Ar等离子体下的反应离子刻蚀

合集下载

用CHF3/Ar为工作气体刻蚀融石英

用CHF3/Ar为工作气体刻蚀融石英

用CHF3/Ar为工作气体刻蚀融石英第7卷第2期]ggg年4月光学精密工程0PTICSANDPRECIS10NENGINEERINGV01.7,o.2AprlI,199967—7用CHF/Ar为工作气体刻蚀融石英周明宝PrewettDP一(1中国科学院光电技术研究所,微细加工光学技术国家重点实验室成都610209) (2英国卢瑟福国京实验室微结构中心)1引摘要报道了用氟利昂O-IF,和氧气Ar作工作气体的反应离子刻蚀融石薨的技术研究了气体流速,腔压和射频等离子体功率对刻蚀速度的髟响.并分析了熹j蚀工艺对样品表面的污染.同时也考察了剡蚀工艺的均匀性和重复性.为了优化刻蚀工艺,采用Rs1/IMscover软件工具设计优化实验.实验中射频等离子体功率范围在120~160W,氧气和氟利昂流速分别在15~35sccm(1era/mlnstandardcubiccentimeter/ minute)和2o~5~ccm范围,腔压在l3~19Pa范围,相应的刻蚀速度为l5~25nm/ 关键词互苎区匡彦王型丝言...单相∞衍射光学是随着计算机辅助光学设计和徽细加工技术的发展而迅速发展起来的衍射光学元件利用其波长量级的连续或台阶状表面微结构来实现对波面的调制和变换在传统光学系统中,石英是一种理想的光学材料,其透过的光谱范围从深紫外延伸到远红外由于石英优良的光学特性,现在也被广泛地用于制作各种类型的衍射光学元件.石英具有稳定的化学特性,在室温下一般不溶于各种酸,碱溶液中,因此要获得可靠的湿法刻蚀工艺是非常困难的.一般情况,石英都是通过干法刻蚀工艺刻蚀成形的.用CFCLz和Ar作工作气体反应离子刻蚀石英可获得lO~20nm/min的刻蚀速度….G.Dahm等人0也报道了用CF./SFt和氧气0:作为工作气体的石英干法刻蚀工艺并用于制作相移掩模.在本文中,我们报道了用氟利昂CHF和氲气Ar作为工作气体的融石英的反应离子刻蚀工艺,研究了气体流速,腔压及射频功率对刻蚀速度的影响.考察了翔蚀过程中反应收辘日期tigg?一07一l4僖翦日期t1998—08—25光学精密工程7卷离子刻蚀工艺对样品表面的污染,同时也考察了刻蚀深度均匀性和刻蚀工艺的重复性.为了优化刻蚀工艺,采用了RsI/Discover软件来设计实验.Rsl/Discover软件可对实验结果进行分析,并可给出各参数之间的关系.2实验在融石英上涂敷一层正性光致抗蚀剂并光刻成形用作反应离子刻蚀掩模.为了增强抗蚀剂的抗蚀性,可适当烘烤已成形的抗蚀剂图形.所有实验都在等离子体刻蚀机RIE-80上进行,所用的工作气体是氟利昂CHF,和氧气Ar的混合气体.为了优化刻蚀工艺,寻求最佳工艺参数,探索各参数对工艺的影响,利用实验设计软件Rsl/discover精心设计实验.在这些实验中,气体流速,腔压和射频功率是可变受控参数,刻蚀速度是受测并作为评价参数,对各种不同参数组合进行了27次实验.TabIt1Optlmlsedexperimentworksheet2期周明宝等t用CHF,/At为工作气体刻蚀融石英69表l是实验参数组合和对应的刻蚀速度.射频功率取值范围在120~160W,氲气流速l5~35sccm,氟利昂流速是2O~50sccm,腔压在l3~19Pa范围内变化.刻蚀过程结束后,用丙酮或氧等离子气体刻蚀清洗石英样品,然后用轮廓仪测量刻蚀出的轮廓深度.我们在实验中尝试了多种光致抗蚀剂,如AZ5214E,AZ135oj和AZ4562.我们发现它们的抗蚀能力基本相同由于A24562具有较好的光刻特性以及容易涂敷出较厚的膜层在优化实验中选用了AZ4562作光致抗蚀剂.3实验结果分析图1显示了用反应离子抗蚀工艺制作的微结构的扫描电子显微图.在制作工艺中,所用的射频功率为170W,腔压为SPa,氟利昂和氲气的流速分别为10sccm和40sccm.从图中可看出,刻蚀表面光滑,微结构边墙陡直.Fig.1Amicrographofthemicr~tructurebyreac—tlveionetching0fquartzFig.2Etchratevs.rfpowerandpressure(ffeonflowrateIIg.5~tccm,argonflowratel3S.5seem)图2,图3和图4是Rs1/discover软件对优化实验数据进行分析的结果.图2显示了其它工艺参数保持不变时,射频功率和腔压关于刻蚀速度的等高图.如图2所示,刻蚀速度随着射频功率的增大线性增加.这是因为随着射频功率的增加,基团分解系数提高了,出现了更多的反应基团,这导致更高的抗蚀速度.从这张实验曲线图也可看出腔压对刻蚀速度的影喃.腔压较低时,随着腔压的提高,刻蚀速度缓慢增加一当腔压增加到一阈值后,随着腔压的进一步提高,刻蚀速度反而下降图3是刻蚀速度关于射频功率和氟利昂流速的等高图.同腔压对刻蚀速度的影响类似,起始阶段,随着流速的增加,刻蚀速度增加l但是当流速增加到某一阈值后,随着流速的进一步增加,刻蚀速度下降了.图4是刻蚀速度关于射频功率和氲气流速的等高图.可以看出,随着氲气流速的提高,刻蚀速度只是稍微有些变化.在反应离子刻蚀工作气体中引入氲气,主要是为了稳定等离子体的放电,对刻蚀速度影响不大.光学精密工程7卷Fig.3EtchrateVS.rfpowerandfreon(pressureI18.20Pa.argonflowrate,19.5scan)Fig.4EtchrateVS.rfpowerandargon(pressureIl8.20Pa,[reonflowrate,35.5sccm)在早先的实验中,光致抗蚀剂是直接涂敷在石英基片上的,但是我们发现在刻蚀中当氟利昂流速高于氲气流速时,可能是多聚物的一层薄膜将出现在清洁后的石英基片上,这层薄膜难以去除,从而使样品受到污染.为了解决这个问题,我们提出的办法是在石英表面和抗蚀层之间淀积一层铬薄膜,此外铬层也能改善刻蚀出的图形轮廓的质量.4刻蚀工艺精度分析对刻蚀工艺而盲,在整个样品表面上刻蚀深度的均匀性是一个重要参数.在工艺中,刻蚀深度的均匀性受多个因素的影响,如被刻蚀样品的尺寸,样品在载台上的位置,样品表面洁净度,线条宽度,刻蚀机工作状态等等,这些因素都直接或间接地影响着刻蚀深度的均匀性.其中样品在刻蚀腔中的位置和样品表面洁净度粗糙度尤为重要.为此,样品在刻蚀前,应保证样品上待刻蚀区域彻底清洁干净,最好用氧等离子刻蚀的方法清洗几秒到几分钟另外刻蚀时样品应置于腔中中心位置,以达到最佳均匀性.我们对石英反应离子刻蚀工艺的均匀性进行了实验研究,测量结果示于表2中.实验中,射频功率是160W,腔压为8Pa,氟利昂和氲气流速分别为lOsccm和40sccm,刻蚀时间是20min.被刻蚀的是4石英板,测量点9个,测量点之间的间距为30mm.结果表明在4的面积范围刻蚀深度均匀性优于士6.5oA.Table2Etchuniformity(t~n)工艺重复性是另一个重要参数,主要用于估价刻蚀的精度和批量生产上.工艺重复性对一个具体的刻蚀工艺而言,是一个难以保持稳定和控制的参数.仪器的维修,仪器工作时间的长2期周明宝等:甩CHF,/Ar为工作气体刻蚀融石英7l短,仪器的工作状态等都会严重影响着工艺重复性.要取得高精度的刻蚀深度,一般在刻蚀前,先实际测量出工艺重复精度和刻蚀速度,再报据要求的刻蚀深度确定刻蚀时间.表3列出了工艺重复性的测量结果.实验在一天时间重复进行+每两次实验之间间隔Ih,刻蚀时问为20rain.这些数据表明工艺重复性为土10.Table3Rq~.flab]l时exoerime~t(pro)5应用利用二次套翔和反应离子翔蚀技术,我们开发了多台阶微细结构制作工艺并实际制作了光束分束器.涂敷在石英铬板上的光致抗蚀荆利用掩模对准机通过接触式曝光方式光翔成形,然后利用反应离子翔蚀将图形传递到石英基片上,最后用有机溶剂丙酮和铬刻蚀液依次去除光致抗蚀荆和铬层这个过程重复进行三次,便能得到8台阶的位相结构.图5显示了用这套工艺制作的具有8个台阶位相的光束分束器的一个结构周期的扫描电子显微图.这分柬器可将一束激光分成4束沿不同方向传输的光束.6结论Fig.5SEMphotographofabasiccellofthe8-levelphaseheamsplitter我们研究了优化的融石英反应离子刻蚀工艺,并示例了具有8个位相台阶的光束分柬器及其他一些微结构的制作.研究了射频功率,流速,腔压这些工艺参数对刻蚀速度的影响规律.结果显示麴蚀速度随射频功率的增加线性增大,但对氩气流速的变化不太敏感.在石英表面和抗蚀层之间增加一层铬薄膜能改善样品的清洁度和刻蚀图形的质量.参考文献lHermanP,LawesRA,WaringT.Themanufactureofrimphaseshiftingreticles.Miearoelectr onlcEagi-neerlng,l994,23l1512DahmH,RangelowIW,HudekP,KoimHWP.Quartzetchingforphaseshiftingmasks.Micr oelectronlcEngineering,1995_27l263光学精密工程7卷InvestigationofReactiveInnEtchingofFusedQuartzZHOUMing—IMo',CUIZheng,PrewettDP. OStateLabofOpticalTechnologiesforMicrofabrication,Ins~tuteofOpt~s&ElectronicsPOBox350,Shuangliu,Chengdu610209)(2CentralMicrostructureFacility,RutherfordAppletonLaboratoryChiton,Didcot,OxonOX11oQw,UK)AbstractInthispaperwereportthereactiveionetching(RE)ofquartzbyusingCHF3andargon. Theeffectsofgasflowrate,chamberpressure,andrf(radiofrquency)plasmapoweronthe etchratewereinvestigatedandthesurfacecontaminationduetoRIEwasexamined.The quartzetchdepthuniformityandrepeatabilitywasalsoexamined.InordertOoptimisethe etchprocess,theRS1/DiscoversoftwaretoolwasusedtOdesigntheexperiments.Therf plasmapowervariedbetween120and160watts.ArgonandCHFjflowrateswere15—35sc —cmand2O一50sccmrespectively,andpressurewasintherangeofl3—19Pa+Theetchrate variedbetween15and25am/rain.Keywords:Fusedquartz,Reactiveionetching,Multilevelphasestructures周明宝男,1965年12月生.1986年毕业于浙江大学.现为中国科学琬光电所技术研究所博士研究生,副研究员.目前主要从事微机槭,徽光学,徽电子单元技术研究.。

反应离子刻蚀原理

反应离子刻蚀原理

反应离子刻蚀原理一、引言反应离子刻蚀(RIE)是一种常用的微纳加工技术,它利用离子束和化学反应来实现对材料表面的刻蚀。

本文将介绍RIE的原理和主要特点,以及在微纳加工领域的应用。

二、RIE原理RIE是一种高度选择性的刻蚀技术,其原理是在低压等离子体中产生高能离子,通过控制离子束的能量和角度,使其与待刻蚀材料表面发生化学反应,从而实现刻蚀。

RIE的刻蚀过程主要包括三个步骤:离子撞击、反应和物质扩散。

1. 离子撞击在RIE中,通过加热和电离等手段,将气体转化为等离子体。

这些离子被加速器加速后,以高能量撞击待刻蚀材料表面。

离子撞击可以打开表面的化学键,形成反应活性位点,为后续的反应提供条件。

2. 反应离子撞击后,待刻蚀材料表面的化学键被断裂,产生活性基团。

同时,等离子体中的反应气体会与活性基团发生化学反应,生成易挥发的产物。

这些产物通过扩散过程从材料表面迅速脱离,从而实现刻蚀。

3. 物质扩散在刻蚀过程中,由于离子束的撞击和化学反应,材料表面的产物会被迅速去除。

这时,材料内部的新鲜表面暴露出来,继续参与反应。

通过物质的扩散,刻蚀过程在材料内部进行,从而实现对整个材料的刻蚀。

三、RIE特点RIE具有以下几个主要特点:1. 高选择性RIE技术可以实现高度选择性的刻蚀,即只在待刻蚀材料上进行刻蚀,不对其他材料产生影响。

这是因为RIE的刻蚀过程是通过离子撞击和化学反应实现的,而不是通过物理磨损或机械切割。

2. 高精度RIE技术可以实现亚微米级别的刻蚀精度,因为离子束的能量和角度可以被精确控制。

这使得RIE在微纳加工中得到广泛的应用,如制备微电子器件、光子器件和传感器等。

3. 高速刻蚀由于RIE技术结合了离子撞击和化学反应,可以实现快速而均匀的刻蚀。

与传统的物理刻蚀技术相比,RIE可以大大缩短刻蚀时间,提高生产效率。

四、RIE应用RIE技术在微纳加工领域有广泛的应用。

以下是几个常见的应用领域:1. 微电子器件制造RIE技术可以用于制备微电子器件,如晶体管、电容器和电阻器等。

电感耦合等离子体-反应离子刻蚀

电感耦合等离子体-反应离子刻蚀

电感耦合等离子体-反应离子刻蚀下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!电感耦合等离子体反应离子刻蚀技术简介1. 什么是电感耦合等离子体反应离子刻蚀技术?电感耦合等离子体反应离子刻蚀(ICPRIE)技术是一种用于微纳加工的重要工艺,广泛应用于半导体制造、光电子器件制造等领域。

反应离子刻蚀实验

反应离子刻蚀实验

反应离子刻蚀硅阵列实验一、实验目的:1、掌握反应离子刻蚀的基本原理。

2、掌握利用单晶硅刻蚀硅阵列的实验流程。

3、了解刻蚀后的硅阵列的表征方法。

二、实验原理刻蚀技术分为湿法刻蚀和干法刻蚀。

湿法刻蚀是传统的刻蚀工艺,把硅片浸泡在一定的化学试剂或试剂溶液中,使没有被抗蚀剂掩蔽的那一部分薄膜表面与试剂发生化学反应而被除去,其优点是操作简便、对设备要求低、易于实现大批量生产,并且刻蚀的选择性也好。

但是,它具有各项同性的缺点,即在刻蚀过程不但有所需要的纵向刻蚀,还有不需要的横向刻蚀,因而精度差,线宽一般在3μm以上。

干法刻蚀是应大规模集成电路生产的需要而被开发出的精细加工技术,它具有各项异性的特点,在最大限度上保证了纵向刻蚀,还控制了横向刻蚀。

反应离子刻蚀(Reactive Ion Etching,RIE)是干法刻蚀的一种,是以物理溅射为主并兼有化学反应的过程,通过物理溅射实现纵向刻蚀,同时应用化学反应来达到所要求的选择比,其基本工作原理是刻蚀气体(主要是F基和Cl基的气体)在高频电场(频率通常为13.56MHz)作用下产生辉光放电,使气体分子或原子发生电离,形成“等离子体”(Plasma)。

在等离子体中,包含有正离子(Ion+)、负离子(Ion-)、游离基(Radical)和自由电子(e)。

游离基在化学上是很活波的,它与被刻蚀的材料发生化学反应,生成能够由气流带走的挥发性化合物,从而实现化学刻蚀。

而质量较大的正离子,被阴极附近带负电的鞘层电压有效的加速,垂直轰击放置于阴极表面的硅片,以较大的动量进行物理刻蚀,这种离子轰击可大大加快表面的化学反应及反应生成物的脱附,从而导致很高的刻蚀速率。

三、实验装置ME-3A型多功能磁增强反应离子刻蚀机四、实验内容和步骤1. 硅片的清洗:采用RCA标准清洗法进行硅片的清洗,具体步骤:(1)SPM清洗:去除硅片表面的有机污物和部分金属,(2)DHF清洗:去除硅片表面的自然氧化膜,(3)APM清洗(SC-1):去除硅片表面的颗粒和金属,(4)HPM清洗:去除硅表面的钠、铁、镁和锌等金属污染物。

反应离子刻蚀的研究

反应离子刻蚀的研究

反应离子刻蚀的研究反应离子刻蚀的研究摘要:反应离子刻蚀(RIE)是一种物理作用和化学作用共存的刻蚀工艺,兼有离子溅射刻蚀和等离子化学刻蚀的优点,不仅分辨率高,同时兼有各向异性和选择性好的优点,而且刻蚀速率快。

通过改变RIE刻蚀参数如:射频功率、腔体压强、气体流量、气体组分等可以调整两种刻蚀过程所占比重。

因此,优化刻蚀工艺就是要选择最优的刻蚀参数组合,在减小刻蚀损伤的同时保证光滑的刻蚀表面和一定的刻蚀速率以及方向性。

本文归纳总结了常见薄膜的刻蚀优化方法。

关键词:反应离子刻蚀;离子溅射;刻蚀速率;均匀性Research of Reactive Ion EtchingLu Dongmei, Yang Fashun(College of Science, Guizhou University, Gui Yang of Guizhou, 550025) Abstract: Reactive ion etching (RIE) is a kind of physical function and chemical etching, high resolution, anisotropic and good selectivity, and the etching rate is fast. By changing the RIE etching parameters: such as, RF power, cavity pressure, gas composition, can adjust the two etching process. Therefore, optimize the etching process is to select the optimal etching parameters combination, reducing the etching damage at the same time ensure smooth etched surface and certain etchingrate. This article summarizes the common of thin film etching method.Key words:Reactive ion etching; ion sputtering; etching rate; uniformity0引言用光刻方法制成的微图形,只给出了电路的行貌,并不是真正的器件结构。

反应离子刻蚀原理

反应离子刻蚀原理

反应离子刻蚀原理一、引言反应离子刻蚀(Reactive Ion Etching,RIE)是一种常用的微纳加工技术,广泛应用于集成电路制造、微电子器件制备以及光学器件的制备等领域。

本文将从离子束的产生、离子束与物质的相互作用以及刻蚀过程的调控三个方面,介绍反应离子刻蚀的原理。

二、离子束的产生反应离子刻蚀的第一步是产生离子束。

通常,离子源会产生一个由离子和中性粒子组成的等离子体。

离子源的选择对于刻蚀过程至关重要,常用的离子源有高频感应耦合等离子体(Inductively Coupled Plasma, ICP)和平面平行板等离子体源(Planar Parallel Plate Plasma Source)。

离子源中的等离子体通过电场加速器产生高能离子束,离子束的能量和分布决定了刻蚀效果的质量。

三、离子束与物质的相互作用反应离子刻蚀的关键在于离子束与物质的相互作用。

离子束的能量和束流密度决定了刻蚀的速率和选择性。

当离子束与物质表面相碰撞时,发生一系列的物理和化学反应。

物理反应包括离子的能量转移和散射,以及物质表面的原子或分子的反弹和损失。

化学反应包括离子和物质表面的化学键形成和断裂,以及产生的气体在表面扩散和脱附。

这些反应共同作用,使得物质表面的原子或分子被去除,实现刻蚀的效果。

四、刻蚀过程的调控为了实现精确的刻蚀效果,需要对刻蚀过程进行精细的调控。

调控刻蚀过程的方法有很多,常见的包括调节离子束的能量、束流密度和入射角度,以及引入掺杂气体等。

调节离子束的能量可以通过改变离子源的工作参数来实现,能量越高,刻蚀速率越大。

束流密度和入射角度的调节可以通过改变离子源的工作气压和工作距离来实现,束流密度越大,入射角度越垂直,刻蚀速率越快。

引入掺杂气体可以改变刻蚀过程中的化学反应,从而调节刻蚀的选择性和剩余应力。

五、应用领域反应离子刻蚀在集成电路制造中有着广泛的应用,可以实现高精度的图形定义和纵深刻蚀。

同时,反应离子刻蚀还可以用于微电子器件制备,如传感器、微机电系统(MEMS)等。

Ar等离子体下的反应离子刻蚀

Ar等离子体下的反应离子刻蚀

Ar等离⼦体下的反应离⼦刻蚀Vol.34,No.5Journal of Semiconductors May2013 Reactive ion etching of Si2Sb2Te5in CF4/Ar plasma for a nonvolatile phase-change memory deviceLi Juntao(李俊焘)1;2; ,Liu Bo(刘波)1; ,Song Zhitang(宋志棠)1,Yao Dongning(姚栋宁)1,Feng Gaoming(冯⾼明)3,He Aodong(何敖东)1;2,Peng Cheng(彭程)1;2,and Feng Songlin(封松林)11State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences,Shanghai200050,China2University of Chinese Academy of Sciences,Beijing100049,China3United Laboratory,Semiconductor Manufacturing International Corporation,Shanghai201203,ChinaAbstract:Phase change random access memory(PCRAM)is one of the best candidates for next generation non-volatile memory,and phase change Si2Sb2Te5material is expected to be a promising material for PCRAM.In the fabrication of phase change random access memories,the etching process is a critical step.In this paper,the etching characteristics of Si2Sb2Te5films were studied with a CF4/Ar gas mixture using a reactive ion etching system.We observed a monotonic decrease in etch rate with decreasing CF4concentration,meanwhile,Ar concentration wentup and smoother etched surfaces were obtained.It proves that CF4determines the etch rate while Ar plays an im-portant role in defining the smoothness of the etched surface and sidewall edge/doc/16fc0eaf7375a417876f8f48.html pared with Ge2Sb2Te5,it is found that Si2Sb2Te5has a greater etch rate.Etching characteristics of Si2Sb2Te5as a function of power and pressure were also studied.The smoothest surfaces and most vertical sidewalls were achieved using a CF4/Ar gas mixture ratio of10/40,a background pressure of40mTorr,and power of200W.Key words:reactive ion etching;phase-change material;Si2Sb2Te5DOI:10.1088/1674-4926/34/5/056001PACC:7360F;81601.IntroductionNowadays,phase change random access memory (PCRAM)has been regarded as one of the most promising non-volatile memories,and has received more and more attention because of its superior performance and other mer-its?1;2 .It was devised by Ovshinsky in1968?3 based on the rapid reversible phase change effect in some materials under the influence of an electric current pulse,and the different resistances between crystalline and amorphous states define the logic state of an individual bit.Phase change Si2Sb2Te5material,expected as a promising material for PCRAM,possesses a wider band-gap comparing to Ge2Sb2Te5.The band-gap width of amorphous and poly-crystalline Si2Sb2Te5are determined to be0.89and0.62eV by means of Fourier transform infrared spectroscopy?4 .The mate-rial possesses a low threshold current from amorphous to poly-crystalline state in voltage–current measurement,and shows a good data retention.These properties prove Si2Sb2Te5is a po-tential material?4;5 .In this paper,the reactive ion etching(RIE)process of Si2Sb2Te5films in CF4/Ar plasma is described.The etch rate and surface roughness were examined systematically as a func-tion of pressure,power,and Ar concentration in the CF4/Ar mixture gas.A smooth surface was successfully obtained us-ing the optimization approach described below.2.ExperimentIn this study,Si2Sb2Te5films were deposited with the ra-dio frequency(RF)-magnetron sputtering method using singleelement targets at room temperature.The thickness of the filmswas about400nm measured by a cross-sectional scanning elec-tron microscope(SEM,Hitachi S-4700).The compositions offilms were determined by means of energy dispersive spec-troscopy(EDS).Shipley6809photo-resist was used for patterndefinition.An Oxford80plus RIE system with a maximum RFpower of600W was used to etch the Si2Sb2Te5films.Theetch gas ratio was controlled by mass flow controllers,and thegas pressure in the chamber was adjusted by a clapper valve.The temperature of the sample holder was controlled by heattransfer fluid(Hexid)and held at30?C.The experimental con-trol parameters were the gas flow rate,chamber background pressure,CF4/Ar ratio and the incident RF power applied tothe lower electrode.A total flow rate of CF4C Ar was50sccm throughout the experiment,while the CF4/Ar ratio was varied as an optimization parameter.Etching depths were measured using a surface profile-*Project supported by National Key Basic Research Program ofChina(Nos.2010CB934300,2011CBA00607,2011CB9328004),the Na-tional Integrate Circuit Research Program ofChina(No.2009ZX02023-003),the National Natural Science Foundation of China(Nos.60906004,60906003,61006087,61076121,61176122,61106001),the Science and Technology Council ofShanghai(Nos.11DZ2261000, 11QA1407800),and the Chinese Academy of Sciences(No.20110490761). Corresponding author.Email:jet_lee@/doc/16fc0eaf7375a417876f8f48.html;liubo@/doc/16fc0eaf7375a417876f8f48.htmlReceived25August2012,revised manuscript received3December2012?2013Chinese Institute of ElectronicsFig.1.Etch rate of the Si2Sb2Te5and RMS roughness as a function of CF4/Ar gas mixture ratio.meter.The surface morphology and patterning of the mesa structure were examined using SEM,and the surface rough-ness was examined using atomic force microscopy(AFM). 3.Results and discussionFigure1shows the etch rate as a function of the CF4/Ar gas mixture ratio.The etchings were carried out at a constant pres-sure of50mTorr and an application of200W.The etch rate de-creased monotonically with decreasing CF4concentration in-dicating its importance in defining the material removal rate. In the plasma system,when an energetic electron strikes a neu-tral gas molecule,it can excite the molecule to a higher energy state.These energetic F containing molecules,known as free radicals,cause most of the chemical etching of Si2Sb2Te5?6 .In this experiment,as the content of CF4went down,the concen-tration of energetic F decreased,so the etch rate of Si2Sb2Te5 decreased in turn.The phenomenon observed is consistent with this /doc/16fc0eaf7375a417876f8f48.html pared with Ge2Sb2Te5,we found that the etch rate ofSi2Sb2Te5was faster,this should be related with the different boiling points of the etch products,such as SiF4 [boilingpoint(bp): 65?C]and GeF4[bp: 36:5?C].The lower boiling point of SiF4makes it easier to be removed from the chamber,as the volatile product of Si2Sb2Te5,this property leads to a faster etch rate of Si2Sb2Te5?7 .The quality of etched surfaces is very important for the device fabrication process?8 .Many short-circuit defects are due to RIE pillars caused by micro-masks.The smoother the etched surface is the better contact between Si2Sb2Te5and thetop/bottom electrode is obtained,which can result in a low contact resistance.The sidewall is also important for the de-vice fabrication process,particularly for the nanoscale etching of Si2Sb2Te5films.Therefore,etched surfaces with a smooth surface,vertical sidewall,and low sidewall roughness are pre-ferred to meet the requirements of the high-density memory devices.Etch residues are not observed on the sidewalls or the film surfaces for all conditions.As the Ar concentration is in-creased,both the etch slopes and the root-mean-square(RMS) roughness of the etched surfaces shows improvement.When the CF4/Ar ratio is40/10,the etched surface is very rough and pillars formed because of micro masks can be observed.As the CF4/Ar ratio was decreased to10/40,an almost vertical etch slope was obtained,and the etched surface showed signif-icantlyimproved smoothness.In order to validate these results,AFM images of the etched surfaces under different gas mixture are shown in Fig.2. When the CF4/Ar ratio is40/10,the RMS value of this etched surface is3.38nm.It reduces to1.67nm when the CF4/Ar ra-tio increases to10/40.This phenomenon should be attributed to the increase in Ar concentration.The role of Ar is to re-move the non-volatile etch products deposited on the substrate by physical bombardment.It is evident that ion bombardment contributes positively to improving the smoothness in the etch-ing process?9 .For the fabrication of PCRAM devices,etch selectivity (the ratio of etch rates)of Si2Sb2Te5films to insulating ma-terials is a key parameter in the etching process.In this experi-ment,SiO2films were prepared by plasma enhanced chemical vapour deposition.Etchings were carried out at a constant pres-sure of50mTorr and applying power of200W.As shown in Fig.3,the selectivity decreases along with the Ar concentra-tion which indicates that the concentration of F has a greater impact onSi2Sb2Te5.The etch rate of the Si2Sb2Te5film as a function of power is shown in Fig.4.The etch rate decreases linearly with RF power.The decreasing etch rate with increasing power may be related to the plasma sheath layer that exists in the cham-ber and the influence of non-volatile etch products.When the thickness of the plasma sheath increases,the distance crossed by the radicals to reach the substrate also increased.On the other hand,more fluorine radicals lead to the polymer form-ing species that eventually deposit as unwanted masking ma-terials on the etched surface.Thus,the etch rate appeared to decrease?10 .From Fig.5,it is found that the surface of higher power etched Si2Sb2Te5films is much smoother than that of lower power etched ones.In lower power conditions,the ki-netic energy of Ar radicals is too low to remove the chemical products in time which causes a rough surface.However,this problem is resolved in high power conditions.The etch rate and RMS roughness of the Si2Sb2Te5films as a function of pressure are shown in Fig.6.The experiments were carried out when the CF4/Ar ratio was40/10and the PF power kept at200W.The etch rate increased with cham-ber pressure and then decreased.The highest etch rate hap-pened under60mTorr.The pressure dependence of the etch rate should be dominated by the active abundance of neutral etchant species.In general,the ion energy and the direction of physical bombardment to the specimens are determined by the direct current(DC)bias voltage which is strongly influ-enced by the chamber pressure.When the pressure is lower than60mTorr,the etch rate is mainly dominated by the ac-tive abundance of neutral etchant species,the concentration of radicals increases with the gas pressure,which leads to the in-crease of etch rate.On the other hand,when the gas pressure is higher than60mTorr,according to the collisional plasma sheath model?11 ,a collisional effect should be considered. When the pressure increases,the mean free path of the charged particles decreases and hence the dc bias will be lower.As a result,the physical bombardment to the substrate by positive ions becomes lower which leads to a decrease of etch rate.The effect of pressure on the surface roughness was also examined using AFM,and the corresponding RMS roughnessFig.2.AFM images of the etched Si 2Sb 2Te 5surface with a CF 4/Ar ratio of (a)40/10,(b)30/20,(c)20/30,and (d)10/40.Fig.3.Etch selectivity of Si 2Sb 2Te 5to SiO 2as a function of CF 4/Ar ratio.Fig.4.Etch rate of the Si 2Sb 2Te 5film as a function of power.Fig.5.SEM images of the Si 2Sb 2Te 5surface after etching under dif-ferent powers.(a)100W.(b)150W.(c)200W.(d)250W. Fig.6.Etch rate and RMS roughness of the Si 2Sb 2Te 5film as a func-tion of pressure.Fig.7.AFM images of the etched Si2Sb2Te5surface at different pressures.(a)30mTorr.(b)40mTorr.(c)50mTorr.(d)60mTorr.(e)70mTorr.values are shown in Fig.7.The etched surface is rough undera background pressure of30mTorr(RMS roughness measured6.11nm),and it becomes smoother as the pressure increases. As stated above,as the DC bias decreases,the physical bom-bardment by positive ions decreases and enhances the chemi-cal activity.At a pressure of40mTorr,the surface is smoothest with an RMS roughness value of1.00nm.However,etching at higher pressure(>40mTorr)created a rough surface.This is probably due to the re-deposition of etch products.The ion bombarding energy is too low to remove the re-depositions which act as micro-masks resulting in a rough surface?12 14 .4.ConclusionReactive ion etching of Si2Sb2Te5thin films with a photo-resist mask was studied using a CF4/Ar gas mixture in in-ductively coupled plasma.The etch rate of Si2Sb2Te5films in a CF4/Ar plasma decreased with the decrease of CF4con-centration at constant background pressure and power.Ar helped to promote the etching process as it removed the non-volatile products by physical bombardment resulting in a smooth surface.Meanwhile,the selectivity of Si2Sb2Te5 films toSiO2decreased.Etched features of Si2Sb2Te5films in CF4/Ar gas mixture were best when the CF4/Ar ratio is10/40, and a smooth surface and a vertical sidewall were obtained. The chamber pressure and power influenced the etch rate and etched surface roughness.A smooth surface and a vertical side-wall were achieved using the following etching parameters:a CF4/Ar mixing ratio of10/40,a base pressure of50mTorr,and a power of200W.Finally,we have demonstrated that reactive-ion etching of Si2Sb2Te5in CF4/Ar plasma shows good etch characteristics and can be used in the fabrication of PCRAM devices based on Si2Sb2Te5.References[1]Lam C H.Storage class memory.Solid-State and Integrated Cir-cuit Technology,2010[2]Annunziata R,Zuliani P,Borghi M,et al.Phase change memorytechnology for embedded non volatile memory applications for 90nm and beyond.IEEE International Electron Devices Meet-ing,Technical Digest,2009[3]Kim I S,Cho S L,Im D H,et al.High performance PRAM cellscalable to sub-20nm technology with below4F2cell size.Di-gest of Technical Papers,Symposium on Extendable to DRAM Applications in VLSI Technology,2010[4]Kojima R,Okabayashi S,Kashihara T,et al.Nitrogen dopingeffect on phase change optical disks.Jpn J Appl Phys,1998,37: 2098[5]Liu Y B,Zhang T,Niu X M,et al.Si2Sb2Te5phase change ma-terial studied by an atomic force microscope nano-tip.Journal of Semiconductors,2009,30(6):063003[6]Kojima R,Yamada N.Acceleration of crystallization speed bySn addition to Ge–Sb–Te phase-change recording material.Jpn J Appl Phys,2001,40:5930[7]Zhang T,Song Z T,Liu B,et al.Investigation of phase changeSi2Sb2Te5material and its application in chalcogenide randomaccess memory.Solid-State Electron,2007,51:950[8]Chinoy P B.Reactive ion etching of benzocyclobutene poly-mer films.IEEE Trans Components,Parking,and Manufacturing Technology,Part C,1997,20(3):99[9]Abe H,Yoneda M,Fujiwara N.Developments of plasma etch-ing technology for fabricating semiconductor devices.Jpn J Appl Phys,2008,47:1435[10]Plank N O V,Cheung R.Functionalization of carbon nanotubesfor molecular electronics.Microelectron Eng,2004,73/74:578 [11]Feng G M,Liu B,Song Z T,et al.Reactive-ion etching ofGe2Sb2Te5in CF4/Ar plasma for non-volatile phase-change memories.Microelectron Eng,2008,85(8):1699[12]Sheridan T E,Goree J.Collisional plasma sheath model.PhysFluids B,1991,3(10):2796[13]Knizikevicius R,Kopustinskas V.Influence of temperature on theetching rate of SiO2in CF4+O2plasma.Microelectron Eng, 2006,83(2):193[14]Wolf R,Helbig R.Reactive ion etching of6H-SiC in SF6/O2andCF4/O2with N2additive for device fabrication.J Electrochem Soc,1996,143:1037。

反应等离子刻蚀及离子束设备及工艺

反应等离子刻蚀及离子束设备及工艺

刻蚀的基本原理IBE刻蚀原理及设备RIE刻蚀原理及设备ICP刻蚀原理及设备工艺过程、检测及仪器1 / 43刻蚀用物理的、化学的或同时使用化学和物理的方法,有选择地把没有被抗蚀剂掩蔽的那一部分材料去除,从而得到和抗蚀剂完全一致的图形2 / 43干法刻蚀过程示意离子轰击掩膜衬底3 / 43刻蚀种类:① 干法刻蚀利用等离子体将不要的材料去除(亚微米尺寸下刻蚀器件的最主要方法)② 湿法刻蚀利用腐蚀性液体将不要的材料去除干法刻蚀工艺特点:①好的侧壁剖面控制,即各向异性②良好的刻蚀选择性; 合适的刻蚀速率;好的片内均匀性③工艺稳定性好,适用于工业生产4 / 43刻蚀参数刻蚀速率习惯上把单位时间内去除材料的厚度定义为刻蚀速率刻蚀前刻蚀后刻蚀速率=刻蚀速率由工艺和设备变量决定,如被刻蚀材料类型,刻蚀机的结构配置,使用的刻蚀气体和工艺参数设置5 / 43刻蚀参数选择比同一刻蚀条件下,被刻蚀材料的刻蚀速率与另一种材料的刻蚀速率的比。

均匀性衡量刻蚀工艺在整个晶片上,或整个一批,或批与批之间刻蚀能力的参数NU(%) = (Emax - Emin)/ 2Eave6 / 43刻蚀剖面被刻蚀图形的侧壁形状各向异性:刻蚀只在垂直于晶片表面的方向进行各向同性:在所有方向上以相同的刻蚀速率进行刻蚀7 / 43离子束刻蚀(IBE)原理• 离子束刻蚀是利用具有一定能量的离子轰击材料表面,使材料原子发生溅射,从而达到刻蚀目的把Ar、Kr或Xe之类惰性气体充入离子源放电室并使其电离形成等离子体,然后由栅极将离子呈束状引出并加速,具有一定能量的离子束进入工作室,射向固体表面撞击固体表面原子,使材料原子发生溅射,达到刻蚀目的,属纯物理过程。

8 / 439 / 43离子源构成及工作原理IBE刻蚀特点9方向性好,各向异性,无钻蚀,陡直度高9分辨率高,可小于0.01μm9不受刻蚀材料限制(金属or化合物,无机物or有机物,绝缘体or半导体均可)9刻蚀过程中可改变离子束入射角θ来控制图形轮廓离子束刻蚀速率影响因素A.被刻蚀材料种类B.离子能量C .离子束流密度D.离子束入射角度10 / 43IBE-A150设备离子源电控柜真空室分子泵冷却水11 / 4312 / 43IBE 相关刻蚀数据离子能量:350eV 材料 刻蚀速率材料 刻蚀速率 材料 刻蚀速率 nm/min nm/min 7-8 nm/min 34-36 55 Ni 17-18 Ti GaN Au SiO2 17-18Al 15-16 5-6 Ge Si33-34 17-18TiN GaAsITO AZ 胶32-34 1835-40离子能量:300eV 材料 刻蚀速率材料 刻蚀速率 材料 刻蚀速率 nm/min nm/min 10 nm/min 35-37 PMMA 21 AZ 胶AuSi14-15Ni-Cr 合金 10-12Glass Si Ni13 / 43IBE操作注意事项• 启动离子源之前,必须确保离子源室和工件台通入冷却水• 如果刻蚀工艺采用离子束入射角度≥30度时,在刻蚀时间到达预定值10s前,必须将工件台转回水平位置• 为更好的传递热量,放片时需在片子背面涂硅脂放片、取片过程中应尽量避免油脂玷污片子图形表面• 取片后用异丙醇擦去工件台上硅脂• 抽真空次序不能错,开主阀前要确认真空度达到-1级14 / 43反应离子刻蚀(RIE)刻蚀原理一种采用化学反应和物理离子轰击去除晶片表面材料的技术•刻蚀速率高、可控•各向异性,形貌可控•选择比高15 / 43排放分离解吸扩散等离子体工艺反应表面扩散16 / 4317 / 43TEGAL PLASMA ETCHER, MODEL 903e 适用于150mm单片晶片上的SiO2和Si3N4的刻蚀;刻蚀温度能控制在20-35度之间主机显示器射频源18 / 431 2SiO2刻蚀光刻胶掩膜Profirle 85-90°刻蚀均匀性 <+/-5% Si3N4刻蚀光刻胶掩膜刻蚀均匀性 <+/-5%Profile 85-90°典型刻蚀速率:PSG 6000Å/min热氧化SiO2 4000 Å/min 典型刻蚀速率:Si3N4 4000 Å/min PSG 6000 Å/min选择比:SiO2: PR >5:1SiO2: silicon/polysilicon >=10:1选择比:Si3N4: PR >3:1Si3N4: aluminum >100:119 / 43RIE操作注意事项• 初始设置为6寸片刻蚀,必须放在两侧片架里,左侧进片,右侧出片• 每次程序运行前要将两边片架重新手动定位• 射频源功率不宜设置过高,小于500W20 / 43电感耦合等离子体(ICP)刻蚀原理包括两套通过自动匹配网络控制的13.56MHz射频电源一套连接缠绕在腔室外的螺线圈,使线圈产生感应耦合的电场,在电场作用下,刻蚀气体辉光放电产生高密度等离子体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Vol.34,No.5Journal of Semiconductors May2013 Reactive ion etching of Si2Sb2Te5in CF4/Ar plasma for a nonvolatile phase-change memory deviceLi Juntao(李俊焘)1;2; ,Liu Bo(刘波)1; ,Song Zhitang(宋志棠)1,Yao Dongning(姚栋宁)1,Feng Gaoming(冯高明)3,He Aodong(何敖东)1;2,Peng Cheng(彭程)1;2,and Feng Songlin(封松林)11State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai200050,China2University of Chinese Academy of Sciences,Beijing100049,China3United Laboratory,Semiconductor Manufacturing International Corporation,Shanghai201203,ChinaAbstract:Phase change random access memory(PCRAM)is one of the best candidates for next generation non-volatile memory,and phase change Si2Sb2Te5material is expected to be a promising material for PCRAM.In thefabrication of phase change random access memories,the etching process is a critical step.In this paper,the etchingcharacteristics of Si2Sb2Te5films were studied with a CF4/Ar gas mixture using a reactive ion etching system.Weobserved a monotonic decrease in etch rate with decreasing CF4concentration,meanwhile,Ar concentration wentup and smoother etched surfaces were obtained.It proves that CF4determines the etch rate while Ar plays an im-portant role in defining the smoothness of the etched surface and sidewall edge pared with Ge2Sb2Te5,it is found that Si2Sb2Te5has a greater etch rate.Etching characteristics of Si2Sb2Te5as a function of power andpressure were also studied.The smoothest surfaces and most vertical sidewalls were achieved using a CF4/Ar gasmixture ratio of10/40,a background pressure of40mTorr,and power of200W.Key words:reactive ion etching;phase-change material;Si2Sb2Te5DOI:10.1088/1674-4926/34/5/056001PACC:7360F;81601.IntroductionNowadays,phase change random access memory (PCRAM)has been regarded as one of the most promising non-volatile memories,and has received more and more attention because of its superior performance and other mer-itsŒ1;2 .It was devised by Ovshinsky in1968Œ3 based on the rapid reversible phase change effect in some materials under the influence of an electric current pulse,and the different resistances between crystalline and amorphous states define the logic state of an individual bit.Phase change Si2Sb2Te5material,expected as a promising material for PCRAM,possesses a wider band-gap comparing to Ge2Sb2Te5.The band-gap width of amorphous and poly-crystalline Si2Sb2Te5are determined to be0.89and0.62eV by means of Fourier transform infrared spectroscopyŒ4 .The mate-rial possesses a low threshold current from amorphous to poly-crystalline state in voltage–current measurement,and shows a good data retention.These properties prove Si2Sb2Te5is a po-tential materialŒ4;5 .In this paper,the reactive ion etching(RIE)process of Si2Sb2Te5films in CF4/Ar plasma is described.The etch rate and surface roughness were examined systematically as a func-tion of pressure,power,and Ar concentration in the CF4/Ar mixture gas.A smooth surface was successfully obtained us-ing the optimization approach described below.2.ExperimentIn this study,Si2Sb2Te5films were deposited with the ra-dio frequency(RF)-magnetron sputtering method using singleelement targets at room temperature.The thickness of the filmswas about400nm measured by a cross-sectional scanning elec-tron microscope(SEM,Hitachi S-4700).The compositions offilms were determined by means of energy dispersive spec-troscopy(EDS).Shipley6809photo-resist was used for patterndefinition.An Oxford80plus RIE system with a maximum RFpower of600W was used to etch the Si2Sb2Te5films.Theetch gas ratio was controlled by mass flow controllers,and thegas pressure in the chamber was adjusted by a clapper valve.The temperature of the sample holder was controlled by heattransfer fluid(Hexid)and held at30ıC.The experimental con-trol parameters were the gas flow rate,chamber backgroundpressure,CF4/Ar ratio and the incident RF power applied tothe lower electrode.A total flow rate of CF4C Ar was50sccm throughout the experiment,while the CF4/Ar ratio was varied as an optimization parameter.Etching depths were measured using a surface profile-*Project supported by National Key Basic Research Program of China(Nos.2010CB934300,2011CBA00607,2011CB9328004),the Na-tional Integrate Circuit Research Program of China(No.2009ZX02023-003),the National Natural Science Foundation of China(Nos. 60906004,60906003,61006087,61076121,61176122,61106001),the Science and Technology Council of Shanghai(Nos.11DZ2261000, 11QA1407800),and the Chinese Academy of Sciences(No.20110490761).†Corresponding author.Email:jet_lee@;liubo@Received25August2012,revised manuscript received3December2012©2013Chinese Institute of ElectronicsFig.1.Etch rate of the Si2Sb2Te5and RMS roughness as a function of CF4/Ar gas mixture ratio.meter.The surface morphology and patterning of the mesa structure were examined using SEM,and the surface rough-ness was examined using atomic force microscopy(AFM). 3.Results and discussionFigure1shows the etch rate as a function of the CF4/Ar gas mixture ratio.The etchings were carried out at a constant pres-sure of50mTorr and an application of200W.The etch rate de-creased monotonically with decreasing CF4concentration in-dicating its importance in defining the material removal rate. In the plasma system,when an energetic electron strikes a neu-tral gas molecule,it can excite the molecule to a higher energy state.These energetic F containing molecules,known as free radicals,cause most of the chemical etching of Si2Sb2Te5Œ6 .In this experiment,as the content of CF4went down,the concen-tration of energetic F decreased,so the etch rate of Si2Sb2Te5 decreased in turn.The phenomenon observed is consistent with this pared with Ge2Sb2Te5,we found that the etch rate of Si2Sb2Te5was faster,this should be related with the different boiling points of the etch products,such as SiF4 [boiling point(bp): 65ıC]and GeF4[bp: 36:5ıC].The lower boiling point of SiF4makes it easier to be removed from the chamber,as the volatile product of Si2Sb2Te5,this property leads to a faster etch rate of Si2Sb2Te5Œ7 .The quality of etched surfaces is very important for the device fabrication processŒ8 .Many short-circuit defects are due to RIE pillars caused by micro-masks.The smoother the etched surface is the better contact between Si2Sb2Te5and the top/bottom electrode is obtained,which can result in a low contact resistance.The sidewall is also important for the de-vice fabrication process,particularly for the nanoscale etching of Si2Sb2Te5films.Therefore,etched surfaces with a smooth surface,vertical sidewall,and low sidewall roughness are pre-ferred to meet the requirements of the high-density memory devices.Etch residues are not observed on the sidewalls or the film surfaces for all conditions.As the Ar concentration is in-creased,both the etch slopes and the root-mean-square(RMS) roughness of the etched surfaces shows improvement.When the CF4/Ar ratio is40/10,the etched surface is very rough and pillars formed because of micro masks can be observed.As the CF4/Ar ratio was decreased to10/40,an almost vertical etch slope was obtained,and the etched surface showed signif-icantly improved smoothness.In order to validate these results,AFM images of the etched surfaces under different gas mixture are shown in Fig.2. When the CF4/Ar ratio is40/10,the RMS value of this etched surface is3.38nm.It reduces to1.67nm when the CF4/Ar ra-tio increases to10/40.This phenomenon should be attributed to the increase in Ar concentration.The role of Ar is to re-move the non-volatile etch products deposited on the substrate by physical bombardment.It is evident that ion bombardment contributes positively to improving the smoothness in the etch-ing processŒ9 .For the fabrication of PCRAM devices,etch selectivity (the ratio of etch rates)of Si2Sb2Te5films to insulating ma-terials is a key parameter in the etching process.In this experi-ment,SiO2films were prepared by plasma enhanced chemical vapour deposition.Etchings were carried out at a constant pres-sure of50mTorr and applying power of200W.As shown in Fig.3,the selectivity decreases along with the Ar concentra-tion which indicates that the concentration of F has a greater impact on Si2Sb2Te5.The etch rate of the Si2Sb2Te5film as a function of power is shown in Fig.4.The etch rate decreases linearly with RF power.The decreasing etch rate with increasing power may be related to the plasma sheath layer that exists in the cham-ber and the influence of non-volatile etch products.When the thickness of the plasma sheath increases,the distance crossed by the radicals to reach the substrate also increased.On the other hand,more fluorine radicals lead to the polymer form-ing species that eventually deposit as unwanted masking ma-terials on the etched surface.Thus,the etch rate appeared to decreaseŒ10 .From Fig.5,it is found that the surface of higher power etched Si2Sb2Te5films is much smoother than that of lower power etched ones.In lower power conditions,the ki-netic energy of Ar radicals is too low to remove the chemical products in time which causes a rough surface.However,this problem is resolved in high power conditions.The etch rate and RMS roughness of the Si2Sb2Te5films as a function of pressure are shown in Fig.6.The experiments were carried out when the CF4/Ar ratio was40/10and the PF power kept at200W.The etch rate increased with cham-ber pressure and then decreased.The highest etch rate hap-pened under60mTorr.The pressure dependence of the etch rate should be dominated by the active abundance of neutral etchant species.In general,the ion energy and the direction of physical bombardment to the specimens are determined by the direct current(DC)bias voltage which is strongly influ-enced by the chamber pressure.When the pressure is lower than60mTorr,the etch rate is mainly dominated by the ac-tive abundance of neutral etchant species,the concentration of radicals increases with the gas pressure,which leads to the in-crease of etch rate.On the other hand,when the gas pressure is higher than60mTorr,according to the collisional plasma sheath modelŒ11 ,a collisional effect should be considered. When the pressure increases,the mean free path of the charged particles decreases and hence the dc bias will be lower.As a result,the physical bombardment to the substrate by positive ions becomes lower which leads to a decrease of etch rate.The effect of pressure on the surface roughness was also examined using AFM,and the corresponding RMS roughnessFig.2.AFM images of the etched Si 2Sb 2Te 5surface with a CF 4/Ar ratio of (a)40/10,(b)30/20,(c)20/30,and (d)10/40.Fig.3.Etch selectivity of Si 2Sb 2Te 5to SiO 2as a function of CF 4/Ar ratio.Fig.4.Etch rate of the Si 2Sb 2Te 5film as a function of power.Fig.5.SEM images of the Si 2Sb 2Te 5surface after etching under dif-ferent powers.(a)100W.(b)150W.(c)200W.(d)250W.Fig.6.Etch rate and RMS roughness of the Si 2Sb 2Te 5film as a func-tion of pressure.Fig.7.AFM images of the etched Si2Sb2Te5surface at different pressures.(a)30mTorr.(b)40mTorr.(c)50mTorr.(d)60mTorr.(e)70mTorr.values are shown in Fig.7.The etched surface is rough undera background pressure of30mTorr(RMS roughness measured6.11nm),and it becomes smoother as the pressure increases. As stated above,as the DC bias decreases,the physical bom-bardment by positive ions decreases and enhances the chemi-cal activity.At a pressure of40mTorr,the surface is smoothest with an RMS roughness value of1.00nm.However,etching at higher pressure(>40mTorr)created a rough surface.This is probably due to the re-deposition of etch products.The ion bombarding energy is too low to remove the re-depositions which act as micro-masks resulting in a rough surfaceŒ12 14 .4.ConclusionReactive ion etching of Si2Sb2Te5thin films with a photo-resist mask was studied using a CF4/Ar gas mixture in in-ductively coupled plasma.The etch rate of Si2Sb2Te5films in a CF4/Ar plasma decreased with the decrease of CF4con-centration at constant background pressure and power.Ar helped to promote the etching process as it removed the non-volatile products by physical bombardment resulting in a smooth surface.Meanwhile,the selectivity of Si2Sb2Te5 films to SiO2decreased.Etched features of Si2Sb2Te5films in CF4/Ar gas mixture were best when the CF4/Ar ratio is10/40, and a smooth surface and a vertical sidewall were obtained. The chamber pressure and power influenced the etch rate and etched surface roughness.A smooth surface and a vertical side-wall were achieved using the following etching parameters:a CF4/Ar mixing ratio of10/40,a base pressure of50mTorr,and a power of200W.Finally,we have demonstrated that reactive-ion etching of Si2Sb2Te5in CF4/Ar plasma shows good etch characteristics and can be used in the fabrication of PCRAM devices based on Si2Sb2Te5.References[1]Lam C H.Storage class memory.Solid-State and Integrated Cir-cuit Technology,2010[2]Annunziata R,Zuliani P,Borghi M,et al.Phase change memorytechnology for embedded non volatile memory applications for 90nm and beyond.IEEE International Electron Devices Meet-ing,Technical Digest,2009[3]Kim I S,Cho S L,Im D H,et al.High performance PRAM cellscalable to sub-20nm technology with below4F2cell size.Di-gest of Technical Papers,Symposium on Extendable to DRAM Applications in VLSI Technology,2010[4]Kojima R,Okabayashi S,Kashihara T,et al.Nitrogen dopingeffect on phase change optical disks.Jpn J Appl Phys,1998,37: 2098[5]Liu Y B,Zhang T,Niu X M,et al.Si2Sb2Te5phase change ma-terial studied by an atomic force microscope nano-tip.Journal of Semiconductors,2009,30(6):063003[6]Kojima R,Yamada N.Acceleration of crystallization speed bySn addition to Ge–Sb–Te phase-change recording material.Jpn J Appl Phys,2001,40:5930[7]Zhang T,Song Z T,Liu B,et al.Investigation of phase changeSi2Sb2Te5material and its application in chalcogenide randomaccess memory.Solid-State Electron,2007,51:950[8]Chinoy P B.Reactive ion etching of benzocyclobutene poly-mer films.IEEE Trans Components,Parking,and Manufacturing Technology,Part C,1997,20(3):99[9]Abe H,Yoneda M,Fujiwara N.Developments of plasma etch-ing technology for fabricating semiconductor devices.Jpn J Appl Phys,2008,47:1435[10]Plank N O V,Cheung R.Functionalization of carbon nanotubesfor molecular electronics.Microelectron Eng,2004,73/74:578 [11]Feng G M,Liu B,Song Z T,et al.Reactive-ion etching ofGe2Sb2Te5in CF4/Ar plasma for non-volatile phase-change memories.Microelectron Eng,2008,85(8):1699[12]Sheridan T E,Goree J.Collisional plasma sheath model.PhysFluids B,1991,3(10):2796[13]Knizikevicius R,Kopustinskas V.Influence of temperature on theetching rate of SiO2in CF4+O2plasma.Microelectron Eng, 2006,83(2):193[14]Wolf R,Helbig R.Reactive ion etching of6H-SiC in SF6/O2andCF4/O2with N2additive for device fabrication.J Electrochem Soc,1996,143:1037。

相关文档
最新文档