第4章 材料力学的基本概念.
工程力学C 第4章 材料力学的基本假设和基本概念

拉-弯组合变形
第四章 材料力学的基本假设和基本概念Basic Assumptions and Concepts of Material Mechanics
静载荷 交变载荷 即: 外力 动载荷 冲击载荷
第四章 材料力学的基本假设和基本概念Basic Assumptions and Concepts of Material Mechanics
材料力学
应力 强度 外力 内力 应变 刚度
4.3.2 内力与截面法
F1
M1 F3
为什么?
Fn
答:它们的应力不同,细杆的应力大。
第四章 材料力学的基本假设和基本概念Basic Assumptions and Concepts of Material Mechanics
材料力学
4.4
应力的概念
4.4.1 应力: 分布内力的集度或单位面积上的内力。 4.4.2 应力的定义 1. 截面上任一点C的全应力
DEPARTMENT OF ENGINEERING MECHANICS KUST
第二篇
Mechanics of Materials
材料力学
DEPARTMENT OF ENGINEERING MECHANICS KUST
第四章 材料力学的基本假设 和基本概念
Basic Assumptions and Concepts of Material Mechanics
FS FN M
第四章 材料力学的基本假设和基本概念Basic Assumptions and Concepts of Material Mechanics
材料力学
2. 截面法: 显示并求内力的方法。 步骤:P97 • 分二留一; • 内力代弃; • 内外平衡。 例4.1 :P97 注意: 内力与截面的形状和大 小无关,只与外力有关。
第4章 材料力学的基本概念

弹性杆件的外力与内力
材料力学中的内力不同于工程静力学中物体系统中各 个部分之间的相互作用力,也不同于物理学中基本粒子之 间的相互作用力,而是指构件受力后发生变形,其内部各
点(宏观上的点)的相对位置发生变化,由此而产生的附
加内力,即变形体因变形而产生的内力。 例如受拉的弹簧,其内力力图使弹簧恢复原状;人用手提
弹性杆件的外力与内力
作用在结构构件上的外力包括外加载荷和约束力, 二者组成平衡力系,外力分为体积力和表面力,简 称体力和面力。体力分布于整个物体内,并作用在 物体的每一个质点上。重力、磁力以及由于运动加 速度在质点上产生的惯性力都是体力。面力是研究 对象周围物体直接作用在其表面上的力。
Jiangsu Polytechnic University - Gao Guangfan
提出保证构件具有足够强度、刚度和稳定性的设计 准则与设计方法。 材料力学课程就是讲授完成这些工作所必需的基础 知识。
Jiangsu Polytechnic University - Gao Guangfan
材料力学概述
关于材料的基本假定
弹性杆件的外力与内力
弹性体受力与变形特征
杆件横截面上的应力 正应变与剪应变 构件受力与变形的四种基本形式 静力学原理在材力中的可用性与限制性
取任意一部分分析,由平衡方程计算出各个内 力分量的大小与方向。
考察另一部分的平衡,验证所得结果的正确性。
Jiangsu Polytechnic University - Gao Guangfan
材料力学概述
关于材料的基本假定
弹性杆件的外力与内力
弹性体受力与变形特征
杆件横截面上的应力 正应变与剪应变 构件受力与变形的四种基本形式 静力学原理在材力中的可用性与限制性
材料力学 第4章 材料力学的基本假设与基本概念

第4章 材料力学的基本假设 和基本概念
4.1 材料力学的基本假设 4.2 内力与截面法 4.3 应力的概念 4.4 应变的概念 4.5 杆件变形的基本形式
4.4 应变的概念
引例:
图示拉杆F 中画上的微小正方形F
4.5 杆件变形的基本形式 四、剪切
螺 栓 连 接
图4-6
(b) b
n
FS 0 , FN F , M Fa
mO
an m
F
mO
F
思考:如何求解截面n-n上的内力?
(a) 图4-6
第4章 材料力学的基本假设 和基本概念
4.1 材料力学的基本假设 4.2 内力与截面法 4.3 应力的概念 4.4 应变的概念 4.5 杆件变形的基本形式
4.3 应力的概念
2
2 2
C 2
C
2
C
2
M2 FN2
MFMS222
FN2 FN2
FS2 FS2
若不计B、C截面的受力情况,随着外力的增加,构件
将在哪一段先被拉断?
4.3 应力的概念
轴力除以横截面面积而得到的物理量比轴力本身更接 近于揭示材料破坏的规律。但是这种笼统地取平均值的方 法没有体现出横截面上可能存在的内力分布不均匀的事实。
4.1 材料力学的基本假设 三、各向同性假设
假设物体内任一点处沿各个方向的力学性能都相同。
各方向力学性能相同的材料称为各向同性材料,反之则是各 向异性材料。
四、线性弹性假设
假设构件卸载后的所有变形都能恢复, 且在加载时力与变形成正比关系。
F
材料力学基本概念知识点总结

材料力学基本概念知识点总结材料力学是研究物质材料的力学性质和行为的学科,是许多工程学科的基础和核心内容之一。
本文将对材料力学的基本概念进行总结,包括应力、应变、弹性、塑性等方面。
一、应力与应变1.1 应力应力是描述物体内部受力情况的物理量。
一般分为法向应力和切应力两个方向,分别表示作用在物体上的垂直和平行于截面的力。
法向应力可进一步分为压应力和拉应力,分别表示作用在物体上的压缩力和拉伸力。
1.2 应变应变是物体在受力作用下发生形变的度量。
一般分为线性应变和剪切应变两类,分别表示物体长度或体积的变化以及物体形状的变化。
线性应变可进一步分为正应变和负应变,分别表示物体拉伸或压缩时的形变情况。
二、弹性与塑性2.1 弹性弹性是材料的一种特性,指材料在受力作用下能够恢复原先形状和大小的能力。
即当外力停止作用时,材料能够完全恢复到初始状态。
弹性按照应力-应变关系可分为线弹性和非线弹性,前者表示应力与应变之间呈线性关系,后者表示应力与应变之间不呈线性关系。
2.2 塑性塑性是材料的另一种特性,指材料在受力作用下会发生形变并保持在一定程度上的能力。
即当外力停止作用时,材料只能部分恢复到初始状态。
塑性按照塑性变形的特点可分为可逆塑性和不可逆塑性,前者表示形变能够通过去应力恢复到初始状态,后者表示形变无法通过去应力完全恢复。
三、应力-应变关系应力-应变关系是描述材料力学行为的重要概念之一。
在材料的弹性范围内,应力与应变之间满足线性比例关系,也就是胡克定律。
根据胡克定律,应力等于弹性模量与应变的乘积。
四、杨氏模量与剪切模量4.1 杨氏模量杨氏模量是衡量材料抵抗线弹性形变的能力,也叫做弹性模量。
杨氏模量越大,材料的刚性越高,抗拉伸和抗压缩的能力越强。
4.2 剪切模量剪切模量是衡量材料抵抗剪切形变的能力,也叫做切变模量。
剪切模量越大,材料的抗剪强度越高,抗剪形变的能力越强。
五、破坏力学破坏力学是研究材料在外力作用下失效的学科。
材料力学的基本知识与原理解析

材料力学的基本知识与原理解析材料力学是研究材料在外界力作用下的力学性质和变形规律的学科。
它是现代工程学的基础学科之一,对于工程设计、材料选择和结构分析具有重要的意义。
本文将从材料力学的基本概念、应力与应变关系、材料的弹性与塑性行为以及材料失效等方面进行解析。
一、基本概念材料力学研究的对象是材料的内部结构和外部力的相互作用。
材料可以是金属、陶瓷、塑料等各种物质的组合体。
材料力学的基本概念包括应力、应变、弹性模量、屈服强度等。
应力是指单位面积上的力,可以分为正应力和剪应力。
应变是指物体单位长度的变化量,可以分为线性应变和剪切应变。
弹性模量是衡量材料抗拉伸变形能力的指标,屈服强度则是材料开始发生塑性变形的临界点。
二、应力与应变关系应力与应变之间存在一定的关系,这种关系被称为应力-应变关系。
对于线性弹性材料来说,应力与应变之间呈线性关系,可以用胡克定律来描述。
胡克定律表示应力与应变成正比,比例常数为弹性模量。
然而,在材料的应力超过一定临界值后,材料会发生塑性变形,此时应力与应变的关系就不再呈线性关系。
三、材料的弹性与塑性行为材料的弹性行为是指材料在外力作用下能够恢复原状的能力。
弹性行为是材料力学中最基本的性质之一。
当外力作用消失时,材料会恢复到原来的形状和尺寸。
然而,当外力超过材料的屈服强度时,材料会发生塑性变形。
塑性变形是指材料在外力作用下会永久性地改变其形状和尺寸。
塑性变形会导致材料的强度降低和损伤积累,最终可能导致材料的失效。
四、材料失效材料失效是指材料在使用过程中不再满足设计要求或无法继续承受外界力的情况。
材料失效可以分为强度失效和稳定性失效两种。
强度失效是指材料在外力作用下超过其强度极限而发生破坏。
稳定性失效是指材料在长期使用过程中,由于材料的内部缺陷或损伤积累导致材料的性能逐渐下降,最终无法继续使用。
材料失效对于工程结构的安全性和可靠性具有重要影响,因此,对于材料失效机理的研究和预测是材料力学的重要内容之一。
材料力学的一些基本概念

材料力学材料力学基本概念基本概念Simwe :lian20041、强度:在载荷作用下构件抵抗破坏的能力;刚度:在载荷作用下构件抵抗变形的能力;稳定性:在载荷作用下构件保持稳定平衡的能力;2、基本假设:连续性假设:物体在其整个体积内充满了物质而毫无空隙,其结构是密实的; 均匀性假设:从物体内任意一点处取出的体积单元,其力学性能都能代表整个物体的力学性能;各向同性假设:材料沿各个方向的力学性能相同。
3、力学性能:材料在外力作用下所表现出来的变形和破坏方面的特征。
4、应力:受力杆件某一截面上一点处的内力集度。
正应力:垂直于截面的法向分量切应力:与截面相切的切向分量5、圣维南原理:力作用于杆端方式的不同,只会使与杆端距离不大于杆的横向尺寸的范围内受到影响。
6、一点处的应力状态:通过一点的所有不同方位截面上应力的全部情况。
7、线应变:每单位长度的伸长(或缩短)。
LL ∆=ε 8、胡克定律:当杆内的应力不超过材料的某一极限值(比例极限)时,杆的伸长△L 与其所受外力F 、杆的原长L 成正比,而与其横截面面积A 成反比。
引进比例常数E ,故有:EAL F L N =∆ 9、泊松比:当拉(压)杆内的应力不超过材料的比例极限时,横向线应变ε’与纵向线应变ε的绝对值之比为一常数,称此值为横向变形因数或泊松比。
εεµ'= 10、应变能:伴随弹性变形的增减而改变的能量称为应变能。
11、应力应变曲线:纵坐标表示名义应力,横坐标表示名义应变,这种能反应材料的力学性能的曲线图称为应力应变曲线。
比例极限:在弹性阶段内,应力应变符合胡克定律的最高限,与之对应的应力称为比例极限;弹性极限:弹性阶段的最高点卸载后不发生塑性变形的极限,与之对应的应力称为弹性极限;屈服极限:在屈服阶段内,应力有幅度不大的波动,最高点的应力为上屈服极限,最低点的应力为下屈服极限,通常将下屈服极限称为屈服极限;强度极限:在强化阶段,最高点对应的应力称为强度极限。
材料力学的基本概念

拉伸和压缩时,杆横截面上只有轴力FN 一个内力分量。
2020/5/25
22
4.7.2 剪切
作用线垂直于杆件轴线的力,称为横向力(transverse force)
大小相等、方向相反、作用线互相 平行、相距很近两个横向力作用在杆 件上,当这两个力相互错动并保持二 者作用线之间的距离不变时,杆件的 两个相邻截面将产生相互错动, 这种 变形称为剪切变形。
与物体本身的几何尺寸相比是很小的。根据这一假定,
当考察变形固体的平衡问题时,一般可以略去变形的
影响,因而可以直接应用工程静力学方法。
2020/5/25
6
4.2 弹性杆件的外力与内力
4.2.1 外力
作用在结构构件上的外力包括外加载荷和约束力,
二者组成平衡力系。
外力分为体积力和表面力,简称体力和面力。
lim FQ
A0 A
单位均为Pa(N/m2)或MPa (MN/m2)
2020/5/25
16
4.4.2 正应力、切应力与内力分量之间的关系
内力分量是截面上分布内力系的简化结果。
dA FN dA y M z dA z M y
如果仅仅根据平衡条件,只能确定横截面上的内力分量与 外力之间的关系,不能确定各点处的应力。因此,确定横 截面上的应力还需 增加其他条件。
横向弯曲
transverse bending
2020/5/25
25
4.7.5 组合受力与变形
q
F
在一定条件下,可以将组合受力杆件简化为 基本受力形式的组合。
2020/5/25
26
重申几个概念
工程上将只承受拉伸的杆件统称为杆,
bar
只承受压缩的杆件统称为压杆或柱;
材料力学的基本概念

材料力学的基本概念
材料力学是一种研究材料承受外力的理论和实验结合的一门工程学科,是力学专业下的一个分支学科。
材料力学研究的内容包括:材料的机械性质、结构的力学参数、材料及其结构的强度和稳定性、受外力作用的断裂、疲劳、振动及其相关数学模型的分析等。
一、材料的机械性质。
材料机械性质是指材料本身的特性,它可以描
述材料在在力学作用下的变形特性和强度特性,其中包括材料的塑性性能、韧性特性及耐久性特性等,这些特性决定了材料和结构在受力作用下的行为。
二、结构的力学参数。
结构的力学参数是指结构系统的一些力学指标,它可以使用材料本身的物理性能、结构的几何形状、材料的实际表现等特
性来描述,例如接缝的连续性、材料的屈服强度和断裂强度的影响、接缝
结构的稳定性等,这些参数将确定结构对外力的响应。
三、材料及其结构的强度和稳定性。
材料及其结构的强度和稳定性是
指结构对外力的响应能力,这些参数将决定结构对外力的强度以及承受这
种外力的稳定性,它们包括材料的强度、结构的几何形状、结构的连续性
和材料的实际表现等方面的参数,其中材料的强度,特殊情况下,设计极
限可以达到材料的理论屈服点延长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(engineering design) 的重要组成部分,即设计出杆状 宏观力学行为,不涉及材料的微观机理。 构件或零部件的合理形状和尺寸。以保证它们具有足够 的强度、刚度和稳定性。 2018/12/26
但是,材料力学所研究的力学行为仅限于材料的
3
4.1 关于材料的基本假定 4.1.1 均匀连续性假定
2018/12/26
恢复原状;人用手提起重物时,手臂肌肉便产生内力等等。
8
4.2.3 截面法(section method) 具体操作:
用一假想截面将处于平衡状态下的承载物体截为 A、B两部 分,如图所示。为了使其中任意一部分保持平衡,必须在所截 的截面上作用某个力系,这就是A、B两部分相互作用的内力。 根据牛顿第三定律, 作用在A部分截面上的内力与作用在B 部分同一截面上的内力在对应的点上,大小相等、方向相反。
2018/12/26
10
内力偶My和Mz将使杆件的两个相邻截面产生绕横截 面上的某一轴线的相对转动,从而使杆件在 xz 、 xy平 面 内 发 生 弯 曲 变 形 , 这 两 个 内 力 偶 为 弯 矩 (bending moment)。
举例:
F
FAx=0
A
m FAy
M’
M
FP
F’
FBy
11
2018/12/26
截面法步骤:
首先应用工程静力学 方法,确定作用在杆件上的所 有未知的外力(这时把杆近似考虑为刚体)。 在所要考察的横截面处,用假想截面将杆件截开, 分为两部分。
考察其中任意一部分的平衡,在截面形心处建立合 适的直角坐标系,由平衡方程计算出各个内力分量 的大小与方向。
考察另一部分的平衡,以验证所得结果的正确性。
2018/12/26
12
需要指出的是,当用假想截面将杆件截开,考察其 中任意一部分平衡时。实际上已经将这一部分当作 刚体 。所以所用的平衡方法与在工程静力学中的刚 体平衡方法完全相同。
4.3 弹性体受力与变形特征 作用在每一部分上的外力必须与截面上分布内力相平衡,组成
平衡力系。这是弹性体受力、变形的第一个特征。这表明,弹
第二篇 材料力学
第四章 材料力学的基本概念
2018/12/26
1
几个概念
在工程静力学中,忽略了物体的变形,将所研 究的对象抽象为刚体。实际上,任何固体受力后其 内部质点之间均将产生相对移动,使其初始位置发 生改变,称之为位移 (displacement) ,从而导致物 体发生变 形(deformation)。 工程上、绝大多数物体的变形均被限制在弹性范 围内,即当外加载荷消除后,物体的变形随之消失, 这时的变形称为弹性变形(elastic deformation),相 应的物体称为弹性体(elastic body)。
属 时,呈随机取向,因而在宏观上表现为各向同性。
2018/12/Байду номын сангаас6
5
4.1.3 小变形假定
小变形假定:假定物体在外力作用下所产生的变形
与物体本身的几何尺寸相比是 很小 的。根据这一假
定,当考察变形固体的平衡问题时,一般可以略去变 形的影响,因而可以直接应用工程静力学方法。
做受力分析时,研究对象被认为是刚体。 考虑杆件内力变化规律或变形情况时,研究对象被认为是变形体。
homogenization and continuity assumption 假定材料无空隙、均匀地分布于物体所占的整个空间。 认为物体的全部体积内材料是均匀、连续分布的。
好处:
物体内的受力、变形等力学量可以表示为各点坐 标的连续函数,从而有利于建立相应的数学模型。
2018/12/26
4
4.1.2 各向同性假定
2018/12/26
6
4.2 弹性杆件的外力与内力
4.2.1 外力
作用在结构构件上的外力包括外加载荷和约束力,
二者组成平衡力系。
外力分为体积力和表面力,简称体力和面力。
体力分布于整个物体内,并作用在物体的每一个质
点上。重力、磁力以及由子运动加速度在质点上产 生的惯性力都是体力。
面力是研究对象周围物体直接作用在其表面上的力。
2018/12/26
2
一是固体力学 (solid mechanics) ,即研究物体
材 在外力作用下的应力、变形和能量,统称为应力 料 分析(stress analysis)。 但是,材料力学又不同 力 于固体力学,材料力学所研究的固体仅限于杆类 学 物体,例如杆、轴、梁等。 的 二是材料科学(Materials Science)中的材料的力 研 学行为 (behavior of materials),即研究材料在 究 外力和温度作用下所表现出的力学性能 内 (mechanics properties) 和失效 (failure) 行为。 容 以上两方面的结合使材料力学成为工程设计
2018/12/26
9
由材料的连续性假定,截面 上连续分布的内力系可以向 截面形心简化为一个 合力 和 主矩
内力分量 FN将使杆件产生沿轴线方向的伸长或压缩 变形,称为轴向力,简称轴力(normal force)
内力分量FQy和FQz将使两个相邻截面分别产生沿y和z 方向的相互错动,这种变形称为剪切变形,这两个内力 分量称为剪力(shearing force)。 内力偶Mx将使杆件的两个相邻截面产生绕杆件轴线的 相对转动,这种变形称为扭转变形,该内力偶为扭矩。
各向同性假定 (isotropy assumption): 假定弹性 体在所有方向上均具有相同的物理和力学性能。根据 这一假定,可以用一个参数描写各点在各个方向上的 某种力学性能。
大多数工程材料虽然微观上不是各向同性的,例
如金属材料,其单个晶粒呈结晶各向异性(anisotropy
of crystallographic),但当它们形成多晶聚集体的金
2018/12/26
7
4.2.2 内力与内力分量
材料力学中的内力不同于工程静力学中物体系统中各个部
而是指构件受力后发生变形,其内部各点(宏观上的点)的相
分之间的相互作用力,也不同于物理学中基本粒子之间的 相互作用力。 对位置发生变化,由此而产生的附加内力,即变形体因变 形而产生的内力。
这种内力确实存在,例如受拉的弹簧,其内力力图 使弹簧