB BC==,得2.3DE ADBC AB==又已知DE=3,从而39.22BC DE==6.AB===因1, 2.3DBDBAB=故=(Ⅱ)在第(19)图2中,过D作DF⊥CE,交CE的延长线于F,连接AF.由(1)知,AD⊥底面DBCE,由三垂线定理知AF ⊥FC,故∠AFD为二面角A-BC-B的平面角.在底面DBCE中,∠DEF=∠BCE,11552,,322DB EC===因此4sin.5DBBCEEC==从而在Rt△DFE中,DE=3,412sin sin3.55DF DE DEF DE BCE====在5Rt ,4,tan .3AD AFD AD AFD DF ∆===中 因此所求二面角A -EC -B 的大小为arctan 5.3解法二:(Ⅰ)同解法一.(Ⅱ)如答(19)图3.由(Ⅰ)知,以D 点为坐标原点,DB DE DA 、、的方向为x 、y 、z 轴的正方向建立空间直角坐标系,则D (0,0,0),A (0,0,4),9202C ⎛⎫⎪⎝⎭,,,E (0,3,0).302AD AD ⎛⎫ ⎪⎝⎭=-2,-,,=(0,0,-4).过D 作DF ⊥CE ,交CE 的延长线于F ,连接AF .设00(,,0),F x y 从而00(,,0),DF x y = 00(,3,0).EF x y DF CE =-⊥由,有0030,20.2DF CE x y =+=即 ① 又由003,.22x y CE EF -=得 ②联立①、②,解得00364836483648,.,,0,,4.252525252525x y F AF ⎛⎫⎛⎫=-=-=-- ⎪ ⎪⎝⎭⎝⎭即,得 因为36483(2)025252A F C E ⎛⎫⎛⎫=--+-= ⎪ ⎪⎝⎭⎝⎭,故AF CE ⊥,又因D F C E ⊥,所以D F A ∠为所求的二面角A-EC-B 的平面角.因3648,,0,2525DF ⎛⎫=- ⎪⎝⎭有22364812,4,5DF AD ⎛⎫⎛⎫=-+== ⎪ ⎪所以5tan .3AD AFD DF ==因此所求二面角A-EC-B 的大小为5arctan .3福建卷(18)(本小题满分12分)如图,在四棱锥P-ABCD 中,则面PAD⊥底面ABCD ,侧棱P A =PD ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC =2,O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PD 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD 求出AQQD的值;若不存在,请说明理由.本小题主要考查直线与平面的位置关系、异面直线所成角、点到平面的距离等基本知识,考查空间想象能力、逻辑思维能力和运算能力.满分12分.解法一:(Ⅰ)证明:在△P AD 中P A =PD ,O 为AD 中点,所以PO ⊥AD ,又侧面P AD ⊥底面ABCD ,平面PAD ⋂平面ABCD =AD , PO ⊂平面P AD ,所以PO ⊥平面ABCD .(Ⅱ)连结BO ,在直角梯形ABCD 中、BC ∥AD ,AD =2AB =2BC ,有OD ∥BC 且OD =BC ,所以四边形OBCD 是平行四边形, 所以OB ∥DC .由(Ⅰ)知,PO ⊥OB ,∠PBO 为锐角, 所以∠PBO 是异面直线PB 与CD 所成的角.因为AD =2AB =2BC =2,在Rt △AOB 中,AB =1,AO =1,所以OB在Rt △POA 中,因为AP AO =1,所以OP =1,在Rt △PBO 中,tan ∠PBO =PG PBO BC ==∠=所以异面直线PB 与CD 所成的角是arctan2.(Ⅲ)假设存在点Q ,使得它到平面PCD设QD =x ,则12DQC S x ∆=,由(Ⅱ)得CD =OB在Rt △POC 中, PC ==所以PC =CD =DP , 2(2)42PCD S ∆== 由V p-DQC =V Q-PCD ,得2,所以存在点Q 满足题意,此时13AQ QD =. 解法二:(Ⅰ)同解法一.(Ⅱ)以O 为坐标原点,OC OD OP 、、的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O-xyz ,依题意,易得A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,1),所以110111CD PB ---=(,,),=(,,).所以异面直线PB 与CD 所成的角是(Ⅲ)假设存在点Q ,使得它到平面PCD由(Ⅱ)知(1,0,1),(1,1,0).CP CD =-=- 设平面PCD 的法向量为n =(x 0,y 0,z 0).则0,0,n CP n CD ⎧=⎪⎨=⎪⎩所以00000,0,x z x y -+=⎧⎨-+=⎩即000x y z ==,取x 0=1,得平面PCD 的一个法向量为n =(1,1,1). 设(0,,0)(11),(1,,0),Q y y CQ y -≤≤=-由3CQ n n=,得=解y =-12或y =52(舍去), 此时13,22AQ QD ==,所以存在点Q 满足题意,此时13AQ QD =. 广东卷20.(本小题满分14分)。

2008年高考数学试题分类汇编——概率与统计

2008年高考数学试题分类汇编——概率与统计

2008年高考数学试题分类汇编(概率与统计)1.(全国一20).(本小题满分12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.2.(全国二18).(本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为410-.10.999(Ⅰ)求一投保人在一年度内出险的概率p;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).3.(北京卷17).(本小题共13分)甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量ξ为这五名志愿者中参加A 岗位服务的人数,求ξ的分布列.4.(四川卷18).(本小题满分12分)设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。

(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(Ⅲ)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望。

2008年全国各地高考数学试题及解答分类汇编大全

2008年全国各地高考数学试题及解答分类汇编大全(15统计、统计案例、算法初步、框图、推理与证明)一、选择题:1.(2008广东理)某校共有学生2000名,各年级男、女生人数如表1.已知在全校学生中随机抽取1名,抽到二年级女生的 概率是0.19 .现用分层抽样的方法在全校抽取64名 学生, 则应在三年级抽取的学生人数为( C ) A .24 B. 18 C. 16 D. 12解:由19.02000=x,得38019.02000=⨯=x , 三年级人数为500)370380377373(2000=+++-=+z y ,设应在三年级抽取m 人,则200064500=m ,解得m=16. 故答C.2、(2008海南、宁夏文、理)右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( A ) A. c > x B. x > c C. c > b D. b > c3. (2008山东理)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图,图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为( B )(A )304.6 (B )303.6 (C)302.6 (D)301.64.(2008山东文)从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( B )A B C .3 D .855.(2008陕西文) 某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C ) A .30 B .25 C .20 D .156.(2008陕西纹、理) 为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为012i a a a a ,{01}∈,(012i =,,),传输信息为00121h a a a h ,其中001102h a a h h a =⊕=⊕,,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( C )A .11010B .01100C .10111D .000117. (2008重庆文) 某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是 ( D )(A)简单随机抽样法 (B)抽签法 (C)随机数表法 (D)分层抽样法二、填空题:1.(2008广东文)为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量。

2008年高考数学试题分类汇编

2008年高考数学试题分类汇编集合简易逻辑一. 选择题:1.(上海卷2)若集合{}|2Ax x =≤,{}|B x x a =≥满足{2}A B= ,则实数a = .2 2.(全国二1)设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( B )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,3.(北京卷1)已知全集U =R,集合{}|23Ax x =-≤≤,{}|14Bx x x =<->或,那么集合)(B C AU 等于( D )A .{}|24x x -<≤B .{}|34x x x 或≤≥ C .{}|21x x -<-≤D .{}|13x x -≤≤4.(四川卷1)设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则=)(B A C U( B )(A){}2,3 (B){}1,4,5 (C){}4,5 (D){}1,5 5.(天津卷1)设集合|0{8}x x N U=∈<≤,{1,2,4,5}S=,{3,5,7}T=,则=)(T C S U A(A ){1,2,4} (B ){1,2,3,4,5,7} (C ){1,2} (D ){1,2,4,5,6,8} 6.(安徽卷2).集合{}|lg ,1A y Ry x x =∈=>,}{2,1,1,2B =--则下列结论正确的是(D )A .}{2,1A B =-- B . ()(,0)R C A B =-∞C .(0,)A B =+∞D . }{()2,1R C A B =--7.(山东卷1)满足M ⊆{a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={ a 1·a 2}的集合M 的个数是B(A )1 (B)2 (C)3 (D)4 8.(江西卷2)定义集合运算:{},,.A Bz z xy x A y B *==∈∈设{}1,2A =,{}0,2B =,则集合A B *的所有元素之和为DA .0B .2C .3D .6 9.(湖北卷2)若非空集合,,A B C 满足A B C=,且B 不是A 的子集,则BA. “x C ∈”是“x A ∈”的充分条件但不是必要条件B. “x C ∈”是“x A ∈”的必要条件但不是充分条件C. “x C ∈”是“x A ∈”的充要条件D. “x C ∈”既不是“x A ∈”的充分条件也不是“x A ∈”必要条件10.(湖南卷2)“12x -<成立”是“(3)0x x -<成立”的( B )A .充分不必要条件B.必要不充分条件C .充分必要条件 D.既不充分也不必要条件 11.(陕西卷2)已知全集{12345U=,,,,,集合2{|320}A x x x =-+=,{|2}B x x a a A ==∈,,则集合)(B A C U 中元素的个数为( B )A .1B .2C .3D .412.(重庆卷2)设m,n 是整数,则“m,n 均为偶数”是“m+n 是偶数”的A(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件13.(福建卷2)设集合A={x |1x x -<0},B={x |0<x <3=,那么“m ∈A ”是“m ∈B ”的AA.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件14.(广东卷6)已知命题:p 所有有理数都是实数,命题:q 正数的对数都是负数,则下列命题中为真命题的是( D )A .()p q ⌝∨B .p q ∧C .()()p q ⌝∧⌝D .()()p q ⌝∨⌝ 15.(浙江卷2)已知U=R ,A={}0|>x x,B={}1|-≤x x,则(A ()()=A CB BC Au u D(A )∅ (B ){}0|≤χχ(C ){}1|->χχ(D ){}10|-≤>χχχ或16.(辽宁卷1)已知集合{}3|0|31x M x x N x x x +⎧⎫==<=-⎨⎬-⎩⎭,≤,则集合{}|1x x ≥=( D ) A .MNB .MNC .)(N M C UD .)(N M C U二. 填空题:1.(江苏卷4)A={()}2137x x x -<-,则A Z 的元素的个数 .02.(重庆卷11)设集合U ={1,2,3,4,5},A ={2,4},B={3,4,5},C={3,4},则)()(C C B A U = .{}5,23.(福建卷16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈R ,都有a +b 、a -b , ab 、ab∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集{},F a b Q=+∈也是数域.有下列命题:①整数集是数域;②若有理数集QM⊆,则数集M 必为数域;③数域必为无限集;④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号填填上)③④。

2008年数学高考题分类总汇编详解(下)【超全超详细】【强烈推荐】

开始 1i =n 整除a ?是 输入m n ,结束 a m i =⨯输出a i ,1i i =+图3否2008年高考数学试题分类汇编算法与极限一.选择题:1.(08广东卷9.阅读图3的程序框图,若输入4m =,6n =,则输出a = 12 ,i = 3(注:框图中的赋值符号“=”也可以写成“←”或“:=”)【解析】要结束程序的运算,就必须通过n 整除a 的条件运算,而同时m 也整除a ,那么a 的最小值应为m 和n 的最小公倍数12,即此时有3i =。

2.(08海南卷5、右面的程序框图5,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( A ) A. c > xB. x > cC. c > bD. b > c3.(08辽宁卷2)135(21)lim(21)x n n n →∞++++-=+L ( B )A .14B .12C .1D .24.(陕西卷12)为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为012i a a a a ,{01}∈,(012i =,,),传输信息为00121h a a a h ,其中001102h a a h h a =⊕=⊕,,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( C )是否 开始输入x=ab>x 输出x结束 x=b x=c否 是图5A .11010B .01100C .10111D .00011二.填空题:1.(08湖南卷11)211lim ______34x x x x →-=+-.15 2.(08江西卷11)211lim ______34x x x x →-=+-.153.(08山东卷13)执行右边的程序框图6,若p =0.8,则输出的n = 4 .4.(08陕西卷13)(1)1lim2n a n n a∞++=+→,则a = .15.(08重庆卷12)已知函数f(x)=(当x ≠0时) ,点在x =0处连续,则2221lim x an a n n →∞+=+ . 13图62008年高考数学试题分类汇编直线与圆一.选择题:1.(08上海卷15)如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点()P x y ,、点()P x y ''',满足x x '≤且y y '≥,则称P 优于P '.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( D )A.弧AB B .弧BC C .弧CD D .弧DA2.(08全国一10)若直线1x ya b+=通过点(cos sin )M αα,,则( D ) A .221a b +≤ B .221a b +≥ C .22111a b +≤ D .22111a b +≥3.(08全国二5)设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值( D )A .2-B .4-C .6-D .8-4.(08全国二11)等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( A )A .3B .2C .13-D .12- 5.(08北京卷5)若实数x y ,满足1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤则23x yz +=的最小值是( B )AB CD O xyΩA .0B .1C .3D .96.(08北京卷7)过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线12l l ,,当直线12l l ,关于y x =对称时,它们之间的夹角为( C )A .30oB .45oC .60oD .90o7.(08四川卷4)直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( A ) (A)1133y x =-+ (B)113y x =-+ (C)33y x =- (D)113y x =+ 8.(08天津卷2)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x ,则目标函数y x z +=5的最大值为D(A )2 (B )3 (C )4 (D )59.(08安徽卷8).若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( C )A .[3,3]-B .(3,3)-C .33[,]33-D .33(,)33-10.(08山东卷11)已知圆的方程为08622=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为B(A )106 (B )206 (C )306 (D )40611.(08山东卷12)设二元一次不等式组⎪⎩⎪⎨⎧≤-+≥+-≥-+0142,080192y x y x y x ,所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是C(A )[1,3] (B)[2,10] (C)[2,9] (D)[10,9]12.(08湖北卷9)过点(11,2)A 作圆22241640x y x y ++--=的弦,其中弦长为整数的共有CA.16条B. 17条C. 32条D. 34条13.(08湖南卷3)已知变量x 、y 满足条件1,0,290,x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩则x y +的最大值是( C )A.2B.5C.6D.814.(08陕西卷5)直线30x y m -+=与圆22220x y x +--=相切,则实数m 等于( C )A .3或3-B .3-或33C .33-或3D .33-或3315.(08陕西卷10)已知实数x y ,满足121y y x x y m ⎧⎪-⎨⎪+⎩≥,≤,≤.如果目标函数z x y =-的最小值为1-,则实数m 等于( B ) A .7B .5C .4D .316.(08重庆卷3)圆O 1:0222=-x y x +和圆O 2: 0422=-y y x +的位置关系是B(A)相离(B)相交(C)外切 (D)内切17.(08辽宁卷3)圆221x y +=与直线2y kx =+没有..公共点的充要条件是( C ) A .(22)k ∈-, B .(2)(2)k ∈--+U ∞,,∞ C .(33)k ∈-,D .(3)(3)k ∈--+U ∞,,∞ 二.填空题:1.(08天津卷15)已知圆C 的圆心与点(2,1)P -关于直线1y x =+对称.直线34110x y +-=与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为__________________.22(1)18x y ++=2.(08全国一13)若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .93.(08四川卷14)已知直线:40l x y -+=与圆()()22:112C x y -+-=,则C 上各点到l 的距离的最小值为_______。

2008年高考数学试题分类汇编(必修三角函数)

2008年高考数学试题分类汇编(必修Ⅳ——三角函数)(一)选择题1、【08安徽理5】将函数sin(23y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( C )A .(,0)12π-B .(,0)6π- C .(,0)12πD .(,0)6π2、【08安徽文8】函数sin(23y x π=+图像的对称轴方程可能是( D )A .6x π=-B .12x π=-C .6x π=D .12x π=3、【08福建理9】函数f (x )=cos x (x )(x ∈R )的图象按向量(m,0) 平移后,得到函数y =-f ′(x )的图象,则m 的值可以为(A )A.2π B.πC.-πD.-2π4、【08福建文7】函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为(A )A.-sin xB.sin xC.-cos xD.cos x5、【08广东文5】已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( D ) A 、最小正周期为π的奇函数 B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数6、【08湖北文7】将函数sin()y x θ=-的图象F 向右平移3π个单位长度得到图象F ′,若F ′的一条对称轴是直线,1x π=则θ的一个可能取值是(A )A.512π B.512π-C.1112π D.1112π-7、【08湖南理6】函数f (x )=sin 2x+cos x x 在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是(C )A.1B.2C. 328、【08江西文6】函数sin ()sin 2sin2x f x x x =+是(A )A .以4π为周期的偶函数B .以2π为周期的奇函数C .以2π为周期的偶函数D .以4π为周期的奇函数9、【08江西文10】函数tan sin tan sin y x x x x =+--在区间3(,22ππ内的图象是(D )10、【08辽宁理8】.将函数21x y =+的图象按向量a 平移得到函数12x y +=的图象,则a 等于( A )A.(1,1)--B.(1,1)-C.(1,1)D.(1,1)-11、【08宁夏理1】已知函数2sin()(0)y x ωϕω=+>)在区间[]02π,的图像如下:那么ω=( B ) A .1B .2C .21 D .3112、【08宁夏理3】如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( D ) A .185 B .43 C .23 D .8713、【08宁夏理7】23sin 702cos 10-=-( C )A .12B.2C .2 D.214、【08宁夏文11】函数()cos 22sin f x x x =+的最小值和最大值分别为( C ) A .1-,1B .2-,2C .3-,32D .2-,3215、【08全国Ⅰ理8】为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像(A )xAB-CD-A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位16、【08全国Ⅰ文6】2(sin cos )1y x x =--是( D ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数31、【08全国Ⅰ文9】为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( C ) A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位17、【08全国Ⅱ理8】若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则M N 的最大值为( B )A .1 B. CD .218、【08全国Ⅱ文1】若sin 0α<且tan 0α>是,则α是( C ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角34、【08全国Ⅱ文10】函数x x x f cos sin )(-=的最大值为( B ) A .1B .2C .3D .219、【08山东理3】函数ππln cos 22y x x ⎛⎫=-<<⎪⎝⎭的图象是( A )20、【08山东理5】已知cos (α-6π)+sin α=的值是则67sin(,354πα-(C )(A )-532 (B )532 (C)-54 (D) 5421、【08山东文10】已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( C )xx A .B .C .D .A .5-B .5C .45-D .4522、【08陕西文1】sin 330︒等于( B )A .2-B .12-C .12D .223、【08四川理3】()2tan cot cos x x x +=( D )(A)tan x (B)sin x (C)cos x (D)cot x24、【08四川理5】若02,sin απαα≤≤>,则α的取值范围是:( C )(A),32ππ⎛⎫⎪⎝⎭ (B),3ππ⎛⎫ ⎪⎝⎭ (C)4,33ππ⎛⎫ ⎪⎝⎭ (D)3,32ππ⎛⎫⎪⎝⎭25、【08四川理10】设()()sin f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( D )(A)()01f = (B)()00f = (C)()'01f=(D)()'00f=26、【08天津理3】设函数()sin 22f x x x π⎛⎫=-∈ ⎪⎝⎭R ,,则()f x 是( B ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数27、【08天津理9】已知函数()f x 是定义在R 上的偶函数,且在区间[)0+,∞上是增函数.令2sin 7a f π⎛⎫= ⎪⎝⎭,5cos 7b f π⎛⎫= ⎪⎝⎭,5tan 7c f π⎛⎫= ⎪⎝⎭,则(A ) 28、【08天津文6】把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( C ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈⎪⎝⎭R , C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R , 29、【08天津文9】设5sin 7a π=,2cos7b π=,2tan 7c π=,则( D )30、【08浙江理5】在同一平面直角坐标系中,函数3πcos 22x y ⎛⎫=+⎪⎝⎭([02π]x ∈,)的图象和直线12y =的交点个数是( C )A .0B .1C .2D .431、【08浙江理8】若cos 2sin αα+=,则tan α=( B ) A .12B .2C .12-D .2-32、【08浙江文2】函数2(sin cos )1y x x =++的最小正周期是(B ) (A )2π(B )π (C )32π (D )2π33、【08浙江文7】在同一平面直角坐标系中,函数])20[232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是(C )(A )0 (B )1 (C )2 (D )4 34、 【08重庆理10】函数f(x)02x π≤≤) 的值域是(B )(A )[-02] (B)[-1,0] (C )0] (D )0](二)填空题35、【08广东理12】已知函数()(sin cos )sin f x x x x =-,x ∈R ,则()f x 的最小正周期是 π .36、 【08辽宁理16】已知()s i n ()(0),()()363f x x f f πππωω=+>=,且()f x 在区间(,)63ππ有最小值,无最大值,则ω=_____2/3_____.37、【08辽宁文16】设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=38、【08北京理13】已知函数2()cos f x x x =-,对于ππ22⎡⎤-⎢⎥⎣⎦,上的任意12x x ,,有如下条件:①12x x >; ②2212x x >; ③12x x >.其中能使12()()f x f x >恒成立的条件序号是 ②39、【08北京文9】若角α的终边经过点(12)P -,,则tan 2α的值为(43)40、【08上海理6】函数f (x )=3sin x +sin(π2+x )的最大值是 241、【08浙江文12】若3sin()25πθ+=,则cos 2θ=_725-_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年高考数学试题分类汇编(必修Ⅲ——算法、概率统计)(一)选择题1、【08广东理3】.某校共有学生2000名,各年级男、女生人数如表1.已知在全校 学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( C ) A .24 B .18 C .16 D .12 2、【08江西理11】电子钟一天显示的时间是从00∶00到23∶59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为(C ) A .1801 B .2881 C .3601 D .4801 3、【08辽宁理7】 4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( C ) A.13 B.12 C.23 D.344、【08宁夏理5】右面的程序框图,如果输入三个实数a ,b ,c ,下面四个选项中的( A )A .c x >B .x c >C .c b >D .b c >5、【08山东理8】右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为 ( B ) (A )304.6 (B )303.6 (C)302.6 (D)301.6 38、【08山东文9】从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( B )AB C .3D .856、【08陕西文3】某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C ) A .30 B .25 C .20 D .15(二)填空题2 93 0 3 1 1 1 5 8 2 6 0 24 7图37、【08广东理9】阅读图3的程序框图,若输入4m =,6n =则输出a = 12 ,i = 3(注:框图中的赋值符号“=”也可以写成“←”或“:=”) 【解析】要结束程序的运算,就必须通过n 整除a 的条件运算,而同时m 也整除a ,那么a 的最小值应为m 和n 的最小公倍 数12,即此时有3i =。

8、 【08广东文11】为了调查某厂工人生产某种产品的能力,随机抽查 了20位工人某天生产该产品的数量.产品数量的分组区间为[)45,55,[)[)[)55,65,65,75,75,85,[)85,95由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[)55,75的人数是 .【解析】20(0.06510)13⨯⨯=,故答案为13.9、【08江苏2】一个骰子连续投2次,点数和为4的概率11210、【08江苏6】在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率16π11、【08湖南文12】从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示:则该地区生活不能自理的老人中男性比女性约多____60_________人。

12、【08江苏7】某地区为了解70~80岁老人的日平均睡眠时间(单位:h ),现随机地选择50位老人做调查,下表是50位老人日睡S 的值为 6.42 . 13、【08宁夏理5】右面的程序框图,如果输入三个实数a ,b ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( A )A .c x >B .x c >C .c b >D .b >14、【08宁夏理16】从甲、乙两品种的棉花中各抽测了25甲品种:271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318 320 322 322 324 327 329 331 333 336 337 343 356由以上数据设计了如下茎叶图② . 15、【08山东理13】执行右边的程序框图,若p =0.8,则输出的n = 4 .16、 【08上海理7】在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形的概率是 34(结果用分数表示)17、 【08上海理9】已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a 、b 的取值分别是 10.5和10.5;18、【08天津文11】一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工 10 人.(三)解答题19、【08安徽文18】在某次普通话测试中,为测试汉字发音水平,设置了10张卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g ”.(Ⅰ)现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行。

求这三位被测试者抽取的卡片上,拼音都带有后鼻音“g ”的概率。

(Ⅱ)若某位被测试者从10张卡片中一次随机抽取3张,求这三张卡片上,拼音带有后鼻音“g ”的卡片不少于2张的概率。

解:(1)每次测试中,被测试者从10张卡片中随机抽取1张卡片上,拼音带有后鼻音“g ”的概率为310,因为三位被测试者分别随机抽取一张卡片的事件是相互独立的,因而所求的概率为333271*********⨯⨯= (2)设(1,2,3)i A i =表示所抽取的三张卡片中,恰有i 张卡片带有后鼻音“g ”的事件,且其相应的概率为(),i P A 则127323107()40C C P A C == , 3333101()120C P A C == 因而所求概率为23237111()()()4012060P A A P A P A +=+=+= 20、【08福建文18】三人独立破译同一份密码.已知三人各自破译出密码的概率分别为111,,,543且他们是否破译出密码互不影响.(Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由 解:记“第i 个人破译出密码”为事件A 1(i =1,2,3),依题意有123111(),(),(),54.3P A P A P A ===且A 1,A 2,A 3相互独立.(Ⅰ)设“恰好二人破译出密码”为事件B ,则有B =A 1·A 2·3A ·A 1·2A ·A 3+1A ·A 2·A 3且A 1·A 2·3A ,A 1·2A ·A 3,1A ·A 2·A 3 彼此互斥于是P (B )=P (A 1·A 2·3A )+P (A 1·2A ·A 3)+P (1A ·A 2·A 3)=314154314351324151⨯⨯+⨯⨯+⨯⨯ =203.答:恰好二人破译出密码的概率为203.(Ⅱ)设“密码被破译”为事件C ,“密码未被破译”为事件D . D =1A ·2A ·3A ,且1A ,2A ,3A 互相独立,则有 P (D )=P (1A )·P (2A )·P (3A )=324354⨯⨯=52. 而P (C )=1-P (D )=53,故P (C )>P (D ). 答:密码被破译的概率比密码未被破译的概率大.21、 【08广东文19】(本小题满分13分)(1) 求x 的值;(2) 现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (3) 已知y ≥245,z ≥245,求初三年级中女生比男生多的概率. 【解析】(1)0.192000x= ∴ 380x = (2)初三年级人数为y +z =2000-(373+377+380+370)=500, 现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:48500122000⨯= 名 (3)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为(y ,z ); 由(2)知 500y z += ,且 ,y z N ∈,基本事件空间包含的基本事件有:(245,255)、(246,254)、(247,253)、……(255,245)共11个事件A 包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245) 共5个∴ 5()11P A =22、【08湖南文16】甲乙丙三人参加一家公司的招聘面试,面试合格者可正式签约。

甲表示只要面试合格就签约,乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约。

设每人面试合格的概率都是21,且面试是否合格互不影响。

求: (I )至少一人面试合格的概率; (II )没有人签约的概率。

解:用A,B,C 分别表示事件甲、乙、丙面试合格.由题意知A,B,C 相互独立,且1()()().2P A P B P C ===(I )至少有一人面试合格的概率是1()P A B C -⋅⋅3171()()()1().28P A P B P C =-=-=(II )没有人签约的概率为()()()P A B C P A B C P A B C ⋅⋅+⋅⋅+⋅⋅ ()()()()()()()()()P A P B P C P A P B P C P A P BP C ⋅⋅+⋅⋅+⋅⋅ 3331113()()().2228=++=23、【08辽宁文18】(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率; (Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求(ⅰ)4周中该种商品至少有一周的销售量为4吨的概率; (ⅱ)该种商品4周的销售量总和至少为15吨的概率. 解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3. ······················ 4分(Ⅱ)由题意知一周的销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3,故所求的概率为(ⅰ)4110.70.7599P =-=. ··································································· 8分 (ⅱ)334240.50.30.30.0621P C =⨯⨯+=.··············································· 12分 24、【08北京文18】(本小题共13分)甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率.解:(Ⅰ)记甲、乙两人同时参加A 岗位服务为事件A E ,那么3324541()40A A P E C A ==,即甲、乙两人同时参加A 岗位服务的概率是140. (Ⅱ)设甲、乙两人同时参加同一岗位服务为事件E ,那么4424541()10A P E C A ==,所以,甲、乙两人不在同一岗位服务的概率是9()1()10P E P E =-=. 25、【08宁夏文19】(本小题满分12分)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查.6人得分情况如下: 5,6,7,8,9,10.把这6名学生的得分看成一个总体. (Ⅰ)求该总体的平均数;(Ⅱ)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率 解:(Ⅰ)总体平均数为1(5678910)7.56+++++=. ································································· 4分 (Ⅱ)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”.从总体中抽取2个个体全部可能的基本结果有:(56),,(57),,(58),,(59),,(510),,(67),,(68),,(69),,(610),,(78),,(79),,(710),,(89),,(810),,(910),.共15个基本结果. 事件A 包括的基本结果有:(59),,(510),,(68),,(69),,(610),,(78),,(79),.共有7个基本结果.所以所求的概率为7()15P A =. ······················································································· 12分 26、【08全国Ⅱ文19】(本小题满分12分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2. 设甲、乙的射击相互独立.(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率. 解:记12A A ,分别表示甲击中9环,10环,12B B ,分别表示乙击中8环,9环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ)112122A A B A B A B =++, ································································ 2分 112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++112122()()()()()()P A P B P A P B P A P B =++0.30.40.10.40.10.40.2=⨯+⨯+⨯=. ·························································· 6分(Ⅱ)12B C C =+, ····················································································· 8分22213()[()][1()]30.2(10.2)0.096P C C P A P A =-=⨯⨯-=,332()[()]0.20.008P C P A ===,27、【08山东文18】(本小题满分12分)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,,132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,, 231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,, 322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的. 用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,,122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成, 因而61()183P M ==. (Ⅱ)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件, 由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-= 28、【08浙江文19】(本题14分)一个袋中装有大小相同的黑球、白球和红球。

相关文档
最新文档