第七章 线性变换.

合集下载

《高等代数》第七章 线性变换

《高等代数》第七章  线性变换

线性变换的多项式有以下性质:
1) f (A ) 是一线性变换.
2) 如果在 P[ x ] 中,有 h(x) = f (x) + g(x) , p(x) = f (x) g(x) ,
那么
h(A ) = f (A ) + g(A ) , p(A ) = f (A ) g(A ) .
特别地,
f (A ) g(A ) = g(A ) f (A ) .
定义为 数乘k变A 换= ,K可A用, K 表示. 显然,当 k = 1 时

们(k便A得)恒(等) =变K换(,A当(k) =) =0 K时A,便(得) .零变换.
显然,k A 还是线性变换. 2. 运算规律 1) ( kl ) A = k ( l A ) , 2) ( k + l ) A = k A + l A , 3) k (A + B ) = k A + k B , 4) 1 A = A .
证毕
五、线性变换的多项式
下面引进线性变换的多项式的概念.
1. 线性变换的幂
既然线性变换的乘法满足结合律,当若干个线
性变换 A 重复相乘时,其最终结果是完全确定的,
与乘积的结合方式无关. 因此当 n 个( n 是正整数)
线性变换 A 相乘时,我们就可以用 A A ... A
n个
来表示,称为 A 的 n 次幂,简单地记作 A n. 即
对于线性变换,我们已经定义了乘法、加法与 数量乘法三种运算. 由加法与数量乘法的性质可知, 线性空间 V 中全体线性变换,对于如上定义的加法 与数量乘法,也构成数域 P 上一个线性空间.
对于线性变换,我们也可定义逆变换.
四、线性变换的逆变换
1. 定义 定义5 线性空间 V 的线性变换 A 称为可逆的 如果有 V 的变换 B 存在,使

第七章 线性变换

第七章 线性变换

(4) 多项式:
1) n 个( n 是正整数)线性变换 /A的乘积为/A的
n次幂,记为/An,即/An=/A/A.../A(n个). 规定 /A0 = /E. 当线性变换/A可逆时, 规定/A-n=(/A-1)n 2) 设 f (x) = amxm + am -1xm -1 + … + a0 是P[ x ] 中 一多项式,/A是 V 的一线性变换,则称 f (/A ) = am /A m + am -1 /A m -1 + … + a0/E
xi1, xi 2 ,, xiri
,则向量组
x11 , x12 ,, x1r1,x21 , x22 ,, x2r2, ,xs1, xs 2 ,, xsrs
线性无关.
6) 设B=X-1AX,即矩阵A与B相似. 如果i是A的特征
值,xi是A对应特征值i的特征向量,则i是B的特征值 ,且B对应特征值i的特征向量是X-1x.
是线性变换 /A 的多项式.
3) 线性变换的幂运算规律 ① /A n + m = /A n /A m , (/A n )m = /A m n (m , n 0) . ② 一般来说:(/A /B )n /A n /B n . 4) 如果在 P[ x ] 中,有 h(x) = f (x) + g(x) , p(x) = f (x) g(x) , 那么 h(/A ) = f (/A ) + g(/A ) , p(/A ) = f (/A ) g(/A ) .
1+ 2+ ...+n=a11+a22+...+ann; 12...n=|A|.
4) 如果1, 2, ..., s是矩阵A的互异特征值,其对应

第七章线性变换总结篇(高等代数)

第七章线性变换总结篇(高等代数)

第 7章 线性变换7.1知识点归纳与要点解析一.线性变换的概念与判别 1.线性变换的定义数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。

注:V 的线性变换就是其保持向量的加法与数量乘法的变换。

2.线性变换的判别设σ为数域P 上线性空间V 的一个变换,那么:σ为V 的线性变换⇔()()()k l k l ,,V ,k,l P σαβσασβαβ+=+∀∈∀∈ 3.线性变换的性质设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα∀∈。

性质1. ()()00,σσαα==-; 性质2. 若12s ,,,ααα线性相关,那么()()()12s ,,,σασασα也线性相关。

性质3. 设线性变换σ为单射,如果12s ,,,ααα线性无关,那么()()()12s ,,,σασασα也线性无关。

注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组,如果:11111221221122221122s ss s m m m ms sc c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++记:()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭于是,若()dim V n =,12,,,n ααα是V 的一组基,σ是V 的线性变换, 12,,,m βββ是V 中任意一组向量,如果:()()()11111221221122221122n n n n m m m mn nb b b b b b b b b σβααασβααασβααα=+++=+++=+++记:()()()()()1212,,,,m m σβββσβσβσβ=那么:()()1121112222121212,,,,,,m m m n n n mn b b c b b c b b c σβββααα⎛⎫⎪ ⎪= ⎪⎪⎝⎭设112111222212m m n n mn b b c b b c B b b c ⎛⎫⎪⎪= ⎪⎪⎝⎭,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是12,,,m ηηη的一个极大线性无关组,那么()()()12,ri i iσβσβσβ就是()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的秩等于秩()B 。

高等代数课件(北大版)第七章-线性变换§7.7

高等代数课件(北大版)第七章-线性变换§7.7

若 V W1 W2 Ws,则
11, ,1n1 , 21, , 2一组基,且在这组基下 的矩阵为准对角阵
A1
A2
.
As
2023/8/17§7.7 不变子空间 数学与计算科学学院
(1)
反之,若 在基 11, ,1n1 , 21, , 2n2 , , s1, , sns 下的矩阵为准对角矩阵(1), 则由 i1, i2 , , ini 生成 的子空间 Wi 为 的不变子空间,且V具有直和分解:
其次,任取 Vi , 设
( i E )ri Wi 0.
1 2 s , i Wi . 即 1 2 (i ) s 0 令 j j , ( j i); i i .
2023/8/17§7.7 不变子空间 数学与计算科学学院
由(2), 有 ( i E)ri (i ) 0, i 1,2, , s. 又 ( i E)ri (i ) ( i E)ri (i )
Wi fi ( )V , 则Wi 是 fi ( ) 的值域, Wi是 的不变子空间.
又 ( i E)ri Wi ( i E)ri fi ( )V
( i E)ri fi ( ) V f V
( i E)ri Wi 0.
(2)
2023/8/17§7.7 不变子空间 数学与计算科学学院
下证 V V1 V2 Vs . 分三步:
1 . 证明 V W1 W2 Ws .
2 . 证明f1(V1),fV2(2), fVs (s是)直和1 .
3∴. 证存明在多Vi 项 W式i
, i
u1 (
1, 2,
), u2(
, s. ),
, us ( ),
使
u1( ) f ( )1 u2( ) f2( ) us ( ) fs ( ) 1

第七章线性变换.ppt

第七章线性变换.ppt
所以 是V的一个线性变换
令 k ,那么对于任意 a,b F 和任意 , V ,
(a b) k( (a b)) k(a ( ) b ()) ak ( ) bk () a( ) b().
所以kσ是V的一个线性变换.
2020-12-11
谢谢你的观赏
15
线性变换的加法满足变换律和结合律,容易证明,对
如果 , V而 ( ) (). 那么 ( ) ( ) () 0, 从而 ker( ) {0}. 所以 , 即σ是单射.
2020-12-11
谢谢你的观赏
11
如果线性映射 :V W 有逆映射 1 ,那么是W
到V 的一个线性映射.
2020-12-11
谢谢你的观赏
12
7.2 线性变换的运算
(4) ( )
2020-12-11
谢谢你的观赏
16
线性变换的数乘满足下列算律:
(5)
k( ) k k ,
(6)
(k l) k l ,
(7)
(kl) k(l ),
(8)
1 ,
这里k,l是F中任意数,σ,τ是V的任意线性变换.
定理7.2.1 L(V)对于加法和数乘来说作成数域 F上一个向量空间.
在σ之下的象是W 的一个子空间,而W 的任意子空 间在σ之下的原象是V 的一个子空间.
2020-12-11
谢谢你的观赏
9
特别,向量空间V 在σ之下的象是W 的一个
子空间,叫做σ的象, 记为 Im( ),
即 Im( ) (V ).
另外,W 的零子空间 { 0 } 在σ之下的原象是 V 的一个子空间,叫做σ的核,
一、内容分布
7.2.1 加法和数乘 7.2.2线性变换的积 7.2. 3线性变换的多项式

高教线性代数第七章 线性变换课后习题答案

高教线性代数第七章 线性变换课后习题答案

第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。

8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。

2)当0=α时,是;当0≠α时,不是。

3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。

4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。

5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。

高等代数课件 第七章

高等代数课件 第七章
①对于任意 , V , ( ) ( ) (). ②对于任意 a F, V , (a ) a ( )
易证上面的两个条件等价于下面一个条件:
③对于任意 a,b F 和任意 , V ,
(a b) a ( ) b ()
在②中取 a 0 ,对③进行数学归纳,可以得到:
(1) (0) 0
x1
A
x2
.
xn
综合上面所述, 我们得到坐标变换公式:
定理7.3.1 令V是F上一个n 维向量空间,σ是 V的一个线性变换,而σ关于V的一个基 {1, 2 ,, n} 的矩阵是
a11
A
a21
a12
a22
a1n a2n
an1 an2 ann
如果V中向量ξ关于这个基的坐标是 (x1, x2 ,, xn,) 而σ(ξ)的坐标是 ( y1, y2 ,, yn,)
例6 取定F的一个n元数列 a1, a2,, an , 对于 F n
的每一向量 x1, x2,, xn , 规定
a1x1 a2 x2 an xn F
则,σ是 F n到F的一个线性映射(这个线性映射也叫做 F上一个n元线性函数或 上F n一个线性型).
例7 对于F[x] 的每一多项式 f(x),令它的导数
因而(9)成立。
三、线性变换的多项式
线性变换的乘法满足结合律:
对于任意 , , L(v), 都有
( ) ( ).
因此, 我们可以合理地定义一个线性变换σ的n次

n
n
这里n是正整数。
我们再定义
0
这里ι表示V到V的单位映射,称为V的单位变换。这样 一来,一个线性变换的任意非负整数幂有意义。
加法: : ( ) ( ) 数乘: k : k ( ) ,

线性变换

线性变换


n1
k1 K
其中有一个n-1级子式不为0.
∴ 秩 (0 E B ) n 1. 从而 (0 E A) n 1. 故 (0 E A) X 0 的基础解系只含一个向量. 即,A的属于 0的线性无关的特征向量只有一个.
dimV0 1.
三、特征多项式与最小多项式 1、特征多项式
例4
设 End F (V ),,证明:
教材P167 习题5
1
(1) 可逆 无零特征值; (2) 可逆时,若 是 的特征值,则 是 1 的特征值.

例 5 设 L Vn ( P ) ,证明:
教材P163 习题1
(1) 存在 f x P x ,且次 f x n2 ,使得 f 0 ; (2) 如 果 f x , g x P x 的 最 大 公 因 式 为 d x , 且

3)、数量乘法 的数量乘积 k 为: k k , 则 k 也是V的线性变换. 设 为向量空间V的线性变换,k P , 定义 k与
V
•基本性质
(i) ( kl ) k ( l ) (ii) ( k l ) k l (iii) k ( ) k k (iv) 1
(P159习题9)
例 2、设 A, B F nn ,证明:
(P162例3)
rank(A+B)≤rank(A)+rank(B).
例 3、 End K (V ), dimK V n , 设 证明: 对任意 End K (V ), dimImσ≤dimKerτ+dimIm(στ).
则 也是V的线性变换. •基本性质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章线性变换
计划课时:24学时.( P 307—334)
§7.1 线性变换的定义及性质(2学时)
教学目的及要求:理解线性变换的定义,掌握线性变换的性质
教学重点、难点:线性变换的定义及线性变换的性质
本节内容可分为下面的两个问题讲授.
一. 线性变换的定义(P307)
注意:向量空间V到自身的同构映射一定是V上的线性变换,反之不然。

二. 线性变换的性质
定理7.1.1(P309)
定理7.1.2 (P309)
推论7.1.3 (P310)
注意:1.定理7.1.2给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基向量的作用所决定。

2.两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论7.1.3 (P310)告诉我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。

作业:习题七P330 1,2,3.
§7.2 线性变换的运算(4学时)
教学目的及要求:掌握线性变换的运算及线性变换可逆的条件
教学重点、难点:线性变换的运算及线性变换可逆的条件
本节内容分为下面四个问题讲授:
一. 加法运算
定义1 (P310)
注意:σ+τ是V的线性变换.
二. 数乘运算
定义2(P311)
显然kσ也是V的一个线性变换.
定理7.2.1 L(V)对于线性变换的加法与数乘运算构成数域F上的一个向量空间.
三. 乘法运算
(1). 乘法运算
定义3 (P311-312)
注意:线性变换的乘法适合结合律,但不适合交换律及消去律. 两个非零线性变换的乘积可
能是零变换.
(2). 线性变换σ 的方幂
四. 可逆线性变换
定义4 (P 313)
线性变换可逆的充要条件
例2 (P 314)
线性变换的多项式的概念 (阅读内容).
作业:P 330 习题七 4,5.
§7.3 线性变换的矩阵(6学时)
教学目的及要求:理解线性变换关于一个基的矩阵的定义,掌握ξ 与σ (ξ)关于同一个基的坐标
之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、
同一个线性变换在不同基下的矩阵是相似的理论,掌握L (V )与M n (F )的同构理
论。

教学重点、难点:
1. 线性变换关于一个基的矩阵的定义。

2. L (V )与M n (F )的同构理论,线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系。

本节内容分为下面四个问题讲授:
一. 线性变换σ关于基的矩阵
定义 (P 316) 。

注意:取定n 维向量空间V 的一个基之后,对于V 的每一个线性变换,有唯一确定的n 阶矩阵与它对应.
例1 (P 316)
注意:一个线性变换在不同基下的矩阵通常是不同的.
例2 (P 317)
例3 (P 317)
二. ξ与σ (ξ)关于同一个基的坐标之间的关系.
定理7.3.1
例4 (P 318)
三. L (V )与M n (F )的同构
定理7.3.2 (P 320)
定理7.3.3 (P 320)
注意:1. 定理7.3.2 (P 320)的证明是本章的难点,在证明之前应复习证明所用到的知识点。

2.由于L (V ) 同构于)(F M n ,所以就把研究一个很复杂的向量空间L (V )的问题转化成研究一个很直观具体的向量空间)(F M n 的问题。

同构是高等代数课程的一个基本概念。

3. 定理7.3.3不仅给出了在有限维向量空间判定一个线性变换可逆的方法,而且给出了求
逆变换的方法。

四. 同一个线性变换在不同基下的矩阵之间的关系
定理7.3.4(P321).
作业:P331习题七6,9,12,17.
§7.4 不变子空间(4学时)
教学目的及要求:理解不变子空间、线性变换的值域与核、线性变换的秩与零度的定义及相关理论,掌握利用不变子空间化简线性变换的矩阵的方法、求线性变换的值域与核
的方法
教学重点、难点:
1. 利用不变子空间化简线性变换的矩阵的方法、线性变换的值域与核的概念
2. 线性变换值域与核的计算
本节内容分为下面三个问题讲授:
一. 不变子空间的概念
定义1 (P322)
定理7.4.1(P323)
二. 利用不变子空间化简线性变换的矩阵
(1). 线性变换在不变子空间上的限制
定义2(P323)
(2). 不变子空间与简化线性变换的矩阵的关系.
三. 线性变换的值域与核
定义3(P324)
定理7.4.2(P324)
定理7.4.3(P325)
定理7.4.4 (P325)
作业:P332-333习题七19,21,23,24,25.
§7.5 线性变换的本征值和本征向量(4学时)
教学目的及要求:理解线性变换本征值与本征向量的定义,掌握有限维向量空间的线性变换的本征值和本征向量与它的矩阵的特征值和特征向量的关系,掌握线性变换的可对
角化的条件
教学重点、难点:本征值和本征向量的求法
本节内容分为下面三个问题讲授:
一. 本征值与本征向量的定义
定义1(本征值与本征向量)(P327).
例1 (P327)
例2 (P327)
例3 (P328)
注意:并不是每个线性变换都有本征值.无限维向量空间的一个线性变换的本征值可能有无穷多个。

二. 本征值和本征向量的求法
定理7.5.1(P329)
例4 (P329)
例5 (P329)
注意:1.有限维向量空间的线性变换的本征值最多有有限个。

2.有限维向量空间的线性变换的本征值和本征向量与它的矩阵的特征值和特征向量的区别与联系。

三. 线性变换的可对角化
定理7.5.2(P330).
作业:P333习题七27,28.
习题课(4时)
补充题(P333-P334) 1, 3,4,5,6,7.
作业:本章小结。

相关文档
最新文档