初中数学综合复习统计图表部分4
浙教版七年级下册数学 专题12 数据与统计图表(知识点串讲)(解析版)

专题12 数据与统计图表知识网络重难突破知识点一数据的收集和整理1.对收集到的原始数据往往需要进行整理、分析,从中寻找规律,发现有用的信息。
将数据分类、排序是整理数据的常用方法。
2.全面调查:对所有的考察对象作调查;如:人口普查。
抽样调查:从所有对象中抽取一部分作调查分析。
3.在统计中,我们把所要考察的对象的全体叫做总体,把组成总体的每一个考察对象叫做个体,样本中个体的数目叫做样本容量。
4.如果在抽样时,每一个个体抽到的机会都相等,这样的抽样方法叫做简单随机抽样。
【典例1】(2020•宁波模拟)要调查某校学生周日的睡眠时间,下列选取调查对象中最合适的是()A.随机选取该校一个班级的学生B.随机选取该校100名男生C.随机选取该校一个年级的学生D.在该校各年级中机选取100名学生【点拨】根据调查数据要具有随机性,进而得出符合题意的答案.【解析】解:要调查某校周日的睡眠时间,最合适的是在该校各年级中机选取100名学生.故选:D.【点睛】此题主要考查了调查收集数据的过程与方法,利用数据调查应具有随机性是解题关键.【变式训练】1.(2019春•杭州期末)某市有9个区,为了解该市初中生的视力情况,小圆设计了四种调查方案.你认为比较合理的是()A.测试该市某一所中学初中生的视力B.测试该市某个区所有初中生的视力C.测试全市所有初中生的视力D.每区各抽5所初中,测试所抽学校学生的视力【点拨】利用抽样调查的中样本的代表性即可作出判断.【解析】解:某市有9个区,为了解该市初中生的视力情况,小圆设计了四种调查方案.比较合理的是:每区各抽5所初中,测试所抽学校学生的视力,故选:D.【点睛】考查了抽样调查的可靠性,抽样调查抽取的样本要具有代表性,即全体被调查对象都有相等的机会被抽到.2.(2020•金东区模拟)下列调查中,须用普查的是()A.了解我区初三同学的视力情况B.了解我区初三同学课外阅读的情况C.了解我区初三同学今年4月12日回校报到时的校园健康“入学码”情况D.了解我区初三同学疫情期间参加晨练的情况【点拨】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,对各选项分析判断后利用排除法求解.【解析】解:A、了解我区初三同学的视力情况,适合采用抽样调查,故本选项不合题意;B、了解我区初三同学课外阅读的情况,适合采用抽样调查,故本选项不合题意;C、了解我区初三同学今年4月12日回校报到时的校园健康“入学码”情况,事关重大,适合采用普查,故本选项符合题意;D、了解我区初三同学疫情期间参加晨练的情况,适合采用抽样调查,故本选项错误.故选:C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查.3.(2020•兰溪市模拟)为了解本次调研测试后我区数学学科各分数段成绩分布情况,将抽取400名同学的调研测试数学成绩进行统计分析.在这个问题中,样本是指()A.我区2020年调研测试数学成绩B.被抽取的400名同学C.被抽取400名同学的调研测试数学成绩D.400【点拨】直接利用样本的定义,从总体中取出的一部分个体叫做这个总体的一个样本,进而分析得出答案.【解析】解:为了解本次调研测试后我区数学学科各分数段成绩分布情况,将抽取400名同学的调研测试数学成绩进行统计分析.在这个问题中,样本是指被抽取400名同学的调研测试数学成绩.故选:C.【点睛】此题主要考查了样本的定义,正确把握定义是解题关键.4.(2019•亭湖区校级模拟)为了了解某区2万名学生参加中考的情况,有关部门从中抽取了500名学生的成绩进行统计分析,在这个问题中正确的是()A.2万名考生是总体B.每名考生是个体C.500名考生是总体的一个样本D.样本容量是500【点拨】本题的考查的对象是:某区2万名学生参加中考的成绩,总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.【解析】解:A、2万名考生的成绩是总体,错误;B、每名考生的成绩是个体,错误;C、500名考生的成绩是总体的一个样本,错误;D、样本容量是500,正确.故选:D.【点睛】正确理解总体,个体,样本、样本容量的含义是解决本题的关键.知识点二条形统计图和折线统计图1.条形统计图:一般由两条互相垂直的数轴和若干长方形组成,两条数轴分别表示两个不同类别的标目,长方形的高表示其中一个标目的数据。
初中数学解题方法专题训练——统计图表型问题方法以及常见题型练习及解析

专题26 统计图表型问题【典例分析】例1、小明调查了本班同学最喜欢的球类运动情况,并作出了统计图,下面说法正确的是()A. 从图中可以直接看出全班总人数B. 从图中可以直接看出喜欢足球运动的人数最多C. 从图中可以直接看出喜欢各种球类运动的具体人数D. 从图中可以直接看出喜欢各种球类运动的人数的百分比【答案】D【解析】解答:解:因为总体的具体数量短缺,所以A、C错误,又因为在扇形统计图中,所占的百分比越大它对应的具体数量就越多,所以B错误,故只有D正确.故选D.分析:因为扇形统计图只能直接反映部分占总体的百分比大小,所以A、C错误,再利用各部分所占是百分比即可对B、D作出判断.本题考查扇形统计图.扇形统计图直接反映部分占总体的百分比大小.例2、如图是某厂一年的收入变化的图象.根据图象回答:(1)在这一年中,收入最高的月份是________;(2)6月份的收入是________百万元;(3)收入为4百万元的月份是________;(4)收入不断减少的月份是____至____.【答案】(1)12月;(2)2;(3)1月和11月;(4)1月,8月【解析】【分析】本题主要考查了学生根据统计图分析数量关系解答问题的能力.(1)观察统计图即可得知;(2)观察统计图即可解答;(3)观察统计图即可解答;(4)观察统计图即可解答.【解答】解:(1)观察统计图可知,在这一年中,收入最高的月份是12月份;(2)6月份的收入是2百万元(3)收入为4百万元的月份是1月和11月;(4)收入不断减少的月份是1月至8月.例3、“凑够一拨人就走,管它红灯绿灯。
”曾经有一段时间,“中国式过马路”现象引起社会广泛关注和热议交通安全与我们的生活息息相关,“珍惜生命,文明出行”是每个公民应遵守的规则.某市为了了解市民对“闯红灯”的认识,随机调查了部分市民,并根据调查结果绘制了如下尚不完整的统计图表.(每位市民仅持一种观点)调查结果扇形统计图调查结果统计表根据以上统计图表,解答下列问题:(1)本次接受调查的市民共有________人;a=________,b=________;(2)扇形统计图中,扇形C的圆心角度数是________;(3)若该市约有120万人,请估计“看到车少可以闯红灯”和“因为车让行人,行人可以闯红灯”观点的人数大约共有多少。
初中数学知识点总结:统计表和统计图

初中数学知识点总结:统计表和统计图知识点总结【一】频数分布直方图:1.频数与频率:每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。
2.频数分布表: 运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数×各组的频率=相应组的频数。
画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来。
3.频数分布直方图:〔1〕当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。
〔2〕绘制的频数分布直方图的一般步骤:①计算最大值与最小值的差〔极差〕,确定统计量的范围;②决定组数和组距,数据越多,分的组数也应当越多;③确定分点;④列频数分布表;⑤画频数分布直方图。
【二】常见的统计图:常见的统计图有条形统计图、折线统计图、扇形统计图三种,在解决实际问题时,具体选择用哪种统计图,要依据统计图的特点和问题的要求而定。
1.条形统计图:〔1〕条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来。
条形统计图又分为条形统计图和复式条形统计图。
〔2〕特点:能够显示每组中的具体数据;易于比较数据间的差别;如果要表示的数据各自独立,一般要选用条形统计图。
〔3〕绘制方法:①为了使图形大小适当,先要确定横轴和纵轴的长度,画出横轴和纵轴;②确定单位长度,根据要表示的数据的大小和数据的种类,分别确定两个轴的单位长度,在横纵、纵轴上从零开始等距离分段;③用长短〔或高低〕不同的直条来表示具体的数量,直条的宽度要适当,每个直条的宽度要相等,直条之间的距离也要相等;④要注明各直条所表示的统计对象、单位和数量,写上统计图的名称、制图日期,复式条形图还要有图例。
2.折线统计图:〔1〕折线统计图用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化。
初中数学七年级《统计图》

将圆柱沿斜方向切去一截,剩下的一段如图5所示, 将它的侧面沿一条母线剪开,则得到的侧面展开图的 形状不可能是( )
点拨:这是一个圆柱的侧面展开图问题,可动手实践一下,用 纸做一个圆柱,按题意沿斜方向切去一截,再沿一条母线展开, 对照选择支,显然应选C。
要到玻璃店去配一块完全一样玻璃,最省事的办法是 ( )。 A、带①去 B、带②去 C、带③去 D、带①和②去
③ ② ①
2.特殊值排除法 例3、已知:a<b,则下列各式中正确的是( )。 A、a<—b B、a-3>b-8 C、a2<b2 D、-3a>-3b
3、逐步排除法 例4、能判断四边形ABCD是平行四边形的条件是( A、AB=CD、∠B=∠D B、∠A=∠B、∠C=∠D C、AB∥CD、AD=BC D、AD∥BC、AD=BC
链接:各种统计图的制作.
布置作业:书P:133 1,2,3
在模拟考试中,有学生大题做得 好,却在选择题上失误丢分,主 要原因有二:
1、复习不够全面,存在知识死角,或者部分
知识点不够清楚导致随便应付;
2、解题没有注意训练解题技巧 ,导致耽误宝
贵的时间。
选择题考查的内容覆盖了初中阶段所学的重要 知识点,要求学生通过计算、推理、综合分析进行判 断,从“相似”的结论中排除错误选项的干扰,找到 正确的选项。部分学生碰到选择题提笔就计算,答题 思维比较“死”,往往耗时过多,如果一个选择题是 "超时"答对的,那么就意味着你已隐性丢分了,因为占 用了解答别的题目的时间.因此,除了具备扎实的基 本功外,巧妙的解题技巧也是必不可少的。
下面举例再回顾一下解数学选择题的几种常用方 法,供大家复习时参考,希望对同学们有所启发和帮 助。
八年级数学几种常见的统计图表通用版知识精讲

初二数学几种常见的统计图表通用版【本讲主要内容】几种常见的统计图表统计图表与分类统计表:简单表、分组表;统计图:条形图、扇形图、折线图、直方图。
统计图表的作用与应用【知识掌握】【知识点精析】数字是统计的语言,用数据说话是统计的特征。
统计图表是系统地描述数据资料的基本形式。
1. 统计图表与分类(1)统计表把数据资料按照一定顺序,用表格系统表示出来,这种表格称为统计表。
依据描述的内容是否分组,分为:简单表:例如,分组表:例如:某校推荐市级先进班集体候选班考核得分表(单位:分)(2)统计图把数据资料按照一定的顺序,用几何图形或具体事物的形象系统表示出来,这种图形称为统计图。
按图示形式分类,大体分为三种:几何图,用几何的形或线表示;象形图,用具体事物的形象图画表示;统计地图,在地图上用点或线纹表示。
常见的几何图,按图示的内容不同,分为四种:条形图,图示数据的大小或多少。
例如:下图(1)又称带形图,(2)又称柱形图。
我国“九五”期间国内生产总值的统计图图(1)雅典奥运会中国男篮队员的年龄统计图图(2)扇形图,图示数量在总体中的百分比。
南通市“五一”黄金周旅游各项消费分布统计图例如:下图折线图,图示数据的变化趋势。
一位病人的体温变化图直方图,图示数据分组整理的分布结果。
例如:下图是频数分布直方图。
某市九年级学生地理成绩频数分布直方图下图是频率分布直方图。
同型号30辆汽车耗油1升所行路程频率分布直方图频数与频率分布直方图的联系与区别:联系:都是分组整理的结果,各小组长方形的宽都是组距,形状相同。
区别:频数分布直方图各小组长方形的高是频数,长方形的高低表示频数的多少。
面积不表示任何统计意义;频率分布直方图各小组长方图的高是频率除以组距的商,长方形的面积大小表示频率的大小,高不表示任何统计意义。
2. 统计图表的作用与应用统计图表,能够系统地描述数据资料,明确醒目、生动直观地表明数据的对比关系。
是统计分析的重要工具。
初中数学中考试题研究《图表信息试题综合》

初中数学中考试题研究 《图表信息综合试题》图表信息题是近几年中考热点内容之一,也是今后中考的出题方向。
这类题常以实际生活为背景,将相关的数学知识信息巧无声息的隐含在创设的图象、图表中,我们只有通过对图象、图表等相关信息的分析、观察、猜想、抽象、概括,从中获取图表中隐含的解题信息和思路、方法,然后再进行推理、探究、发现和计算的一种题型。
图表信息的内容大多取材于现实生活,主要包括生活图景、表格信息、图象信息、统计图表、几何图形等各种类型。
类型一 从生活情景中体验与获取例1:(2009江西)某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段AB 、OB 分别表示父、子俩送票、取票过程中,离体育馆的.....路程..S (米)与所用时间t (分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变): (1)求点B 的坐标和AB 所在直线的函数关系式; (2)小明能否在比赛开始前到达体育馆?解析:(1)设小明步行的速度为x 米/分,则小明父亲骑车的速度为3x 米/分,依题意得:15x+45x =3600.解得:x =60.所以两人相遇处离体育馆的距离为60×15=900米.所以点B 的坐标为(15,900).设直线AB 的函数关系式为s =kt+b (k ≠0).由题意,直线AB 经过点A (0,3600)、B (15,900)得:360015900b k b =⎧⎨+=⎩,解之,得1803600k b =-⎧⎨=⎩,. ∴直线AB 的函数关系式为:1803600S t =-+(2)在1803600S t =-+中,令S =0,得01803600t =-+.解得:t =20.即小明的父亲从出发到体育馆花费的时间为20分钟,因而小明取票的时间也为20分钟. ∵20<25,∴小明能在比赛开始前到达体育馆.同步测试:如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y (cm )与饭碗数x (个)之间的一次函数解析式; (2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少? 解析:(1)设y kx b =+.由图可知:当4x =时,10.5y =;当7x =时,15y =.把它们分别代入上式,得 10.54,157.k b k b =+⎧⎨=+⎩ ,解得 1.5k =, 4.5b =.∴ 一次函数的解析式是 1.5 4.5y x =+. (2)当4711x =+=时, 1.511 4.521y =⨯+=. 即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm .类型二 从统计图中体验与获取例2:(2009年衢州)2009年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累计确诊病例人数如图所示.(1) 在5月17日至5月21日这5天中,日本新增甲型H1N1流感病例最多的是哪一天?该天增加了多少人?(2) 在5月17日至5月21日这5天中,日本平均每天新增加甲型H1N1流感确诊病例多少人?如果接下来的5天中,继续按这个平均数增加,那么到5月26日,日本甲型H1N1流感累计确诊病例将会达到多少人?(3) 甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天..传染后共有9人患了甲型H1N1流感,每天..传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?解析:(1) 18日新增甲型H1N1流感病例最多,增加了75人; (2) 平均每天新增加267452.65-=人,继续按这个平均数增加,到5月26日可达52.6×5+267=530人;(3) 设每天传染中平均一个人传染了x 个人,则1(1)9x x x +++=,2(1)9x +=,解得2=x (x = -4舍去).再经过5天的传染后,这个地区患甲型H1N1流感的人数为(1+2)7=2187(或1+2+6+18+54+162+486+1458=2187),一共将会有2 187人患甲型H1N1流感.累计确诊病例人数 新增病例人数 0 421 96 16319326717756730 74161718 192021 日本2009年5月16日至5月21日甲型H1N1流感疫情数据统计图 人数(人) 0 50100 150 200 250 300 日期同步测试:(2008年浙江)衢州市总面积8837平方千米,总人口247万人(截目2006年底),辖区有6个县(市、区),各县(市、区)的行政区域面积及平均每万人拥有面积统计如图1、图2所示(1)行政区域面积最大的是哪个县(市、区)?这个县(市、区)约有多少面积(精确到1平方千米)?(2)衢州市的人均拥有面积是多少(精确到1平方米)?6个县(市、区)中有几个县(市、区)的人均拥有面积超过衢州市人均拥有面积? (3)江山市约有多少人(精确到1万人)?解析:(1)行政区域面积最大的是开化县, 面积约为8837)(2224%17.25平方千米≈⨯ (2)衢州市的人均拥有面积是)/(3578)/(78.352478837人平方米万人平方千米=≈÷衢江区和开化县2个县(市、区)的人均拥有面积超过衢州市人均拥有面积。
数学人教版七年级下册统计图表

10.1 统计调查——统计图表
广州市知用中学数学科李仲贤
【教学内容】(1)收集数据、整理数据、描述数据的方法;
(2)画条形统计图、扇形统计图.
【教学目标】(1)会用表格整理数据,会用条形统计图、扇形统计图直观地描述数据;
(2)会运用统计方法解决简单的实际问题;
(3)通过参与处理数据的一般过程,感受统计在生活和生产中的应用,增强学习统计的兴趣.
【教学重点】整理及描述数据的方法.
【教学难点】(1)绘制条形统计图、扇形统计图;
(2)通过统计图表获取信息,并解决简单的实际问题.
【教学辅助手段】教师准备多媒体课件,学生准备直尺、圆规、量角器等画图工具.【教学设计】。
2013年初中毕业生学业考试复习初中数学第34讲常见的统计图(WORD+PPT)

例 1(3)题 A. 50% B.55% C. 60% D. 65%
【点拨】(1)根据折线图的数据,分别求出相邻两个月的用电量的变化值,比较即可得 解; (2)根据扇形图可以得出该校喜爱体育节目的学生所占比例,进而得出该校喜爱体育节 目的学生数目; (3)先求出 m 的值,再用一周课外阅读时间不少于 4 小时的人数除以抽取的学生总数即 可.
例 1 (1)(2012· 温州)小林家今年 1~5 月份的用电量情况如图所示,由图可知,相邻的两 个月中,用电量变化最大的是( )
A. 1 月至 2 月 B. 2 月至 3 月 C. 3 月至 4 月 D. 4 月至 5 月
(2)(2012· 天津)为调查某校 2 000 名学生对新闻、体育、动画、娱乐、戏曲五类电视节 目的喜爱情况, 随机抽取部分学生进行调查, 并结合调查数据作出如图所示的扇形统计图. 根 据统计图提供的信息,可估算出该校喜爱体育节目的学生共有( )
3.扇形统计图 (1)用一个圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映 部分在总体中所占百分比的大小,这样的统计图叫扇形统计图. (2)百分比的意义:在扇形统计图中,每部分占总体的百分比等于该部分所对扇形的圆 心角的度数与 360° 的比. (3)扇形的圆心角= 360° ×百分比. 4.频数分布直方图 (1)统计数据中每个对象出现的次数叫频数, 每个对象出现的次数与总次数的比 ( 或者百 分比 )叫频率,频数和频率都能够反映每个对象出现的频繁程度. (2)频数分布表、频数分布直方图和频数折线图都能直观、清楚地反映数据在各个小范 围内的分布情况. (3)频数分布直方图的绘制步骤是:①计算最大值与最小值的差;②决定组距与组数; ③确定分点,常使分点比数据多一位小数,并且把第一组的起点稍微减小一点;④列频数分 布表;⑤用横轴表示各分段数据,纵轴反映各分段数据的频数,小长方形的高表示频数,绘 制频数分布直方图.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学综合复习统计图表部分4一、选择题1.某小组做“用频率估计概率”的实验时,统计了某以结果出现的频率,绘制了如图6的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是4【答案】D2.某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图.据此统计图估计该校八年级支持“分组合作学习”方式的学生数约为()(含非常喜欢和喜欢两种情况)A.216 B.252 C.288 D.324第7题图【答案】B3. 为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该道口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为A.9 B.10 C.12 D.15【答案】C4. 某棉纺织厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表,则棉花纤维长度的数据在8≤x<32,这个范围的频率为()A. 0.8B. 0.7C. 0.4D. 0.2【答案】A二、填空题1.“每天锻炼一小时,健康生活一辈子”,自开展“阳光体育运动”以来,学校师生的锻炼意识都增强了,某校有学生8200人,为了解学生每天的锻炼时间,学校体育组随机调查了部分学生,统计结果如表所示。
表格中,m= ;这组数据的众数是;该校每天锻炼时间达到1小时的约有人.【答案】30;29分钟及以下;820.2.某实验中学九年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是度.【答案】108.3. 某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生总人数为1500人,结合图中信息,可得该校教师人数为________人.【答案】1204.某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A等级的扇形的圆心角的大小为__________.【答案】108°5.七年(1)班同学为了了解2013年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据整理如下表:0<x≤5 5<x≤10 10<x≤15 15<x≤20 x>20月均用水量x/m3频数/户12 20 3频率0.12 0.07【答案】5606.某冷饮店一天售出各种口味雪糕数量的扇形统计图如图所示,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是支.【答案】150三、解答题1. 某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查,被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价,图1和图2是该小组采集数据后绘制的两幅统计图,经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息.解答下列问题:(1)此次调查的学生人数为200;(2)条形统计图中存在错误的是C(填A、B、C、D中的一个),并在图中加以改正;(3)在图2中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据A、B的人数和所占的百分比求出抽取的学生人数,并判断出条形统计图A、B长方形是正确的;(2)根据(1)的计算判断出C的条形高度错误,用调查的学生人数乘以C所占的百分比计算即可得解;(3)求出D的人数,然后补全统计图即可;(4)用总人数乘以A、B所占的百分比计算即可得解.解答:解:(1)∵40÷20%=200,80÷40%=200,∴此次调查的学生人数为200;(2)由(1)可知C条形高度错误,应为:200×(1﹣20%﹣40%﹣15%)=200×25%=50,即C的条形高度改为50;故答案为:200;C;(3)D的人数为:200×15%=30;(4)600×(20%+40%)=360(人),(第15题图)答:该校对此活动“非常喜欢”和“比较喜欢”的学生有360人.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.2.设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了________名学生,a=______%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为______度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?【答案】解:(1)∵2448%=50÷12=100%=24%50a⨯∴在这次调查中,一共抽取了50名学生,a=24%;(2)补全条形统计图如图.(3)∵10360(100%)7250︒⨯⨯=︒扇形统计图中C级对应的圆心角为72度;10(4)∵42000(100%)16050⨯⨯=∴若该校共有2000名学生,估计该校D级学生有160名.3.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动.为了了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有人;(2)请将统计图2补充完整;(3)统计图1中B项目对应的扇形的圆心角是度;(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.【答案】(1)∵140÷28%=500(人),∴这次被调查的学生共有500人.(2)500-75-140-245=40(人),补全统计图如下:(3) B项目对应的扇形的圆心角是75360=54 500⨯︒︒.(4)该校喜欢健美操的学生人数是2453600=1764500⨯(人). 4.巴中市对初三年级学生的体育、物理实验操作、化学实验操作成绩进行抽样调查,成绩评定为A 、B 、C 、D 四个等级,现抽取这三种成绩共1000份进行统计分析,其中A 、B 、C 、D 分别表示优秀、良好、合格、不合格四个等级,相关数据统计如表1、图8所示.①请将表1补充完整(直接填数据,不写解答过程).(3分)②巴中市共有40000名学生参加测试,试估计该市初三年级学生化学实验操作合格及合格以上大约有多少人?(2分)③在这40000名学生中,体育成绩不合格的大约有多少人?(2分)化学实验操作物理实验操作体育8【答案】解:(1)如下表:(2)40000=36800250⨯答:巴中市40000名参加测试的学生,化学实验操作合格及合格以上大约有36800人; (3)2740000=2400450⨯ 答:在这40000名学生中,体育成绩不合格的大约有2400人 5. 我市启动了第二届“美丽港城·美在阅读”全民阅读活动.为了解市民每天的阅读时间情况,随机抽取了部分市民进行调查.根据调查结果绘制如下尚不完整的频数分布表:(1) 补全表格;(2) 将每天阅读时间不低于60min 的市民称为“阅读爱好者”,若我市约有500万人,请估计我市能称为“阅读爱好者”的市民约有多少万人?【答案】(1)频数450 400 100 50 1000频率0.45 0.4 0.1 0.05 1答:估计我市能称为“阅读爱好者”的市民约有275万人6. 为了解某校七、八年级学生的睡眠情况,随机抽取了该校七,八年级部分学生进行调查.已知抽取的七年级与八年级的学生人数相同,利用抽样所得的数据绘制如下统计图表.睡眠情况分组表(单位:时)组别睡眠时间A x<7.5B 7.5≤x<8.5C 8.5≤x<9.5D 9.5≤x<10.5E x≥10.535%25%25%10%a第19题图2ABDCE八年级学生睡眠情况统计图根据图表提供信息,回答下列问题: (1)求统计图中的a .(2)抽取的样本中,八年级学生睡眠时间在C 组的有多少人?(3)已知该校七年级学生有755人,八年级学生有785人.如果睡眠时间x (时)满足7.5≤x<9.5,称睡眠时间合格.试估计该校七、八年级学生中睡眠时间合格的共有多少人. 【答案】解:(1)a =1―35%―25%―25%―10%=5%;(2)依题意,得八年级抽取的学生人数=6+19+17+10+8=60(人), 八年级学生睡眠时间在C 组的有60×35%=21(人).7.八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A ,B ,C ,D ,E 五位同学对照评分标准回忆并记录了自己的答题情况(E 同学只记得有7道题未答)(1)根据以上信息,求A ,B ,,四位同学成绩的平均分;(2)最后获知A ,B ,C ,D ,E 五位同学的成绩分别是95分,81分,64分,83分,58分. ①求E 同学的答对题数和答错题数;②经计算,A ,B ,C ,D 思维同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可). 【答案】解:(1)A 同学的成绩为:519200195⨯-⨯+⨯=,B 同学的成绩为:517220181⨯-⨯+⨯=,C 同学的成绩为:515220371⨯-⨯+⨯=,D 同学的成绩为:517210283⨯-⨯+⨯=.A ,B ,C ,D 四位同学成绩的平均分9581718382.54+++==.答:A ,B ,C ,D 四位同学成绩的平均分为82.5分. (2)①设E 同学答对x 道题,则答错题数为20713x x --=-. 由题意可得52(13)0758x x --+⨯=,解得12x =. 答:E 同学答对题数为12,答错题数为1. ②C 同学的成绩记错了.设C 同学答对a 道题,答错b 道题. 则5264a b -=,即有6425ba +=. ∵20a b +,且a 、b 为整数,故可行解只有143a b =⎧⎨=⎩,203a b --=.答:C 同学答对14道题,答错3道题,未答3道题.8. 某教研机构为了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查.依据相关数据绘制成以下不完整的统计图表,请根据图表中的信息解答下列问题:(1)求样本容量及表格中a ,b ,c 的值,并补全统计图;(2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中生人数; (3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议; ②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样? 【答案】解:(1)由统计表可知,样本容量为57÷0.38=150. ∴a =150×0.3=45,c =1-0.3-0.38-0.06=0.26, b =150×0.26=39. 补全统计图如图4所示.(2)2300×0.26=598,∴可估计该校“不重视阅读数学教科书”的初中生人数约为598人.(3)①从该校初中生重视阅读数学教科书的人数比例来看,该校初中生对阅读数学教科书的重视程度不够,建议数学教师在课内外加强引导学生阅读数学教科书,逐步提高学生数学阅读能力,重视数学教材在数学学习过程中的作用;②考虑到样本具有的随机性、代表性和广泛性,要了解全省初中生阅读数学教科书的情况,抽样时要选择城市、乡镇不同层次的学校.(只要给出合理建议即可给分)9. 网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围对12~35岁的网瘾人群进行了简单的随机抽样调查,得到了如图(十三)所示的两个不完全统计图. 请根据图中的信息,解决下列问题. (1)求条形统计图中a 的值;(2)求扇形统计图中18~23岁部分的圆心角;(3)据报道,目前我国12~35岁网瘾人数约为2000万,请估计其中12~23岁的人数.图4某校初中生阅读数学教科书情况统计图表重视 一般 不重视 说不清楚a 57b 90.3 0.38 c 0.06类别 人数占总人数比例【答案】解:(1)330÷22%=1500人,a =1500-450-420-330=300人; (2)4501500×100%=30%,360°×30%=108°. ∴18~23岁部分的圆心角为108°. (3)3001500×100%=20%,20%+30%=50%,2000万×50%=1000万. 答:估计其中12~23岁的人数为1000万10.为了解某市初三年级学生体育成绩(成绩均为整数),随机抽取部分学生的体育成绩并分段(A:20.5~22.5;B:22.5~24.5;C:24.5~26.5;D:26.5~28.5;E:28.5~30.5)统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,a = ,b = ,并将统计图补充完整; (2)小明收:“这组数据的众数一定在C 中.”你认为小明的说法正确吗? (填“正确”或“错误”); (3)若成绩在27分以上(含27分)定为优秀,则该市今年48000名初三年级学生中体育成绩为优秀的学生人数约有多少?【答案】解:(1)0.15,60;(2)错误;(3)48000×(0.25+0.2)=21600.11. 某校课外兴趣小组在本校学生中开展“感动中国2013年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查.问卷调查的结果分为A 、B 、C 、D 四类.其中,A 类表示“非常了解”,B 类表示“比较了解”,C 类表示“基本了解”,D 类表示“不太了解”,划分类别后的数据整理如下表: 类别 A BC D 频数 30 40 24 b 频率 a 0.4 0.24 0.06(1)表中的a = ▲ ,b = ▲ ;(2)根据表中数据,求扇形统计图中类别为B 的学生数所对应的扇形圆心角的度数; (3)若该校有学生1000名,根据调查结果估计该校学生中类别为C 的人数约为多少? 【答案】解:(1)样本容量=24÷0.24=100.体育成绩统计表分数段 频数/人 频率 A 12 0.05 B 36 a C 84 0.35 D b 0.25 E480.2频数/人12 24 36 48 60 72 84 E 体育成绩统计图分数段第21题图 A B C D24%∴a=30÷100=0.3,b=100×0.06=6.(2)360°×0.4=144°;(3)1000×0.4=400.12.作为宁波市政府民生实事之一的公共自行车建设工作基本完成,某部门对今年4月份中的7天进行了公共自行车租车量的统计,结果如下:(1)求着7天日租车量的众数、中位数和平均数;(2)用(1)中平均数估计4月份(30天)共租车多少万量次;(3)市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车3200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的白费率(精确到0.1%).【答案】解:(1)8,8,8.5;(2)30×8.5=255(万车次);.(3)3200×0.1÷9600=3.3%.13为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了我市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图和扇形统计图(部分信息未给出)。