靖安中学高三年级10月月考数学试卷(文)

合集下载

靖安县实验中学2018-2019学年上学期高三数学10月月考试题

靖安县实验中学2018-2019学年上学期高三数学10月月考试题

靖安县实验中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为()A .B .C .D .2. 将函数的图象向左平移个单位,再向上平移3个单位,得到函数的图象,63sin(2)(π+=x x f 4π)(x g 则的解析式为( ))(x g A . B .343sin(2)(--=πx x g 3)43sin(2)(++=πx x g C .D .3)123sin(2)(+-=πx x g 3)123sin(2)(--=πx x g 【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度.3. 已知函数f (x )=(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )={a x -1,x ≤1log a 1x +1,x >1)( )A .-B .-1412C .-D .-34544. 已知x ,y ∈R ,且,则存在θ∈R,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面积为()A .4﹣B .4﹣C .D . +5. 已知在平面直角坐标系中,点,().命题:若存在点在圆xOy ),0(n A -),0(n B 0>n p P 上,使得,则;命题:函数在区间1)1(3(22=-++y x 2π=∠APB 31≤≤n x xx f 3log 4)(-=内没有零点.下列命题为真命题的是( ))4,3(A .B .C .D .)(q p ⌝∧q p ∧q p ∧⌝)(qp ∨⌝)(6. 已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是()A .(0,1)B .(0,]C .(0,)D .[,1)7. 已知直线与圆交于两点,为直线上任意34110m x y +-=:22(2)4C x y -+=:A B 、P 3440n x y ++=:一点,则的面积为( )PAB ∆A . B.C. D. 8. 下列关系式中,正确的是( )A .∅∈{0}B .0⊆{0}C .0∈{0}D .∅={0}9. 已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是()A .B .C .D .10.三个数60.5,0.56,log 0.56的大小顺序为( )A .log 0.56<0.56<60.5B .log 0.56<60.5<0.56C .0.56<60.5<log 0.56D .0.56<log 0.56<60.5二、填空题11.设函数有两个不同的极值点,,且对不等式32()(1)f x x a x ax =+++1x 2x 12()()0f x f x +≤恒成立,则实数的取值范围是 .12.已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ .13.在等差数列{}n a 中,17a =,公差为d ,前项和为n S ,当且仅当8n =时n S 取得最大值,则d 的取值范围为__________.14.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 . 15.设是空间中给定的个不同的点,则使成立的点的个数有_________个.16.在△ABC中,a,b,c分别是角A,B,C的对边,若6a=4b=3c,则cosB= .三、解答题17.解关于x的不等式12x2﹣ax>a2(a∈R).18.已知函数f(x)=xlnx+ax(a∈R).(Ⅰ)若a=﹣2,求函数f(x)的单调区间;(Ⅱ)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,求正整数k的值.(参考数据:ln2=0.6931,ln3=1.0986)19.已知函数f(x)=(ax2+x﹣1)e x,其中e是自然对数的底数,a∈R.(Ⅰ)若a=0,求曲线f(x)在点(1,f(1))处的切线方程;(Ⅱ)若,求f(x)的单调区间;(Ⅲ)若a=﹣1,函数f(x)的图象与函数的图象仅有1个公共点,求实数m的取值范围.20.已知数列{a n }共有2k (k ≥2,k ∈Z )项,a 1=1,前n 项和为S n ,前n 项乘积为T n ,且a n+1=(a ﹣1)S n +2(n=1,2,…,2k ﹣1),其中a=2,数列{b n }满足b n =log 2,(Ⅰ)求数列{b n }的通项公式;(Ⅱ)若|b 1﹣|+|b 2﹣|+…+|b 2k ﹣1﹣|+|b 2k ﹣|≤,求k 的值.21.在△ABC 中,内角A ,B ,C 的对边分别为a 、b 、c ,且bsinA=acosB .(1)求B ;(2)若b=2,求△ABC 面积的最大值.22.(本小题满分12分)已知等差数列的前项和为,且,.{}n a n n S 990S =15240S =(1)求的通项公式和前项和;{}n a n a n n S (2)设是等比数列,且,求数列的前n 项和.(){}1nn n b a --257,71b b =={}n b n T 【命题意图】本题考查等差数列与等比数列的通项与前项和、数列求和等基础知识,意在考查逻辑思维能力、n 运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.靖安县实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D 不正确;中间的棱在侧视图中表现为一条对角线,故C 不正确;而对角线的方向应该从左上到右下,故B 不正确故A 选项正确.故选:A .【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键. 2. 【答案】B【解析】根据三角函数图象的平移变换理论可得,将的图象向左平移个单位得到函数的图)(x f 4π)4(π+x f 象,再将的图象向上平移3个单位得到函数的图象,因此4(π+x f 3)4(++πx f =)(x g 3)4(++πx f .3)43sin(2364(31sin[2++=+++=πππx x 3. 【答案】【解析】解析:选C.由题意得a -1=1,∴a =2.若b ≤1,则2b -1=-3,即2b =-2,无解.∴b >1,即有log 2=-3,∴=,∴b =7.1b +11b +118∴f (5-b )=f (-2)=2-2-1=-,故选C.344. 【答案】 A【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB ,若存在θ∈R ,使得xcos θ+ysin θ+1=0成立,则(cos θ+sin θ)=﹣1,令sin α=,则cos θ=,则方程等价为sin (α+θ)=﹣1,即sin (α+θ)=﹣,∵存在θ∈R ,使得xcos θ+ysin θ+1=0成立,∴|﹣|≤1,即x 2+y 2≥1,则对应的区域为单位圆的外部,由,解得,即B (2,2),A (4,0),则三角形OAB 的面积S=×=4,直线y=x 的倾斜角为,则∠AOB=,即扇形的面积为,则P (x ,y )构成的区域面积为S=4﹣,故选:A【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强. 5. 【答案】A 【解析】试题分析:命题:,则以为直径的圆必与圆有公共点,所以p 2π=∠APB AB ()()11322=-++y x ,解得,因此,命题是真命题.命题:函数,,121+≤≤-n n 31≤≤n p ()xxx f 3log 4-=()0log 1443<-=f ,且在上是连续不断的曲线,所以函数在区间内有零点,因此,命题是()0log 34333>-=f ()x f []4,3()x f ()4,3假命题.因此只有为真命题.故选A .)(q p ⌝∧考点:复合命题的真假.【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点满足,因此在以为直径的圆上,又点在圆P 2π=∠APB AB P 上,因此为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数1)1(3(22=-++y x P 是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.x xx f 3log 4)(-=6. 【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a ,b ,c ,∵=0,∴M 点的轨迹是以原点O 为圆心,半焦距c 为半径的圆.又M 点总在椭圆内部,∴该圆内含于椭圆,即c <b ,c 2<b 2=a 2﹣c 2.∴e 2=<,∴0<e <.故选:C .【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答. 7. 【答案】 C【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心到直线的距离,之间的距离为,∴C m 1d =||AB ==m n 、3d '=PAB∆的面积为,选C .1||2AB d '⋅=8. 【答案】C【解析】解:对于A ∅⊆{0},用“∈”不对,对于B 和C ,元素0与集合{0}用“∈”连接,故C 正确;对于D ,空集没有任何元素,{0}有一个元素,故不正确. 9. 【答案】A【解析】解:由题意可知截取三棱台后的几何体是7面体,左视图中前、后平面是线段, 上、下平面也是线段,轮廓是正方形,AP 是虚线,左视图为:故选A .【点评】本题考查简单几何体的三视图的画法,三视图是常考题型,值得重视. 10.【答案】A【解析】解:∵60.5>60=1,0<0.56<0.50=1,log 0.56<log 0.51=0.∴log 0.56<0.56<60.5.故选:A【点评】本题考查了不等关系与不等式,考查了指数函数和对数函数的性质,对于此类大小比较问题,有时借助于0和1为媒介,能起到事半功倍的效果,是基础题. 二、填空题11.【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦【解析】试题分析:因为,故得不等式,即12()()0f x f x +≤()()()332212121210x x a x x a x x ++++++≤,由于()()()()()221212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦,令得方程,因 , 故()()2'321f x x a x a =+++()'0f x =()23210x a x a +++=()2410a a ∆=-+>,代入前面不等式,并化简得,解不等式得或,()12122133x x a ax x ⎧+=-+⎪⎪⎨⎪=⎪⎩()1a +()22520a a -+≥1a ≤-122a ≤≤因此, 当或时, 不等式成立,故答案为.1a ≤-122a ≤≤()()120f x f x +≤1(,1],22⎡⎤-∞-⎢⎥⎣⎦考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数的到函数,令考虑判别式大于零,根据韦达定理求出()f x ()'0f x =的值,代入不等式,得到关于的高次不等式,再利用“穿针引线”即可求得实1212,x x x x +12()()0f x f x +≤数的取值范围.111]12.【答案】【解析】试题分析:因为1a b >>,所以log 1b a >,又101101log log log log 33log 33a b b b bb a a a a +=⇒+=⇒=或(舍),因此3a b =,因为b a a b =,所以3333,1b b b b b b b b a =⇒=>⇒==a b +=考点:指对数式运算13.【答案】871-<<-d 【解析】试题分析:当且仅当8=n 时,等差数列}{n a 的前项和n S 取得最大值,则0,098<>a a ,即077>+d ,087<+d ,解得:871-<<-d .故本题正确答案为871-<<-d .考点:数列与不等式综合.14.【答案】 .【解析】解:由题意知点P 的坐标为(﹣c ,)或(﹣c ,﹣),∵∠F 1PF 2=60°,∴=,即2ac=b 2=(a 2﹣c 2).∴e 2+2e ﹣=0,∴e=或e=﹣(舍去).故答案为:.【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题.15.【答案】1【解析】【知识点】平面向量坐标运算【试题解析】设设,则因为,所以,所以因此,存在唯一的点M,使成立。

靖安县高中2018-2019学年上学期高三数学10月月考试题

靖安县高中2018-2019学年上学期高三数学10月月考试题

靖安县高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. ABC ∆中,“A B >”是“cos 2cos 2B A >”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 2. 设集合3|01x A x x -⎧⎫=<⎨⎬+⎩⎭,集合(){}2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 ( )A .1a ≥B .12a ≤≤ C.a 2≥ D .12a ≤< 3. 将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点 )0,43(π,则ω的最小值是( ) A .31 B . C .35D .4. 如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1A B B A B =≠≠,A =,就称有序集对 (),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么“好集对” 一共有( )个A .个B .个C .个D .个 5. 过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A .B .C .D .6. 复数z=(其中i 是虚数单位),则z 的共轭复数=( )A .﹣iB .﹣﹣iC . +iD .﹣ +i7. 二项式(1)(N )nx n *+?的展开式中3x 项的系数为10,则n =( ) A .5 B .6 C .8 D .10 【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.8. 已知x ,y 满足时,z=x ﹣y 的最大值为( ) A .4B .﹣4C .0D .29. 设有直线m 、n 和平面α、β,下列四个命题中,正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β C .若α⊥β,m ⊂α,则m ⊥βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α10.已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21F F 、,过2F 的直线交双曲线于Q P ,两点且1PF PQ ⊥,若||||1PF PQ λ=,34125≤≤λ,则双曲线离心率e 的取值范围为( ).A. ]210,1(B. ]537,1(C. ]210,537[ D. ),210[+∞ 第Ⅱ卷(非选择题,共100分)11.设f (x )=(e -x -e x )(12x +1-12),则不等式f (x )<f (1+x )的解集为( )A .(0,+∞)B .(-∞,-12)C .(-12,+∞)D .(-12,0)12.△ABC 的内角A ,B ,C 所对的边分别为,,,已知a =b =6A π∠=,则B ∠=( )111]A .4π B .4π或34π C .3π或23π D .3π二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知抛物线1C :x y 42=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :12222=-by a x(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.14.若函数()ln f x a x x =-在区间(1,2)上单调递增,则实数的取值范围是__________. 15.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .16.在平面直角坐标系中,(1,1)=-a ,(1,2)=b ,记{}(,)|M O M λμλμΩ==+a b ,其中O 为坐标原点,给出结论如下:①若(1,4)(,)λμ-∈Ω,则1λμ==;②对平面任意一点M ,都存在,λμ使得(,)M λμ∈Ω; ③若1λ=,则(,)λμΩ表示一条直线; ④{}(1,)(,2)(1,5)μλΩΩ=;⑤若0λ≥,0μ≥,且2λμ+=,则(,)λμΩ表示的一条线段且长度为 其中所有正确结论的序号是 .三、解答题(本大共6小题,共70分。

靖安县第二中学2018-2019学年上学期高三数学10月月考试题

靖安县第二中学2018-2019学年上学期高三数学10月月考试题

靖安县第二中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )A .7B .6C .5D .42. 函数f (x )=kx +bx +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .43. 一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )A.4πB.25πC. 5πD. 25π+π【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.4. 已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为3O 的体积为( )A .81πB .128πC .144πD .288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.5. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )A .1B .C .D .26. 已知,,a b c 为ABC ∆的三个角,,A B C 所对的边,若3cos (13cos )b C c B =-,则s i n :s i n C A =( ) A .2︰3 B .4︰3 C .3︰1 D .3︰2 【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力.7. 函数2()45f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( )A .[2,)+∞B .[]2,4C .(,2]-∞D .[]0,2 8. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则AB =( )A .{2,1,0}--B .{1,0,1,2}-C .{2,1,0}--D .{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力. 9. 已知集合23111{1,(),,}122i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( ) A .{1}- B .{1} C .{1,}2- D .{}210.下列结论正确的是( )A .若直线l ∥平面α,直线l ∥平面β,则α∥β.B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α11.一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )A .2+B .1+C .D .12.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .15B .C .15D .15【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力.二、填空题13.设x ,y 满足约束条件,则目标函数z=2x ﹣3y 的最小值是 .14.将一张坐标纸折叠一次,使点()0,2与点()4,0重合,且点()7,3与点(),m n 重合,则m n +的值是 .15.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”(填“充分不必要”,,集合,则17.设集合 {}{22|27150,|0A x x x B x x ax b =+-<=++≤,满足A B =∅,{}|52A B x x =-<≤,求实数a =__________. 三、解答题18.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;(2)若()f x 在区间[]2,1a a +上不单调,求实数的取值范围; (3)在区间[]1,1-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围.19.已知函数f(x)是定义在R 上的奇函数,当x ≥0时,.若,f(x-1)≤f(x),则实数a 的取值范围为A[] B[] C[]D[]20.设A(x0,y0)(x0,y0≠0)是椭圆T:+y2=1(m>0)上一点,它关于y轴、原点、x轴的对称点依次为B,C,D.E是椭圆T上不同于A的另外一点,且AE⊥AC,如图所示.(Ⅰ)若点A横坐标为,且BD∥AE,求m的值;(Ⅱ)求证:直线BD与CE的交点Q总在椭圆+y2=()2上.21.如图,在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥CD,E,F,G分别是AC,AD,BC的中点.求证:(I)AB∥平面EFG;(II)平面EFG⊥平面ABC.22.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,AD 是BC 边上的中线.(1)求证:AD =122b 2+2c 2-a 2;(2)若A =120°,AD =192,sin B sin C =35,求△ABC 的面积.23.【南师附中2017届高三模拟二】如下图扇形AOB 是一个观光区的平面示意图,其中AOB ∠为23π,半径OA 为1km ,为了便于游客观光休闲,拟在观光区内铺设一条从入口A 到出口B 的观光道路,道路由圆弧AC 、线段CD 及线段BD 组成.其中D 在线段OB 上,且//CD AO ,设AOC θ∠=.(1)用θ表示CD 的长度,并写出θ的取值范围; (2)当θ为何值时,观光道路最长?靖安县第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】D【解析】解:由题意,S k+2﹣S k=,即3×2k =48,2k=16,∴k=4. 故选:D .【点评】本题考查等比数列的通项公式,考查了等比数列的前n 项和,是基础题.2. 【答案】【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),则⎩⎪⎨⎪⎧n =km +b m +14-n =k (-2-m )+b -1-m ,恒成立.由方程组得4m +4=2km +2k 恒成立, ∴4=2k ,即k =2,∴f (x )=2x +b x +1,又f (-2)=-4+b -1=3,∴b =1,故选B. 3. 【答案】B4. 【答案】D【解析】当OC ⊥平面AOB 平面时,三棱锥O ABC -的体积最大,且此时OC 为球的半径.设球的半径为R ,则由题意,得211sin 6032R R ⨯⨯︒⋅=6R =,所以球的体积为342883R π=π,故选D . 5. 【答案】A【解析】解:极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点, 可知两条曲线是同心圆,如图,|PQ|的最小值为:1. 故选:A .【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.6. 【答案】C【解析】由已知等式,得3cos 3cos c b C c B =+,由正弦定理,得sin 3(sin cos sin cos )C B C C B =+,则sin 3sin()3sin C B C A =+=,所以sin :sin 3:1C A =,故选C .7. 【答案】B 【解析】试题分析:画出函数图象如下图所示,要取得最小值为,由图可知m 需从开始,要取得最大值为,由图可知m 的右端点为,故m 的取值范围是[]2,4.考点:二次函数图象与性质. 8. 【答案】C【解析】当{2,1,0,1,2,3}x ∈--时,||3{3,2,1,0}y x =-∈---,所以A B ={2,1,0}--,故选C .【解析】考点:1.复数的相关概念;2.集合的运算10.【答案】B【解析】解:A选项中,两个平面可以相交,l与交线平行即可,故不正确;B选项中,垂直于同一平面的两个平面平行,正确;C选项中,直线与直线相交、平行、异面都有可能,故不正确;D中选项也可能相交.故选:B.【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础.11.【答案】A【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,∴原四边形为直角梯形,且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,∴直角梯形ABCD的面积为,故选:A.【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,且VE ^平面ABCD ,如图所示,所以此四棱锥表面积为1S =262创?1123+22622创创?15=,故选C .4646101011326E VD CBA二、填空题13.【答案】 ﹣6.【解析】解:由约束条件,得可行域如图,使目标函数z=2x ﹣3y 取得最小值的最优解为A (3,4), ∴目标函数z=2x ﹣3y 的最小值为z=2×3﹣3×4=﹣6. 故答案为:﹣6.14.【答案】345【解析】考点:点关于直线对称;直线的点斜式方程. 15.【答案】必要而不充分 【解析】试题分析:充分性不成立,如2y x =图象关于y 轴对称,但不是奇函数;必要性成立,()y f x =是奇函数,|()||()||()|f x f x f x -=-=,所以|()|y f x =的图象关于y 轴对称.考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 16.【答案】{|0<<1} 【解析】∵,∴{|0<<1}。

高三数学-10月月考数学试题参考答案

高三数学-10月月考数学试题参考答案

2024-2025学年度高三10月月考数学试题参考答案一、选择题题号1234567891011答案DDBCCABDABDBCDABD二、填空题12.5013.2433ππ⎛⎫ ⎪⎝⎭,14.(1)1327;(2)13425153n -⎛⎫-⋅- ⎪⎝⎭三、解答题15、解:(1)由题3sin 21==∆θbc S ABC ,可得θsin 6=bc ,又36cos 0≤=⋅≤θbc AC AB ,所以36sin cos 60≤≤θθ,得到33tan ≥θ或2πθ=因为()πθ,0∈,所以,62ππθ⎡⎤∈⎢⎥⎣⎦6分(2)()2cos sin cos34f πθθθθ⎛⎫=⋅++ ⎪⎝⎭,化简得()21sin 2cos 4f θθθ=进一步计算得()1sin 223f πθθ⎛⎫=- ⎪⎝⎭,因为,62ππθ⎡⎤∈⎢⎥⎣⎦,故22033ππθ⎡⎤-∈⎢⎥⎣⎦,故可得()102f θ⎡⎤∈⎢⎥⎣⎦,13分16、解:(1)过点P 作PO 垂直于平面ABCD ,垂足为O ,连接BO 交AD 于E ,连接PE ,则有AD PB AD PO ⊥⊥,,又P PB PO =⋂,所以POB AD 平面⊥,因为POB PE 平面⊂,所以PE AD ⊥,又PD P A =,所以E 为AD 得中点依题侧面P AD 与底面ABCD 所成的二面角为120°,即有32π=∠PEB ,所以3π=∠PEO ,因为侧面P AD 为正三角形,所以323sin 4=⋅=πPE ,则323323sin =⋅=⋅=πPE PO ,所以38323443131=⋅⋅⋅⋅==-PO S V ABCD ABCD P 7分(2)如图,在平面ABCD 内过点O 作OB 得垂线Ox ,依题可得Ox OB OP ,,两两垂直,以Ox OB OP ,,为轴轴,轴,x y z 建立空间直角坐标系可得()0,3,2A ,()0,0,0P ,()0,33,0B ,取PB 得中点为N ,则⎪⎪⎭⎫⎝⎛23,233,0N 因为AB AP =,所以PB AN ⊥,由(1)POB AD 平面⊥,AD BC //,知POB BC 平面⊥所以PB BC ⊥,可得NA BC ,所成角即为二面角A PB C --的平面角,求得⎪⎪⎭⎫ ⎝⎛-=23,23,2AN ,()0,0,2=BC,则72724-=-==BC NA则21sin 7A PBC --=15分17、解:(1)当a e =时,1()e lnx e f x x -=+,0(1)e ln 2f e =+=,11()e ,(1)0x f x f x-''=-=所求切线方程为:)1(02-=-x y ,即2y =5分(2)()2≥x f 转化为ln 2e ln ln 2a x a x +-+-≥,可得ln 2e ln +2ln 0a x a x x x x +-+-≥+>,构造函数()e x g x x =+,易得()g x 在R 单调递增所以有()(ln 2)ln g a x g x +-≥,由()g x 在R 单调递增,故可得ln 2ln a x x +-≥,即有ln ln 2a x x ≥-+在()∞+,0恒成立令()2ln +-=x x x h ,()011=-='xx h ,得到1=x ,可得()10,∈x 时,()0>'x h ;()∞+∈,1x 时,()0<'x h ,所以()x h 在1=x 时取最大值所以()ln 11a h ≥=,得到ea ≥15分18、解:(1)∵椭圆E 经过点A 52,3⎛⎫⎪⎝⎭,23e =∴222222549123a b a b c c e a ⎧⎪+=⎪⎪⎨=+⎪⎪==⎪⎩,解得32a b c =⎧⎪=⎨⎪=⎩E :22195x y +=;4分(2)由(1)可知,1(2,0)F -,2(2,0)F 思路一:由题意,1:512100AF l x y -+=,2:2AF l x =设角平分线上任意一点为(),P x y ,则51210213x y x -+=-得9680x y --=或2390x y +-=∵斜率为正,∴21AF F ∠的角平分线所在直线为9680x y --=思路二:椭圆在点A 52,3⎛⎫⎪⎝⎭处的切线方程为2319x y +=,23k =-切根据椭圆的光学性质,21AF F∠的角平分线所在直线l 的斜率为32l k =,∴,21AF F ∠的角平分线所在直线34:23l y x =-即9680x y --=10分(3)思路一:假设存在关于直线l 对称的相异两点()()1122,,,B x y C x y ,设2:3BC l y x m =-+,∴2222195912945023x y x mx m y x m ⎧+=⎪⎪⇒-+-=⎨⎪=-+⎪⎩∴线段BC 中点为25,39m mM ⎛⎫⎪⎝⎭在21AF F ∠的角平分线上,即106803m m --=得3m =∴52,3M ⎛⎫⎪⎝⎭与点A 重合,舍去,故不存在满足题设条件的相异的两点.思路二:假设存在关于直线l 对称的相异两点()()1122,,,B x y C x y ,线段BC 中点()00,Mx y ,由点差法,2211222212122222195095195x y x x y y x y ⎧+=⎪⎪⇒+=⎨⎪+=⎪--⎩,∴0121212120552993BC x y y x x k x x y y y -+==-=-=--+,∴0065OM y k x ==,:968052,63:5AM OM l x y M l y x --=⎧⎪⎛⎫⇒⎨⎪=⎝⎭⎪⎩与点A 重合,舍去,故不存在满足题设条件的相异的两点.17分19、解:(1)①()()()222121()111b f x x bx x x x x +=-=-+'++,∵1x >,()()2101h x x x =>+恒成立,∴函数()f x 具有性质()P b ;3分②设()()211u x x bx x =-+>,(i)当0b -≥即0b ≤时,()0u x >,()0f x '>,故此时()f x 在区间()1,+∞上递增;(ii)当0b >时当240b ∆=-≤即02b <≤时,()0u x >,()0f x '>,故此时()f x 在区间()1,+∞上递增;当240b ∆=->即2b >时,12441122b b x x +===,,∴x ⎛⎫∈⎪ ⎪⎝⎭时,()0u x <,()0f x '<,此时()f x在1,2b ⎛⎫⎪ ⎪⎝⎭上递减;4,2b x ∞⎛⎫+∈+ ⎪ ⎪⎝⎭时,()0u x >,()0f x '<,此时()f x在∞⎫+⎪⎪⎝⎭上递增.综上所述,当2b ≤时,()f x 在()1,+∞上递增;当2b >时,()f x在⎛⎫⎪ ⎪⎝⎭上递减,在∞⎫+⎪⎪⎝⎭上递增.9分(2)由题意,()()22()()21()1g x h x x x h x x =-+=-',又()h x 对任意的()1,x ∈+∞都有()0h x >,所以对任意的()1,x ∈+∞都有()0g x '>,()g x 在()1,+∞上递增.10分∵12(1)mx m x α=+-,12(1)m x mx β=-+,∴()()1212,21x x m x x αβαβ+=+-=--1先考虑12x x αβ-<-的情况即()()121221m x x x x --<-,得01m <<,此时1122(1)x mx m x x α<=+-<,1122(1)x m x mx x β<=-+<∴1212()()(),()()()g x g g x g x g g x αβ<<<<∴12()()()()g g g x g x αβ-<-满足题意13分2当1m ≥时,11112(1)(1)mx m x mx m x x α--≤==++,12222(1)(1)m x mx m x mx x β=--+≥=+,∴12x x αβ≤<≤∴12()()()()g g x g x g αβ≤<≤,∴12()()()()g g g x g x αβ-≥-,不满足题意,舍去16分综上所述,01m <<17分。

2025届江西省宜春市靖安县靖安中学高三最后一模数学试题含解析

2025届江西省宜春市靖安县靖安中学高三最后一模数学试题含解析

2025届江西省宜春市靖安县靖安中学高三最后一模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.运行如图程序,则输出的S 的值为( )A .0B .1C .2018D .20172.已知函数()()sin ,04f x x x R πωω⎛⎫=+∈> ⎪⎝⎭的最小正周期为π,为了得到函数()cos g x x ω=的图象,只要将()y f x =的图象( )A .向左平移8π个单位长度 B .向右平移8π个单位长度 C .向左平移4π个单位长度 D .向右平移4π个单位长度 3.已知定义在R 上函数()f x 的图象关于原点对称,且()()120f x f x ++-=,若()11f =,则()1(2)(3)(2020)f f f f ++++=( )A .0B .1C .673D .6744.已知集合{}2{|23,},|1=-<<∈=>A x x x N B x x A ,则集合A B =( )A .{2}B .{1,0,1}-C .{2,2}-D .{1,0,1,2}-5.盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为( ) A .12B .35C .710D .456.已知实数,x y 满足线性约束条件1020x x y x y ≥⎧⎪+≥⎨⎪-+≥⎩,则1y x +的取值范围为( )A .(-2,-1]B .(-1,4]C .[-2,4)D .[0,4]7.已知定义在R 上的可导函数()f x 满足()()()'10x f x x f x -⋅+⋅>,若3(2)y f x e=+-是奇函数,则不等式1()20x x f x e +⋅-<的解集是( ) A .(),2-∞B .(),1-∞C .()2,+∞D .()1,+∞8.已知非零向量a 、b ,若2b a =且23a b b -=,则向量b 在向量a 方向上的投影为( ) A .32b B .12b C .32b -D .12b -9.由实数组成的等比数列{a n }的前n 项和为S n ,则“a 1>0”是“S 9>S 8”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10.设函数22sin ()1x xf x x =+,则()y f x =,[],x ππ∈-的大致图象大致是的( )A .B .C .D .11.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设22DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是( )A .413B .21313C .926D .3132612.设命题p:n ∃>1,n 2>2n ,则⌝p 为( ) A .21,2n n n ∀>> B .21,2n n n ∃≤≤ C .21,2n n n ∀>≤D .21,2n n n ∃>≤二、填空题:本题共4小题,每小题5分,共20分。

靖安县一中2018-2019学年上学期高三数学10月月考试题

靖安县一中2018-2019学年上学期高三数学10月月考试题

靖安县一中2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图,圆O 与x 轴的正半轴的交点为A ,点C 、B 在圆O 上,且点C 位于第一象限,点B 的坐标为(,﹣),∠AOC=α,若|BC|=1,则cos 2﹣sincos﹣的值为()A .B .C .﹣D .﹣2. 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3. 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A .3B .C .2D .64. 下列结论正确的是()A .若直线l ∥平面α,直线l ∥平面β,则α∥β.B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α 5. 已知双曲线的方程为﹣=1,则双曲线的离心率为( )A .B .C .或D .或 6. 已知向量,,若,则实数( )(,1)a t = (2,1)b t =+ ||||a b a b +=-t =A.B. C. D. 2-1-12【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力.7. 设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( )A .M=PB .P ⊊MC .M ⊊PD .M ∪P=R8. 已知圆过定点且圆心在抛物线上运动,若轴截圆所得的弦为,则弦长M )1,0(M y x 22=x M ||PQ 等于( )||PQ A .2 B .3 C .4 D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.9. 在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111]A .(0,]6πB .[,)6ππ C. (0,]3πD .[,)3ππ10.已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是()A .(0,1)B .(0,]C .(0,)D .[,1)11.已知一个算法的程序框图如图所示,当输出的结果为时,则输入的值为()21A .B .C .或D .或21-1-21-1012.已知函数()在定义域上为单调递增函数,则的最小值是( )2()2ln 2f x a x x x =+-a R ∈A .B .C .D .1412二、填空题13.定义在R 上的可导函数()f x ,已知()f x y e=′的图象如图所示,则()y f x =的增区间是 ▲ .a ,b ,c ,已知sinAsinB+sinBsinC+cos2B=1.若C=,则= .15.已知数列的首项,其前项和为,且满足,若对,{}n a 1a m =n n S 2132n n S S n n ++=+n N *∀∈1n n a a +<恒成立,则的取值范围是_______.m 【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.16.已知函数,,其图象上任意一点处的切线的斜率恒()ln a f x x x =+(0,3]x ∈00(,)P x y 12k ≤成立,则实数的取值范围是.17.过抛物线C :y 2=4x 的焦点F 作直线l 交抛物线C 于A ,B ,若|AF|=3|BF|,则l 的斜率是 .三、解答题18.求点A (3,﹣2)关于直线l :2x ﹣y ﹣1=0的对称点A ′的坐标.19.某民营企业生产A ,B 两种产品,根据市场调查和预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A ,B 两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入A ,B 两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).20.(本小题满分12分)已知函数.1()ln (42)()f x m x m x m x=+-+∈R (1)时,求函数的单调区间;当2m >()f x (2)设,不等式对任意的恒成立,求实数的[],1,3t s ∈|()()|(ln 3)(2)2ln 3f t f s a m -<+--()4,6m ∈a 取值范围.【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.21.如图所示,在正方体中.1111ABCD A B C D -(1)求与所成角的大小;11A C 1B C (2)若、分别为、的中点,求与所成角的大小.E F AB AD 11A C EF22.如图,在三棱柱ABC ﹣A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB=3,BC=5.(Ⅰ)求证:AA 1⊥平面ABC ;(Ⅱ)求证二面角A 1﹣BC 1﹣B 1的余弦值;(Ⅲ)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求的值.23.(本小题满分10分)选修4—4:坐标系与参数方程以坐标原点为极点,以轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为方程为x C r =(),直线的参数方程为(为参数).],0[πθ∈l 2t cos 2sin x y t aaì=+ïí=+ïît (I )点在曲线上,且曲线在点处的切线与直线垂直,求点的直角坐标和曲线C D C C D +2=0x y +D 的参数方程;(II )设直线与曲线有两个不同的交点,求直线的斜率的取值范围.l C l 24.若f (x )是定义在(0,+∞)上的增函数,且对一切x ,y >0,满足f ()=f (x )﹣f (y )(1)求f (1)的值,(2)若f (6)=1,解不等式f (x+3)﹣f ()<2.靖安县一中2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】A【解析】解:∵|BC|=1,点B的坐标为(,﹣),故|OB|=1,∴△BOC为等边三角形,∴∠BOC=,又∠AOC=α,∴∠AOB=﹣α,∴cos(﹣α)=,﹣sin(﹣α)=﹣,∴sin(﹣α)=.∴cosα=cos[﹣(﹣α)]=cos cos(﹣α)+sin sin(﹣α)=+=,∴sinα=sin[﹣(﹣α)]=sin cos(﹣α)﹣cos sin(﹣α)=﹣=.∴cos2﹣sin cos﹣=(2cos2﹣1)﹣sinα=cosα﹣sinα=﹣=,故选:A.【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题.2.【答案】B【解析】解:∵b⊥m,∴当α⊥β,则由面面垂直的性质可得a⊥b成立,若a⊥b,则α⊥β不一定成立,故“α⊥β”是“a⊥b”的充分不必要条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键.3.【答案】C【解析】解:∵椭圆的半焦距为2,离心率e=,∴c=2,a=3,∴b=∴2b=2.故选:C.【点评】本题主要考查了椭圆的简单性质.属基础题. 4. 【答案】B【解析】解:A 选项中,两个平面可以相交,l 与交线平行即可,故不正确;B 选项中,垂直于同一平面的两个平面平行,正确;C 选项中,直线与直线相交、平行、异面都有可能,故不正确;D 中选项也可能相交.故选:B .【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础. 5. 【答案】C【解析】解:双曲线的方程为﹣=1,焦点坐标在x 轴时,a 2=m ,b 2=2m ,c 2=3m ,离心率e=.焦点坐标在y 轴时,a 2=﹣2m ,b 2=﹣m ,c 2=﹣3m ,离心率e==.故选:C .【点评】本题考查双曲线的离心率的求法,注意实轴所在轴的易错点. 6. 【答案】B 【解析】由知,,∴,解得,故选B.||||a b a b +=- a b ⊥ (2)110a b t t ⋅=++⨯=1t =-7. 【答案】B【解析】解:P={x|x=3},M={x|x >1};∴P ⊊M .故选B . 8. 【答案】A【解析】过作垂直于轴于,设,则,在中,,为M MN x N ),(00y x M )0,(0x N MNQ Rt ∆0||y MN =MQ 圆的半径,为的一半,因此NQ PQ 2222222200000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y ==-=+--=-+又点在抛物线上,∴,∴,∴.M 0202y x =2200||4(21)4PQ x y =-+=2||=PQ9. 【答案】C 【解析】考点:三角形中正余弦定理的运用.10.【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a ,b ,c ,∵=0,∴M 点的轨迹是以原点O 为圆心,半焦距c 为半径的圆.又M 点总在椭圆内部,∴该圆内含于椭圆,即c <b ,c 2<b 2=a 2﹣c 2.∴e 2=<,∴0<e <.故选:C .【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答. 11.【答案】D 【解析】试题分析:程序是分段函数 ,当时,,解得,当时,,⎩⎨⎧=x y x lg 200>≤x x 0≤x 212=x1-=x 0>x 21lg =x解得,所以输入的是或,故选D.10=x 1-10考点:1.分段函数;2.程序框图.11111]12.【答案】A 【解析】试题分析:由题意知函数定义域为,,因为函数),0(+∞2'222()x x a f x x++=2()2ln 2f x a x x x=+-()在定义域上为单调递增函数在定义域上恒成立,转化为在a R ∈0)('≥x f 2()222h x x x a =++),0(+∞恒成立,,故选A. 110,4a ∴∆≤∴≥考点:导数与函数的单调性.二、填空题13.【答案】(﹣∞,2)【解析】试题分析:由()21()0f x xef x '≤≥⇒≥′时,()21()0f x x ef x '><⇒<′时,所以()y f x =的增区间是(﹣∞,2)考点:函数单调区间14.【答案】= .【解析】解:在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∵已知sinAsinB+sinBsinC+cos2B=1,∴sinAsinB+sinBsinC=2sin 2B .再由正弦定理可得 ab+bc=2b 2,即 a+c=2b ,故a ,b ,c 成等差数列.C=,由a ,b ,c 成等差数列可得c=2b ﹣a ,由余弦定理可得 (2b ﹣a )2=a 2+b 2﹣2abcosC=a 2+b 2+ab .化简可得 5ab=3b 2,∴ =.故答案为:.【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题.15.【答案】15(,43-16.【答案】21≥a 【解析】试题分析:,因为,其图象上任意一点处的切线的斜率恒成立,'21()a f x x x =-(0,3]x ∈00(,)P x y 12k ≤,,,恒成立,由.12112a x x ∴-≤(0,3]x ∈x x a +-≥∴221(0,3]x ∈2111,222x x a -+≤∴≥考点:导数的几何意义;不等式恒成立问题.【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点. (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组.(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件.17.【答案】 .【解析】解:∵抛物线C 方程为y 2=4x ,可得它的焦点为F (1,0),∴设直线l 方程为y=k (x ﹣1),由,消去x 得.设A (x 1,y 1),B (x 2,y 2),可得y 1+y 2=,y 1y 2=﹣4①.∵|AF|=3|BF|,∴y 1+3y 2=0,可得y 1=﹣3y 2,代入①得﹣2y 2=,且﹣3y 22=﹣4,消去y 2得k 2=3,解之得k=±.故答案为:.【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题. 三、解答题18.【答案】【解析】解:设点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标为(m,n),则线段A′A的中点B(,),由题意得B在直线l:2x﹣y﹣1=0上,故2×﹣﹣1=0 ①.再由线段A′A和直线l垂直,斜率之积等于﹣1得×=﹣1 ②,解①②做成的方程组可得:m=﹣,n=,故点A′的坐标为(﹣,).【点评】本题考查求一个点关于直线的对称点的坐标的方法,注意利用垂直及中点在轴上两个条件.19.【答案】【解析】解:(1)投资为x万元,A产品的利润为f(x)万元,B产品的利润为g(x)万元,由题设f(x)=k 1x,g(x)=k2,(k1,k2≠0;x≥0)由图知f(1)=,∴k1=又g(4)=,∴k2=从而f(x)=,g(x)=(x≥0)(2)设A产品投入x万元,则B产品投入10﹣x万元,设企业的利润为y万元y=f(x)+g(10﹣x)=,(0≤x≤10),令,∴(0≤t≤)当t=,y max≈4,此时x=3.75∴当A产品投入3.75万元,B产品投入6.25万元时,企业获得最大利润约为4万元.【点评】本题考查利用待定系数法求函数的解析式、考查将实际问题的最值问题转化为函数的最值问题.解题的关键是换元,利用二次函数的求最值的方法求解.20.【答案】+∞【解析】(1)函数定义域为(0,)2分单调递减;…………3分2m-2请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.60︒90︒21.【答案】(1);(2).【解析】试题解析:(1)连接,,由是正方体,知为平行四边形,AC 1AB 1111ABCD A B C D -11AA C C 所以,从而与所成的角就是与所成的角.11//AC A C 1B C AC 11A C 1B C 由可知,11AB AC B C ==160B CA ∠=︒即与所成的角为.11A C BC 60︒考点:异面直线的所成的角.【方法点晴】本题主要考查了异面直线所成的角的求解,其中解答中涉及到异面直线所成角的概念、三角形中位线与正方形的性质、正方体的结构特征等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,本题的解答中根据异面直线所成角的概念确定异面直线所成的角是解答的关键,属于中档试题.22.【答案】【解析】(I )证明:∵AA 1C 1C 是正方形,∴AA 1⊥AC .又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(II)解:由AC=4,BC=5,AB=3.∴AC2+AB2=BC2,∴AB⊥AC.建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),∴,,.设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).则,令y1=4,解得x1=0,z1=3,∴.,令x2=3,解得y2=4,z2=0,∴.===.∴二面角A1﹣BC1﹣B1的余弦值为.(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,∴=,=(0,3,﹣4),∵,∴,∴,解得t=.∴.【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力. 23.【答案】【解析】【命题意图】本题考查圆的参数方程和极坐标方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.(Ⅱ)设直线:与半圆相切时l 2)2(+-=x k y )0(222≥=+y y x 21|22|2=+-kk ,,(舍去)0142=+-∴k k 32-=∴k 32+=k设点,,)0,2(-BABk =-故直线. l ]22-24.【答案】【解析】解:(1)在f()=f(x)﹣f(y)中,令x=y=1,则有f(1)=f(1)﹣f(1),∴f(1)=0;(2)∵f(6)=1,∴2=1+1=f(6)+f(6),∴不等式f(x+3)﹣f()<2等价为不等式f(x+3)﹣f()<f(6)+f(6),∴f(3x+9)﹣f(6)<f(6),即f()<f(6),∵f(x)是(0,+∞)上的增函数,∴,解得﹣3<x<9,即不等式的解集为(﹣3,9).。

2020年黑龙江省伊春市宜春靖安中学高三数学理月考试卷含解析

2020年黑龙江省伊春市宜春靖安中学高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合,集合,则()A. B.C. D.参考答案:D试题分析:因,则,故,故应选D.考点:不等式的解法与集合的运算.2. 函数>,且的图象恒过定点A,若点A在直线上(其中m,n>0),则的最小值等于A.16B.12C.9D. 8参考答案:D令,得,此时,所以图象过定点A,点A在直线,所以,即.,当且仅当,即时取等号,此时,选D.3. 在棱长为1的正方体ABCD-A1B1C1D1中,点A关于平面BDC1对称点为M,则M到平面A1B1C1D1的距离为()A. B. C. D.参考答案:D 【分析】以D为原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,求出平面BDC1的法向量=(1,-1,1),从而平面BDC1的方程为x-y+z=0,进而过点A(1,0,0)且垂直于平面BDC1的直线方程为(x-1)=-y=z,推导出过点A(1,0,0)且垂直于平面BDC1的直线方程与平面BDC1的交点为,得到点A关于平面BDC1对称点M,由此能求出M到平面A1B1C1D1的距离.【详解】以D为原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,D(0,0,0),B(1,1,0),C1(0,1,1),A(1,0,0),A1(1,0,1),=(1,1,0),=(0,1,1),设平面BDC1的法向量=(x,y,z),则,取x=1,得=(1,-1,1),∴平面BDC1的方程为x-y+z=0,过点A(1,0,0)且垂直于平面BDC1的直线方程为:(x-1)=-y=z,令(x-1)=-y=z=t,得x=t+1,y=-t,z=t,代入平面方程x-y+z=0,得t+1+t+t=0,解得t=,∴过点A(1,0,0)且垂直于平面BDC1的直线方程与平面BDC1的交点为∴点A关于平面BDC1对称点M,,平面A1B1C1D1的法向量=(0,0,1),∴M到平面A1B1C1D1的距离为d=故选:D.【点睛】本题考查点到平面的距离的求法,考查平面方程、中点坐标公式、点到平面的距离公式等基础知识,考查运算求解能力,是中档题.4. 设函数且,则()A.1 B.2 C.3 D.6参考答案:C5. 已知复数z的实部和虚部相等,且z(2+i)=3﹣bi(b∈R),则|z|=()A.3B.2C.3 D.2参考答案:A【考点】复数代数形式的乘除运算.【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由实部和虚部相等求得b,得到z,代入复数模的计算公式得答案.【解答】解:由z(2+i)=3﹣bi,得=,∴6﹣b=﹣2b﹣3,解得b=﹣9.∴z=3+3i,则|z|=.故选:A.【点评】本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础题.6. 已知复数z满足(为虚数单位),则z在复平面内对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:A7. 过点(3,1)作圆(x﹣1)2+y2=r2的切线有且只有一条,则该切线的方程为()A.2x+y﹣5=0 B.2x+y﹣7=0 C.x﹣2y﹣5=0 D.x﹣2y﹣7=0参考答案:B【考点】圆的切线方程.【分析】由题意画出图形,可得点(3,1)在圆(x﹣1)2+y2=r2上,求出圆心与切点连线的斜率,再由直线方程的点斜式得答案.【解答】解:如图,∵过点(3,1)作圆(x﹣1)2+y2=r2的切线有且只有一条,∴点(3,1)在圆(x﹣1)2+y2=r2上,连接圆心与切点连线的斜率为k=,∴切线的斜率为﹣2,则圆的切线方程为y﹣1=﹣2(x﹣3),即2x+y﹣7=0.故选:B.8. 为圆:上任意一点,为圆:上任意一点,中点组成的区域为,在内部任取一点,则该点落在区域上的概率为A.B.C.D.参考答案:解析1设,中点,则代入,得,化简得:,又表示以原点为圆心半径为5的圆,故易知轨迹是在以为圆心以为半径的圆绕原点一周所形成的图形,即在以原点为圆心,宽度为3的圆环带上,即应有,那么在内部任取一点落在内的概率为,故选.解析2:设,,,则,①,②,①2②2得:,所以的轨迹是以原点为圆心,以为半径的圆环,那么在内部任取一点落在内的概率为,故选.9. 在正方体中,是棱的中点,是侧面内的动点,且平面,则与平面所成角的正切值构成的集合是()A.B.C.D.参考答案:D 略10. 已知集合则下列结论正确的是A. B.C. D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. =_______________________.参考答案:【知识点】定积分.B13【答案解析】解析:(+2x)dx=[ln(x+1)+x2]=1+ln2;故答案为:1+ln2.【思路点拨】找出被积函数的原函数,然后代入上下限计算.12. .若对任意m∈R,直线x+y+m=0都不是曲线的切线,则实数a的取值范围是____________.参考答案:略13. 学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“是C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两项作品未获得一等奖”;丁说:“是C作品获得一等奖”.若这四位同学中只有两位说的话是对的,则获得一等奖的作品是.参考答案:B【考点】进行简单的合情推理.【分析】根据学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,故假设A,B,C,D分别为一等奖,判断甲、乙、丙、丁的说法的正确性,即可判断.【解答】解:若A为一等奖,则甲,丙,丁的说法均错误,故不满足题意,若B为一等奖,则乙,丙说法正确,甲,丁的说法错误,故满足题意,若C为一等奖,则甲,丙,丁的说法均正确,故不满足题意,若D为一等奖,则只有甲的说法正确,故不合题意,故若这四位同学中只有两位说的话是对的,则获得一等奖的作品是B故答案为:B14. 已知点P是曲线y=x3﹣10x+3上位于第二象限内的一点,且该曲线在点P处的切线斜率为2,则这条切线方程为.参考答案:y=2x+19【考点】利用导数研究曲线上某点切线方程.【分析】设切点为P(x0,y0),求出函数的导数,根据导数的几何意义得f′(x0)=3x02﹣10=2,所以得x0=﹣2(舍正),从而得出切点为P(﹣2,15).根据斜率为2,利用点斜式可得直线方程,最后化成斜截式.【解答】解:设P(x0,y0),求得函数的导数为f′(x)=3x2﹣10由题意知:f′(x0)=3x02﹣10=2,∴x02=4.∴结合函数图象第二象限内的一点,得x0=﹣2,∴y0=15.∴P点的坐标为(﹣2,15).直线方程为y﹣15=2(x+2),即y=2x+19故答案为:y=2x+1915. 观察下列算式:,,,,…………若某数按上述规律展开后,发现等式右边含有“”这个数,则_______.参考答案:16. 在平面直角坐标系xOy中,已知圆,点,M,N是圆O上相异两点,且,若,则的取值范围是__________.参考答案:试题分析:由已知可得设到直线的距离分别是,,又,设,,,,,又,,可知分别在圆,由下图可得的取值范围是.考点:向量及其运算.【方法点晴】本题主要考查向量及其运算,其中涉及数形结合思想,计算繁杂,属于较难题型。

靖安县高级中学2018-2019学年上学期高三数学10月月考试题

靖安县高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}x B x x R =≤∈,则集合U A C B 为( )A.]1,1[-B.]1,0[C.]1,0(D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.2. 已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为( ) A .8 B .5 C .9 D .273. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,在平面α内C .有两条,不一定都在平面α内D .有无数条,不一定都在平面α内4. 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )A .B .(4+π)C .D .5. 点A 是椭圆上一点,F 1、F 2分别是椭圆的左、右焦点,I 是△AF 1F 2的内心.若,则该椭圆的离心率为( )A .B .C .D .6. 已知函数f (x )=sin 2(ωx )﹣(ω>0)的周期为π,若将其图象沿x 轴向右平移a 个单位(a >0),所得图象关于原点对称,则实数a 的最小值为( ) A .πB.C.D.7. 经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -=8. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 9. 已知抛物线C :y x 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FQ PF 2=,则=QF ( ) A .6B .3C .38D .34 第Ⅱ卷(非选择题,共100分)10.已知正项数列{a n }的前n 项和为S n ,且2S n =a n+,则S 2015的值是( )A.B.C .2015 D.11.已知命题p :存在x 0>0,使2<1,则¬p 是( )A .对任意x >0,都有2x ≥1B .对任意x ≤0,都有2x <1C .存在x 0>0,使2≥1 D .存在x 0≤0,使2<112.设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C. (1,3) D .(3,)+∞二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.执行如图所示的程序框图,输出的所有值之和是 .【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等. 14.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ .15.直线20x y t +-=与抛物线216y x =交于A ,B 两点,且与x 轴负半轴相交,若O 为坐标原点,则OAB ∆面积的最大值为 .【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.16.数列{a n }是等差数列,a 4=7,S 7= .三、解答题(本大共6小题,共70分。

四川省达州市靖安中学高三数学理测试题含解析

四川省达州市靖安中学高三数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在△中,若,,则角为A. B.或 C. D.参考答案:A;两式两边平方相加得,或若则,,得与矛盾,。

2. 将函数的图象向右平移个单位长度得到图象,若的一条对称轴是直线,则的一个可能取值是A. B. C.D.参考答案:A3. 函数()的图象的一条对称轴方程是A. B. C. D.参考答案:B4. 若集合,,则=(A) (B)(C)(D)参考答案:A略5. “”是“函数在区间上存在零点”的(A) 充分而不必要条件(B) 必要而不充分条件(C) 充分必要条件(D) 既不充分也不必要条件参考答案:6. 已知是实数,是纯虚数,则等于()A B C D参考答案:A略7. 将函数y=sin(x+φ)的图像上所有点的横坐标缩短到原来的倍(纵坐标不变),再将所得图像向左平移个单位后得到的函数图像关于原点中心对称,则sin2φ=A. B. C. D.参考答案:C8. 函数是A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数参考答案:A略9. 由曲线与直线围成的封闭图形的面积A.24 B.36 C.42 D.48参考答案:B10. 执行如图所示的程序框图,若输出x的值为23,则输入的x值为()A.0 B.1 C.2 D.11参考答案:C【考点】循环结构.【专题】图表型.【分析】当x=2×x+1,n=1+1=2,满足n≤3,执行循环体,依此类推,最后一次:x=2×11+1=23,n=1+3=4,不满足n≤3,退出循环体,输出此时的x的值.【解答】解:x=2×2+1=5,n=1+1=2,满足n≤3,执行循环体;x=2×5+1=11,n=2+1=3,满足n≤3,执行循环体;x=2×11+1=23,n=3+1=4,不满足n≤3,退出循环体,上述过程反过来看即可得.则输入的x值为:2故选:C.【点评】本题主要考查了直到型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题之列.二、填空题:本大题共7小题,每小题4分,共28分11. 如图,在△ABC中,已知,,,D为边BC的中点.若,垂足为E,则的值为.参考答案:根据平面向量基本定理得到设EA=x,,两边平方得到AD,在三角形ABC中用余弦定理得到BC=,在三角形ACE和CDE中分别应用勾股定理,得到x=.12. 已知a≠0,函数,(e为自然对数的底数),若存在一条直线与曲线和均相切,则最大值是.参考答案:e因为,,所以,,设曲线和的切点坐标分别为(,),(,),则,可得,代入上式可得:,构造函数,求得最小值为0,所以的最大值为e.13. △ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,则c的值为.参考答案:【考点】余弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】由已知及正弦定理可解得a,利用余弦定理可得:c 2﹣2c ﹣5=0,解方程即可得解.【解答】解:∵△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,∴由正弦定理可得:,解得:a=3,∴利用余弦定理:a2=b2+c2﹣2bccosA,可得:9=4+c2﹣2c,即c2﹣2c﹣5=0,∴解得:c=1+,或1﹣(舍去).故答案为:.【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题.14. 已知a>0,b>0,a+b=2,则的最小值是参考答案:15. 已知数列为等差数列,,,则.参考答案:考点:等差数列的的性质16. 已知集,,则集合所表示图形的面积是参考答案:17. 已知的展开式各项系数之和为64,则n =_____,展开式中含项的系数为_____.参考答案:6 15【分析】利用赋值法,令,则的展开式各项系数之和为,即可求得n;再由二项展开式的通项求得含项的系数.【详解】令,则的展开式各项系数之和为,则;其中通项,令,则,故项的系数为15.故答案为:(1). 6;(2). 15【点睛】本题考查求二项展开式中指定项的系数,还考查了赋值法的应用,属于基础题.三、解答题:本大题共5小题,共72分。

《精编》江西省靖安中学高三数学10月月考 理 新人教A版.doc

靖安中学高三年级10月月考数学试卷〔理〕一、选择题〔每题5分,共60分〕 1.Cos2θ=53、Sin 2θ=-54,那么角θ的终边落在直线〔 〕上。

A .7x+24y=0 B.7x-24y=0 C.24x+7y=0 D.24x-7y=0 2.以下有关命题正确的选项是( )A .)2,0()10(2)(-≠>-=的图象恒过点且a a a x f xB .的必要不充分条件是"065""1"2=---=x x x 。

C ."01,:""01,"22<++∈<++∈x x R x x x R x 均有任意的否定是使存在命题D .。

a a x x f a a 上为增函数的充要条件在且是),0()10(log )(""1"+∞≠>=>的值为则上的偶函数是若函数ϕπϕϕϕ,R x Cos x Sin x f )0(),2(3)2()(.3<<+++=A .6π B. 3π C. 32π D. 65π 4. 的最小值是则函数已知)1(2)(,4-+=-<Cosx k x Cos x f K ( ) A.1 B.-1 C.2k+1 D. -2K+1 5.的夹角为与则若(已知向量b a c b a c b a ,25),5),4,2(),2,1(=•+=--==( )A.030 B. 060 C. 0120 D. 0150 6.那么边的中点,且是所在平面内的一点,是已知,02=++∆OC OB OA BC D ABC O ( )A. AO =ODB. OD O A 2=C. OD AO 3=D. 2OD AO = 7.{}的是则“项和为的前设等差数列3976"0,S S a a S n a n n ≥>+ 〔 〕8.,0)(),=-⋅-c b c a c 满足(的单位向量,若向量是平面内两个互相垂直已知的最大值是则c( )A.1B.2C. 2D.39.,,,),(21D x D x C D x x f y ∈∈∈=存在唯一的,对于任意的若存在常数定义函数C x f x f =)()(21使得,那么称函数,2)()(x x f CD x f =,已知上的几何平均数为在 [][]上的几何平均数为,在则函数,212)(,21x x f x =∈ 〔 〕 A .2 B. 2 C. 22 10、动直线a x =与函数)4(sin 2)(2x x f +=π和x x g 2cos 3)(=的图像分别交于M 、N 两点,那么︱MN ︱的最大值为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

靖安中学高三年级10月月考数学试卷(文)时间:120分钟 分值:150分 命题:黄升汉 审题:黄琳一、选择题(每小题3分,共36分)1、若向量),3(),5,2(),1,1(x ===满足条件30)8(=∙-,则x = ( ) A.3 B.4 C.5 D.62、已知等差数列}{n a 中,15,652==a a ,若n n a b 2=,则数列}{n b 的前5项和等于( ) A.30 B.45 C.90 D.1863、设n S 为等比数列}{n a 的前n 项和,0852=+a a ,则=25S S ( ) A.—11 B.—8 C.5 D.114、命题p :在△ABC 中∠C >∠B 是sinC >sinB 的充分不必要条件; 命题q :a >b 是22bc ac >的充分不必要条件,则( )A.p 真q 假B.p 假q 真C.“p 或q ”为假D.“p 且q ”为真 5、设,)21(,log ,log 6.06121261===c b a 则( )A. c b a <<B. b c a <<C. a c b <<D. c a b << 6、函数2sin sin 2-+=x x y 的值域为( )A. ]0,2[-B. ]2,49[--C. ]41,2[-D. ]0,49[-7、已知向量5310),1,2(==∙=,则b等于( )A.10 B. 52 C. 5 D.258、已知两个不共线向量)sin ,(cos ),sin ,(cos ββαα==则下列说法不正确的是( )A. 1==B. )()(-⊥+C. a 与b 在b a +方向上的投影相等D. a 与b 的夹角等于βα- 9、若函数)(x f 为奇函数,且在),0(+∞ 内是增函数,又0)2(=f ,则0)()(<--xx f x f 的解集为( )A. )2,0()0,2( -B. )2,0()2,( --∞C. ),2()2,(+∞--∞D. ),2()0,2(+∞- 10、设ω>0,函数2)3sin(++=πωx y 的图像向右平移π34个单位后与原图像重合,则ω的最小值是( )A. 32B. 34C. 23D.311、下列函数中,周期为π且在]2,4[ππ上为减函数的是( ) A.)22sin(π+=x y B. )22cos(π+=x yC.)2sin(π+=x yD. )2cos(π+=x y12、若函数)(x f y =的导函数...在区间[a,b]上是增函数,则函数)(x f y =在区间[a,b]上的图像可能是( )A. B. C. D.二、填空题13、已知函数)(x f y =的图像在点))1(,1(f M 处的切线方程是221+=x y ,则 ='+)1()1(f f 。

14、已知向量a =(3,1),b =(1,3),c =(k ,7),若b c a ⊥-)(,则k= 。

15、△ABC 的三个内角A 、B 、C 所对应的边分别为a 、b 、c ,设向量p =(a+c,b ),q =(b-a,c-a ),若p ∥q ,则角C 的大小为 。

16、关于x 的函数)0)(cos()(>+=ωϕωx x f 有以下命题: ①对任意的ϕ,)(x f 都是非奇非偶函数; ②不存在ϕ,使)(x f 既是奇函数,又是偶函数; ③存在ϕ,使)(x f 是奇函数;④对任意ϕ,)(x f 都不是奇函数。

其中正确的命题序号是三、解答题(12+12+12+12+12+14= 74分)17、已知函数xx x f cos )42sin(21)(π--=,(1)求)(x f 的定义域;(2)设α是第四象限的角,且34tan -=α,求)(αf 的值。

18、已知锐角三角形ABC 三个内角为∠A 、∠B 、∠C ,向量)sin cos ,sin 22(A A A +-=与向量)s i n 1,c o s (s i n A A A q +-=是共线向量,求:(1)∠A ; (2)函数23cos sin 22BC B y -+=的最大值。

19、已知△ABC 的面积S 满足333≤≤S 且6=⋅,与的夹角为α (1)求α的取值范围; (2)求ααααα22cos 3cos sin 2sin )(++=f 的最小值。

20、在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且ca bC B +-=2cos cos , (1)求角B 的大小;(2)若4,13=+=c a b ,求△ABC 的面积。

21、设函数2)(,ln 2)1()(x x g x xx p x f =--=,(1)若直线l 与函数)(x f ,)(x g 的图像都相切,且与函数)(x f 的图像相切于点(1,0),求实数P 的值。

(2)若函数)(x f y =在其定义域内为单调函数,求实数P 的取值范围。

22、已知数列}{n a 前n 项和为n S 满足:3,1,1)1(211==++=+a a S k S n n *∈N n (,k 为常数) (1)求k 的值及数列}{n a 的通项公式;(2)设数列)12(+=n n S n b ,求数列}{n b 的前n 项和为n T ; (3)试比较1212+-+n n S S 与n S 22的大小。

靖安中学高三年级10月月考数学答卷(文)二、选择题(每小题5分,共60分)二、填空题(每小题4分,共16分)13、 3 14、 -15 15、3π16、 ②③ 三、解答题(12+12+12+12+12+14= 74分)17、已知函数xx x f cos )42sin(21)(π--=,(1)求)(x f 的定义域;(2)设α是第四象限的角,且34tan -=α,求)(αf 的值。

解:(1)依题意,cos .0≠x 解得)(2z k k x ∈+≠ππ20101018即()x f 的定义域为⎭⎬⎫⎩⎨⎧∈+≠∈z k k x R x x ,2ππ且 (2)由()xx x x f cos cos 22sin 2221⎪⎪⎭⎫ ⎝⎛--==xxx cos 2cos 2sin 1+-=-2sin x x cos 2+由于是第四象限的角,且tan 34-=∂可得53cos ,54sin =∂-=∂()53254⨯+⎪⎭⎫⎝⎛-⨯-=∂∴f =51418、已知锐角三角形ABC 三个内角为∠A 、∠B 、∠C ,向量)sin cos ,sin 22(A A A p +-=与向量)s i n 1,c o s (s i n A A A q +-=是共线向量,求:(1)∠A ; (2)函数23cos sin 22BC B y -+=的最大值。

解(1)共线,()()()()A A A A A A c o s s i n s i n c o s s i n 122-+=+-∴ 43sin 2=∴A 而为锐角A ∠.323sin π=∠⇒=∴A A(2)233cos sin 222cos sin 222BB B B c B y -⎪⎭⎫⎝⎛--+=-+=ππ =2⎪⎭⎫⎝⎛-+B B 23cos sin 2π =1B B B 2sin 232cos 212cos ++- =12cos 212sin 23+-B B =162sin +⎪⎭⎫⎝⎛-πB ⎪⎭⎫⎝⎛∈2,0πB ⎪⎭⎫ ⎝⎛-∈-∴πππ65,662B 262ππ=-∴B即 B=23max =y 时π19、已知△ABC 的面积S 满足333≤≤S 且6=⋅,与的夹角为α (1)求α的取值范围; (2)求ααααα22cos 3cos sin 2sin)(++=f 的最小值。

20、在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且ca bC B +-=2cos cos , (1)求角B 的大小;(2)若4,13=+=c a b ,求△ABC 的面积。

解:(1)c a b C B +-=2cos cos(2)将b=32.4,13π==+B c a 代入 由正弦定理知CA B C B sin sin 2sin cos cos +-= B ac c a b cos 2222-+= 即20sin cos cos sin cos sin =++B C B C B A 即()B ac ac c a b cos 2222--+=()0s i nc o s s i n 2=++∴C B B A ⎪⎭⎫ ⎝⎛--=∴21121613ac A C B -=+π 3=∴ac 0s i n c o s s i n 2=+∴A B A 23321sin 21⨯⨯==∴∆B ac S ABC 0s i n≠A =433 21c o s -=∴B ()π,0∈B32π=∴B 21、设函数2)(,ln 2)1()(x x g x xx p x f =--=,(1)若直线l 与函数)(x f ,)(x g 的图像都相切,且与函数)(x f 的图像相切于点(1,0), 求实数P 的值。

(1) 若函数)(x f y =在其定义域内为单调函数,求实数P 的取值范围。

又112≤+x x()()为单调增函数在时当+∞≥∴,01x f p ②当()()上单调递减时在+∞=,0x f y有()()恒成立时+∞∈∀≤+-=',00222x xp x px x f 即x x p 12+≤ 又 012>+x x()()上为单调减函数在时当∞+≤∴,x f p 00综上.()01.≤≥p p p x f 或的取值范围为为单调函数22、已知数列}{n a 前n 项和为n S 满足:3,1,1)1(211==++=+a a S k S n n *∈N n (,k 为常数)(1)求k 的值及数列}{n a 的通项公式;(2)设数列)12(+=n n S n b ,求数列}{n b 的前n 项和为n T ;(3)试比较1212+-+n n S S 与n S 22的大小。

解:(1)()3.1.112112==++=a a s k s ()11121++=+∴a k a a2=∴k()+++∈=∴N n S S n n 113()+-∈≥+=N n n S S n n ,2131()()+-++∈≥=-=-=∴N n n a S S S S a n N n n n n ,233111 又123a a =()++∈=∴N n a a nn 31 }{的等比数列公比为是首项为31,a n ∴ ()+-∈=∴N n a n n 13(2)由(1)可知:()21331311-=--=n n n S ()nn n n S n b 312⋅=+=∴ T n n b b b +++= 21T n n n 333323132⨯++⨯+⨯+⨯= 3T ()1323313231+⨯+⋅-++⨯+⨯=n n n n n两式相减得 132333332+⋅-++++=-n n n n T =()1331313+⋅---n n n=()132133+⋅--n n n43321211+⋅⎪⎭⎫ ⎝⎛-=∴+n n n T ()+∈N n(3)S n n n S S 212122-++- =213221321321212-⋅--+-+-n n n=()n n n 21212323321⨯-++- =1232-⨯n >0 S n n n S S 212122>++-。

相关文档
最新文档